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Appendix

A. Proof of Theorem 1

Consider the Bernoulli random variables By, = 1{R; > R_;} and their unknown means p; =
E[B;] =P(Rr > R_;) for k € K. Possessing N independent observations from the joint rewards
of the K arms in the pure exploration phase, the confidence interval derived from Hoeffding’s in-
equality for estimating p; based on Equation (4) with confidence level 1 — 26_% has the property
that

a a a2
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In order to find a bound on regret, defined in Equation (5) as r(Ap) =P (px- — p;, > Ap), note
that
{pr- —pi > Ap}

() s Ap . Ap
C {erleuCh that py. ¢ <pk_27pk+2>} (27)
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where (a) follows from the fact that if the score of the selected arm k deviates from the score of the

optimal arm k* by more than Ap, then there should exist an arm whose score is estimated by an

error greater than %, and (b) is true if Q\jﬁ < %. By using union bound and Equation , the
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probability of the right-hand side of the above equation can be bounded as follows, which results

in the following bound on regret:

2
2

r(Ap) =P (pr- —py > Ap) <2Ke™ T =e,. (28)

The above upper bound on regret is derived under the condition that

s < 71’ which by using

m() g

a?=2In (25 ) and simple algebraic calculations results in N > Ap?

B. Proof of Theorem 2

Consider the Bernoulli random variables BM = 1{R} > R, } and their unknown means p} =
E[BM] =P(RY > RM) for k € K. Possessing N independent observations from the joint rewards
of the K arms in pure exploration, there are exactly L%j independent samples for estimation of
pM. Due to the same reasoning in the proof of Theorem 1, the confidence interval for estimating

2
M based on Equation (9) or (12) with confidence level 1 —2e¢~% has the property that

2

>1—2e 7, (29)

M 7pk =
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In order to find a bound on regret, defined in Definition 1 as ry(Ap) =P (ppt —p > Ap), note
that

P R

for all k€ K.

{pit —pY > Ap}
A A
g{ake/c s.t. pM ¢ <ﬁﬁf—p, A;¥+p>}
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< %. By using union bound and Equation , the probability of the

Lar) —

(30)
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where (a) is true if .
right-hand side of the above equation can be bounded as follows, which results in the following
bound on regret:

a2
rav(Ap) =P (p% —piCM > Ap) <2Ke 7 =g¢,. (31)

The above upper bound on regret is derived under the condition that . ‘E Nj 7”, which by
M
n( 2K
using a? =2In (Qf ) and simple algebraic calculations results in [4-] > 2! ( o )
C. Proof of Theorem 3
The maximum deviation that Cr,(n,n.) and Cr,(n,n.) can have from Cr(n,py~) is investigated
with an associated confidence level. To this end, the maximum deviation of r*(n,p;(n.)) and

r*(n,pk(n.)) from r*(n,p) is found with the confidence level. First, the maximum deviation of
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p;(n.) and pk(n.) from py« with the associated confidence level is derived below. Equation (16)

2
suggests that the following holds with confidence level 1 —2e~ % :

Ak Ax a
i+ — Pj (ne) = pr» — max {p (ne) — 7,0.5}

2 /1.

< o A*(n )+ a < a + a _ a (32)
> Pix p e 2\/176_2\/176 2\/776—\/776.
On the other hand,
pk*_ﬁr(ne)
= Dy = 0" (ne) + 5" (n) — max {5 (ne) = 5-—,05
= Prx — P (Ne D (Ne maxp (M. 2\/77?7 . (33)

> max{2\_/;%,0.5—ﬁ*(ne)} —i—min{Q\;?Te,]ﬁ*(ne) —0.5} —0.

a

CL2 . .
The above two equations imply that 0 < pgx — pi(n.) < with confidence level 1 —2e~ "2 . Simi-

Ve
larly, it can be proved that 0 < p(n.) — pi+ < ﬁ with the mentioned confidence level.

In the following, Lipschitz constant of function 7*(n,p) with respect to p is calculated by differ-

entiating the regret function presented in Equation (14) with respect to p as

Tt X () e (55)

i=13]+1 (34)
1 /n n non /1 1
— . 1_ 2. Ti(,_i)]]_ 'See .
v (3)-0mmtpt g (G- ) b even
Since 0.5 < p <1, it is easy to verify that %;’p) <0, so r*(n,p) is decreasing in terms of p. Consider
. or*(n, n n i —3 n—1i i n n
n is an odd number, then # = Zi:L%Hl (M) -(1=p)-prt- <T — l—p) = Zi:L%Hl (M- (1-
p)t-ptTt (%), where n- (1 —p)—i<2—i<—1 as 0.5<p<1andi> 2, which proves

that %;’p) < 0. Similarly, it can be proved that %;’p) < 0 for the case when n is an even number
or one can use the following equation for the derivative. The derivative of r*(n,p) with respect to

p calculated above can be written as follows by algebraic manipulations:

8p n—2 n—2 (35)

ar*(n,p) _ —n(3i)p7 (L tp)”T’l, if 1 is odd,
—(n— 1)(77%3)107(1 —p) z, if nis even.

Note that 8’"*8(:”’) = 8’”*(321”’) when n is an odd number and p € [0.5,1]. On the other hand, it is

obvious that 7*(n,1) =7*(n+1,1), so
r*(n,p) =r*(n+1,p), if n is odd. (36)

As a result, in terms of regret, it is not worth it to perform even number of experiments since the

last experiment does not improve regret.
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or” (n P)

It is easy to verify that _o.5 can get arbitrarily large by increasing n. Hence, it is assumed

that pg+ € [0.5+¢,, 1], Where €, can be any small number in the interval (0,0.5]. In the following,
or*(n,p)
B)

the logarithm in base two of is taken when n is an odd number, and as mentioned earlier,

when n is even, the answer is the same as for n — 1 which is an odd number.

or* n—1)! n—1
log, ( P) = log, n +log, ( ~ )2 + (10g2p+log2(1—p))
p ((=Hy" 2
(a) n n—1 n-1
<log2n+[ logQ( 1)—(n—1)10g26+10g2e—2(§log27— log, e+ — log227r)}
—(n— )(1+5 ) < logz(n+2)—5p(n—1),

(37)

where (a) follows by Stirling’s approximation, (n — 1)! < (n — 1)"2e "2 and (=) >

Veor (251 )% e~("z9) and defining 0p =3 (—2—10g,(0.5+¢,) —log,(0.5 —¢,)) > 0. As a result,

’87’(

P < g2 9000 i | 270D (38)

Also note that W

given by Equation is finite for any given n, so Equation suggests

that m is finite for any n €{1,2,3,...} and any p € [0.5+¢,,1].

Equations (32 , , , and the fact that r*(n,p) is decreasing in terms of p result in the

following equation for any n € {1,2,3,...} with confidence level 1 —2e~ % :
a-o-\/n _|_ 2 . 2_61"(n_1)
NG ’

The above equation is true when n is odd, but recall that r*(n,p) =r*(n+ 1,p) for an odd number

0<Cr(n,pi) — Cri(n,ne) =a- [r* (n,pee) =7 (n, Pl (ne)) | < (39)

n. In order to come up with a unified formula for Cr (n, py«) — Cr; (n,n.) for even and odd numbers

n, define ACr(n,n.) as

a-\/n + 2 . 27617'(”72)
Vi ’

where lim ACr(n,n.) =0, Vn € {1,2,3,---}. The same bounds can be found for Cr,(n,n.) —

Ne—00

Cr(n,pg«), SO

ACT(n,n.) = a

(40)

0<Cr(n,pp«) — Cri(n,n.) < ACr(n,n.),
(41)
0<Cry(n,n.) — Cr(n,py) < ACr(n,n.).

2
The upper bound in Equation (18) with confidence level 1 —2e~ 7 is proved as follows. Equation

results in the following for any n € {1,2,3,...}:

Cr(n,p*(n.)) — ACr(n,n.) < Cr(n,pp«) < Cr(n,p*(n.)) + ACr(n,n.). (42)

Taking minimum with respect to n from all sides of the above inequality results in
Cr (N*(ne),ﬁ* (ne)> - mr?x{ACr(n, ne)}

<Cr(N*,pp) <Cr <N*(ne),ﬁ*(ne)) + mgx{ACr(n,ne)} .
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Using Equations and concludes as

Cr (N*(ne),pk*> —Cr (N*,pg~)

. D . (44)
<max {ACT(n,n.)} + ACr(N*(n.),n.) < —2=+ ACr(N*(n.),n.),
n 2, /Te
2(451’+1_211T) . . . . .
where D, = ““*~—————""is a constant that is derived as follows. For a given n., the function
\/20pIn2
ACr(n,n,) is increasing in terms of n when n < ﬁllr@ — 2 and is decreasing when n > %ﬁ —2.

46p— 5t
Hence, max ACr(n,n.) < ACr(5:t— —2,n.) = M

26pIn2 \/20pneln2

2
In the following, the upper bound in Equation (19) with confidence level 1 —2e~% is derived as

ng%?é) <C’r(n,pk*) —Cr(N ,pk*)>
(a)
< max) <C’rl(n, ne) — Cr(N*,pp+) + ACr(n, ne)>

nEI(ne

@ max)( Cri(n,n.) —Cr, (N n.) +

nGI(ne

it is non-positive due to Equation (17) (45)

Cr.(N:,n.)—Cr(N*,p+) + ACr(n, ne)>

—
No

< max, <C’ru(N*,ne)—Cr(N*,pk*)—i—ACT(n,ne))

’rLEI(’I’Le

(d) D
< max 2ACr(n,n.) <max 2ACT(n,n,) < —=

neZ(ne) n /Me ’

where (a) follows by Equation (41]), (b) is true by subtracting and adding the term Cr,(N;,n.),
(c) uses the fact that N = argmin Cr,(n,n.), so Cr, (N}, n.) < Cr,(N*,n.), and (d) again follows
by Equation (41). O
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