
On-line Supplement for �An analytical investigation of alternative batching policies

for remanufacturing under stochastic demands and returns� by �Yi Zhang, Elif

Akçal�, and S�la Çetinkaya"

Proof of Properties 1 to 5

Properties 1 to 5 can be proved using the following assumptions/observations:

• Yi ∼ exp(r), Zi ∼ Gamma (i, r), W (t) ∼ Poisson(rt), Xi ∼ exp(a), Si ∼ Gamma (i, a), and N(t) ∼
Poisson(at).

• X1 and SQD
are stopping times� for {N(t), t > 0}.

• Y1 and ZQR
are stopping times for {W (t), t > 0}.

Proof of Property 6

Since N(t)−W (t) ∼ Normal((a− r)t,
√
(a+ r)t), we have
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in the right hand side of the above expression, we have
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Proof of Observation 1

1. The proof is straightforward using (13), (30) and (35), and, hence, it is omitted.

�A random variable, e.g., X1, is a stopping time with respect to the process {N(t), t > 0} if for every t ≥ 0, the event
[X1 ≤ t] is determined by the process up to time t ([23], Page 504).
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2. Recall (18), (20), (24), and (26). Now, observe that, in order to show E
[
CL

(
T̂R

)]
> E

[
CL

(
T̂D

)]
,

it is su�cient to show that B −A > 0. That is,

B −A =
2(wa+ hr) + 2r2K + a(w + h)

r2(wa+ hr)
− 2(wa+ hr) + 2a2K − a(w + h)

a2(wa+ hr)

=
2a2(wa+ hr) + 2a2r2K + a3(w + h)

a2r2(wa+ hr)
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=
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a2r2(wa+ hr)
.

Recalling r < a, we conclude that B −A > 0.

3. The proof is straightforward using (13) and (24), and, hence, it is omitted.

4. Recall (13) and (18) and observe that in order to show E
[
CL

(
T̂F

)]
< E

[
CL

(
T̂D

)]
, we need to

verify

√
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− 1
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>
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Rearranging the terms of the last inequality above, it then follows that if r
a > 1

2

(
1− w

h

)
then

E
[
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(
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)]
< E

[
CL

(
T̂D
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.

5. Recall that, by assumption, r < a. Considering this assumption along with w > h, the condition
r
a >

1
2

(
1− w

h

)
in Part 4 of Observation 1 is immediately satis�ed. Hence, the result is an immediate

consequence of Parts 1�4 of Observation 1.

6. It follows from the proof of Part 5 of Observation 1 that if w < h then the condition r
a >

1
2

(
1− w

h

)
in Part 4 of Observation 1 may or may not be satis�ed. However, it is straightforward to show that

if w < h and a
2 < r < a then we still have r

a >
1
2

(
1− w

h

)
so that the result follows as an immediate

consequence of Part 5 of Observation 1.

7. The result is an immediate consequence of the assumption that r < a and Parts 1�6 of Observation

1.

Proof of Observation 2

Let us recall the closed-form expressions of E
[
CL

(
T̂F

)]
, E

[
CL

(
T̂D

)]
, E

[
CL

(
T̂R

)]
, E

[
CL

(
Q̂D

)]
,

and E
[
CL

(
Q̂R

)]
given by (13), (18), (24), (30), and (35), respectively, along with the de�nitions of A

and B given by (20) and (26), respectively. Now, using (20) and (26) and recalling r < a, one can easily
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verify that

∂A

∂w
=
−2a2K + h(a− r)
a3(wa+ hr)2

< 0 if
K

h
>

1

2a2
(a− r); (60)

∂A

∂h

−2arK − w(a− r)
a3(wa+ hr)2

< 0; (61)

∂B

∂w
=
−2r2K − ha(a− r)
ar6(wa+ hr)2

< 0; (62)

∂B

∂h
=
−2r3K + wa2(a− r)

r6(wa+ hr)2
< 0 if

K

w
>

a2

2r3
(a− r). (63)

The results in Table 3 can now be veri�ed in a straightforward fashion by utilizing the closed-form

expressions (13), (18), (24), (30), and (35) along with the results (60)�(63) above.

Proof of Observation 3

The proof builds on the argument that if one can identify the conditions under which In (the number of

used-items in inventory at the end of remanufacturing cycle n, which we also refer as the supply overage

quantity) can be safely omitted in cost and policy parameter computations then the proposed approach

o�ers solid approximations. Hence, in proving the following speci�c parts, we examine the cases either the

expected supply overage quantity is negligible (i.e., E[In] < 1) or a supply overage is highly unlikely (i.e.,

P (Rn ≥ Dn)). More speci�cally, parts 1, 2, 3, and 4 of Observation 3 rely on expressions (10), (15), (21),

and (27), while parts 5, 6, and 7 rely on Properties 1, 4, and 5.

1. Recalling (10), we are interested in the parametric setting where

E [In] ≤
1 + r

a

2(1− r
a)
< 1.

Rearranging the terms of the above inequality, we have the condition r/a < 1/3.

2., 3., 4. The proofs are straightforward, and, hence they are omitted.

5. Recall from Property 1 that Dn ∼ Poisson(aTF ), Rn ∼ Poisson(rTF ), E[Dn] = Var(Dn) = aTF ,

and E[Rn] = Var(Rn) = rTF . Considering that a Poisson random variable with a large arrival rate

can be e�ectively approximated with a Normal random variable (see [3], Page 40), we let Dn ∼
Normal(aTF ,

√
aTF ) and Rn ∼ Normal(rTF ,

√
rTF ). Now, recalling the well-known property of a

Normal random variable which implies that about 99.7% of its possible values lie within three standard

deviations of the mean, we argue that P (Rn ≥ Dn) ≈ 0 when the di�erence between E[Dn] and E[Rn]

exceeds three times the sum of
√
Var(Dn) and

√
Var(Rn), as illustrated in Figure 4. That is, if

aTF − rTF ≥ 3
(√

aTF +
√
rTF

)
then P (Rn ≥ Dn) ≈ 0. Rearranging the terms of the above inequality completes the proof.
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Figure 4: Normal distribution approximations for cumulative demand and cumulative return where µD and
σD represent the mean and standard deviation of the cumulative demand distribution, respectively, and µR
and σR represent the mean and standard deviation of the cumulative return distribution, respectively.

6. Recalling Property 2 and relying on the idea introduced in proof of Part 5 above, we consider the

di�erence between QD and E[Rn]. That is, if

QD −
rQD
a

> 3

√
rQD
a

+
r2QD
a2

then P (Rn ≥ QD) ≈ 0. Rearranging the terms of the above inequality completes the proof.

7. The proof is similar to the proofs of Parts 5 and 6, and, hence, it is omitted.
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