A Cost-Based Analysis for Risk-Averse Explore-Then-Commit Finite-Time Bandits (Supplemental File)

Ali Yekkehkhany ${ }^{1}$, Ebrahim Arian ${ }^{2}$, Rakesh Nagi ${ }^{3}$, and Ilan Shomorony ${ }^{4}$
Electrical and Computer Engineering ${ }^{1,4}$, Industrial and Enterprise Systems Engineering ${ }^{2,3}$ University of Illinois at Urbana-Champaign, \{yekkehk2, arian2, nagi, ilans\}@illinois.edu

Appendix

A. Proof of Theorem 1

Consider the Bernoulli random variables $B_{k}=\mathbb{1}\left\{R_{k} \geq \boldsymbol{R}_{-k}\right\}$ and their unknown means $p_{k}=$ $\mathbb{E}\left[B_{k}\right]=\mathbb{P}\left(R_{k} \geq \boldsymbol{R}_{-k}\right)$ for $k \in \mathcal{K}$. Possessing N independent observations from the joint rewards of the K arms in the pure exploration phase, the confidence interval derived from Hoeffding's inequality for estimating p_{k} based on Equation (4) with confidence level $1-2 e^{-\frac{a^{2}}{2}}$ has the property that

$$
\begin{equation*}
\mathbb{P}\left(p_{k} \in\left(\hat{p}_{k}-\frac{a}{2 \sqrt{N}}, \hat{p}_{k}+\frac{a}{2 \sqrt{N}}\right)\right) \geq 1-2 e^{-\frac{a^{2}}{2}}, \forall k \in \mathcal{K} . \tag{26}
\end{equation*}
$$

In order to find a bound on regret, defined in Equation (5) as $r(\Delta p)=\mathbb{P}\left(p_{k^{*}}-p_{\hat{k}}>\Delta p\right)$, note that

$$
\begin{align*}
& \quad\left\{p_{k^{*}}-p_{\hat{k}}>\Delta p\right\} \\
& \stackrel{(a)}{\subseteq}\left\{\exists k \in \mathcal{K} \text { such that } p_{k} \notin\left(\hat{p}_{k}-\frac{\Delta p}{2}, \hat{p}_{k}+\frac{\Delta p}{2}\right)\right\} \tag{27}\\
& \stackrel{(b)}{\subseteq}\left\{\exists k \in \mathcal{K} \text { such that } p_{k} \notin\left(\hat{p}_{k}-\frac{a}{2 \sqrt{N}}, \hat{p}_{k}+\frac{a}{2 \sqrt{N}}\right)\right\},
\end{align*}
$$

where (a) follows from the fact that if the score of the selected arm \hat{k} deviates from the score of the optimal arm k^{*} by more than Δp, then there should exist an arm whose score is estimated by an error greater than $\frac{\Delta p}{2}$, and (b) is true if $\frac{a}{2 \sqrt{N}} \leq \frac{\Delta p}{2}$. By using union bound and Equation (26), the
probability of the right-hand side of the above equation can be bounded as follows, which results in the following bound on regret:

$$
\begin{equation*}
r(\Delta p)=\mathbb{P}\left(p_{k^{*}}-p_{\hat{k}}>\Delta p\right) \leq 2 K e^{-\frac{a^{2}}{2}}=\epsilon_{r} . \tag{28}
\end{equation*}
$$

The above upper bound on regret is derived under the condition that $\frac{a}{2 \sqrt{N}} \leq \frac{\Delta p}{2}$, which by using $a^{2}=2 \ln \left(\frac{2 K}{\epsilon_{r}}\right)$ and simple algebraic calculations results in $N \geq \frac{2 \ln \left(\frac{2 K}{\epsilon_{r}}\right)}{\Delta p^{2}}$.

B. Proof of Theorem 2

Consider the Bernoulli random variables $B_{k}^{M}=\mathbb{1}\left\{R_{k}^{M} \geq \boldsymbol{R}_{-k}^{M}\right\}$ and their unknown means $p_{k}^{M}=$ $\mathbb{E}\left[B_{k}^{M}\right]=\mathbb{P}\left(R_{k}^{M} \geq \boldsymbol{R}_{-k}^{M}\right)$ for $k \in \mathcal{K}$. Possessing N independent observations from the joint rewards of the K arms in pure exploration, there are exactly $\left\lfloor\frac{N}{M}\right\rfloor$ independent samples for estimation of p_{k}^{M}. Due to the same reasoning in the proof of Theorem 1, the confidence interval for estimating p_{k}^{M} based on Equation (9) or (12) with confidence level $1-2 e^{-\frac{a^{2}}{2}}$ has the property that

$$
\begin{equation*}
\mathbb{P}\left(p_{k}^{M} \in\left(\hat{p}_{k}^{M}-\frac{a}{2 \sqrt{\left\lfloor\frac{N}{M}\right\rfloor}}, \hat{p}_{k}^{M}+\frac{a}{2 \sqrt{\left\lfloor\frac{N}{M}\right\rfloor}}\right)\right) \geq 1-2 e^{-\frac{a^{2}}{2}}, \tag{29}
\end{equation*}
$$

for all $k \in \mathcal{K}$.
In order to find a bound on regret, defined in Definition 1 as $r_{M}(\Delta p)=\mathbb{P}\left(p_{k^{*}}^{M}-p_{\hat{k}}^{M}>\Delta p\right)$, note that

$$
\begin{align*}
& \left\{p_{k^{*}}^{M}-p_{\hat{k}}^{M}>\Delta p\right\} \\
\subseteq & \left\{\exists k \in \mathcal{K} \text { s.t. } p_{k}^{M} \notin\left(\hat{p}_{k}^{M}-\frac{\Delta p}{2}, \hat{p}_{k}^{M}+\frac{\Delta p}{2}\right)\right\} \tag{30}\\
\stackrel{(a)}{\subseteq} & \left\{\exists k \in \mathcal{K} \text { s.t. } p_{k}^{M} \notin\left(\hat{p}_{k}^{M}-\frac{a}{2 \sqrt{\left\lfloor\frac{N}{M}\right\rfloor}}, \hat{p}_{k}^{M}+\frac{a}{2 \sqrt{\left\lfloor\frac{N}{M}\right\rfloor}}\right)\right\},
\end{align*}
$$

where (a) is true if $\frac{a}{2 \sqrt{\left\lfloor\frac{N}{M}\right\rfloor}} \leq \frac{\Delta p}{2}$. By using union bound and Equation (29), the probability of the right-hand side of the above equation can be bounded as follows, which results in the following bound on regret:

$$
\begin{equation*}
r_{M}(\Delta p)=\mathbb{P}\left(p_{k^{*}}^{M}-p_{\hat{k}}^{M}>\Delta p\right) \leq 2 K e^{-\frac{a^{2}}{2}}=\epsilon_{r} . \tag{31}
\end{equation*}
$$

The above upper bound on regret is derived under the condition that $\frac{a}{2 \sqrt{\left\lfloor\frac{N}{M}\right\rfloor}} \leq \frac{\Delta p}{2}$, which by using $a^{2}=2 \ln \left(\frac{2 K}{\epsilon_{r}}\right)$ and simple algebraic calculations results in $\left\lfloor\frac{N}{M}\right\rfloor \geq \frac{\left.2 \ln \frac{2 K}{\epsilon_{r}}\right)}{\Delta p^{2}}$.

C. Proof of Theorem 3

The maximum deviation that $C r_{l}\left(n, n_{e}\right)$ and $C r_{u}\left(n, n_{e}\right)$ can have from $C r\left(n, p_{k^{*}}\right)$ is investigated with an associated confidence level. To this end, the maximum deviation of $r^{*}\left(n, \hat{p}_{l}^{*}\left(n_{e}\right)\right)$ and $r^{*}\left(n, \hat{p}_{u}^{*}\left(n_{e}\right)\right)$ from $r^{*}\left(n, p_{k^{*}}\right)$ is found with the confidence level. First, the maximum deviation of
$\hat{p}_{l}^{*}\left(n_{e}\right)$ and $\hat{p}_{u}^{*}\left(n_{e}\right)$ from $p_{k^{*}}$ with the associated confidence level is derived below. Equation (16) suggests that the following holds with confidence level $1-2 e^{-\frac{a^{2}}{2}}$:

$$
\begin{align*}
& p_{k^{*}}-\hat{p}_{l}^{*}\left(n_{e}\right)=p_{k^{*}}-\max \left\{\hat{p}^{*}\left(n_{e}\right)-\frac{a}{2 \sqrt{n_{e}}}, 0.5\right\} \\
\leq & p_{k^{*}}-\hat{p}^{*}\left(n_{e}\right)+\frac{a}{2 \sqrt{n_{e}}} \leq \frac{a}{2 \sqrt{n_{e}}}+\frac{a}{2 \sqrt{n_{e}}}=\frac{a}{\sqrt{n_{e}}} \tag{32}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& p_{k^{*}}-\hat{p}_{l}^{*}\left(n_{e}\right) \\
= & p_{k^{*}}-\hat{p}^{*}\left(n_{e}\right)+\hat{p}^{*}\left(n_{e}\right)-\max \left\{\hat{p}^{*}\left(n_{e}\right)-\frac{a}{2 \sqrt{n_{e}}}, 0.5\right\} \tag{33}\\
\geq & \max \left\{\frac{-a}{2 \sqrt{n_{e}}}, 0.5-\hat{p}^{*}\left(n_{e}\right)\right\}+\min \left\{\frac{a}{2 \sqrt{n_{e}}}, \hat{p}^{*}\left(n_{e}\right)-0.5\right\}=0 .
\end{align*}
$$

The above two equations imply that $0 \leq p_{k^{*}}-\hat{p}_{l}^{*}\left(n_{e}\right) \leq \frac{a}{\sqrt{n_{e}}}$ with confidence level $1-2 e^{-\frac{a^{2}}{2}}$. Similarly, it can be proved that $0 \leq \hat{p}_{u}^{*}\left(n_{e}\right)-p_{k^{*}} \leq \frac{a}{\sqrt{n_{e}}}$ with the mentioned confidence level.

In the following, Lipschitz constant of function $r^{*}(n, p)$ with respect to p is calculated by differentiating the regret function presented in Equation (14) with respect to p as

$$
\begin{align*}
\frac{\partial r^{*}(n, p)}{\partial p}= & \sum_{i=\left\lfloor\frac{n}{2}\right\rfloor+1}^{n}\binom{n}{i} \cdot(1-p)^{i} \cdot p^{n-i} \cdot\left(\frac{n-i}{p}-\frac{i}{1-p}\right) \tag{34}\\
& +\frac{1}{2} \cdot\binom{n}{\frac{n}{2}} \cdot(1-p)^{\frac{n}{2}} \cdot p^{\frac{n}{2}} \cdot \frac{n}{2} \cdot\left(\frac{1}{p}-\frac{1}{1-p}\right) \cdot \mathbb{1}\{n \text { is even }\} .
\end{align*}
$$

Since $0.5 \leq p \leq 1$, it is easy to verify that $\frac{\partial r^{*}(n, p)}{\partial p} \leq 0$, so $r^{*}(n, p)$ is decreasing in terms of p. Consider n is an odd number, then $\frac{\partial r^{*}(n, p)}{\partial p}=\sum_{i=\left\lfloor\frac{n}{2}\right\rfloor+1}^{n}\binom{n}{i} \cdot(1-p)^{i} \cdot p^{n-i} \cdot\left(\frac{n-i}{p}-\frac{i}{1-p}\right)=\sum_{i=\left\lfloor\frac{n}{2}\right\rfloor+1}^{n}\binom{n}{i} \cdot(1-$ $p)^{i} \cdot p^{n-i} \cdot\left(\frac{n \cdot(1-p)-i}{p \cdot(1-p)}\right)$, where $n \cdot(1-p)-i \leq \frac{n}{2}-i \leq-\frac{1}{2}$ as $0.5 \leq p \leq 1$ and $i \geq \frac{n+1}{2}$, which proves that $\frac{\partial r^{*}(n, p)}{\partial p} \leq 0$. Similarly, it can be proved that $\frac{\partial r^{*}(n, p)}{\partial p} \leq 0$ for the case when n is an even number or one can use the following equation for the derivative. The derivative of $r^{*}(n, p)$ with respect to p calculated above can be written as follows by algebraic manipulations:

$$
\frac{\partial r^{*}(n, p)}{\partial p}= \begin{cases}-n\binom{n-1}{\frac{n-1}{2}} p^{\frac{n-1}{2}}(1-p)^{\frac{n-1}{2}}, & \text { if } n \text { is odd } \tag{35}\\ -(n-1)\binom{n-2}{\frac{n-2}{2}} p^{\frac{n-2}{2}}(1-p)^{\frac{n-2}{2}}, & \text { if } n \text { is even }\end{cases}
$$

Note that $\frac{\partial r^{*}(n, p)}{\partial p}=\frac{\partial r^{*}(n+1, p)}{\partial p}$ when n is an odd number and $p \in[0.5,1]$. On the other hand, it is obvious that $r^{*}(n, 1)=r^{*}(n+1,1)$, so

$$
\begin{equation*}
r^{*}(n, p)=r^{*}(n+1, p) \text {, if } n \text { is odd. } \tag{36}
\end{equation*}
$$

As a result, in terms of regret, it is not worth it to perform even number of experiments since the last experiment does not improve regret.

It is easy to verify that $\left.\frac{\partial r^{*}(n, p)}{\partial p}\right|_{p=0.5}$ can get arbitrarily large by increasing n. Hence, it is assumed that $p_{k^{*}} \in\left[0.5+\epsilon_{p}, 1\right]$, where ϵ_{p} can be any small number in the interval $(0,0.5]$. In the following, the logarithm in base two of $\left|\frac{\partial r^{*}(n, p)}{\partial p}\right|$ is taken when n is an odd number, and as mentioned earlier, when n is even, the answer is the same as for $n-1$ which is an odd number.

$$
\begin{align*}
& \quad \log _{2}\left|\frac{\partial r^{*}(n, p)}{\partial p}\right|=\log _{2} n+\log _{2} \frac{(n-1)!}{\left(\left(\frac{n-1}{2}\right)!\right)^{2}}+\frac{n-1}{2}\left(\log _{2} p+\log _{2}(1-p)\right) \\
& \stackrel{(a)}{\leq} \log _{2} n+\left[\left(n-\frac{1}{2}\right) \log _{2}(n-1)-(n-1) \log _{2} e+\log _{2} e-2\left(\frac{n}{2} \log _{2} \frac{n-1}{2}-\frac{n-1}{2} \log _{2} e+\frac{1}{2} \log _{2} 2 \pi\right)\right] \\
& \quad-(n-1)\left(1+\delta_{p}\right) \leq \frac{1}{2} \log _{2}(n+2)-\delta_{p}(n-1) \tag{37}
\end{align*}
$$

where (a) follows by Stirling's approximation, $(n-1)!\leq(n-1)^{n-\frac{1}{2}} e^{-n+2}$ and $\left(\frac{n-1}{2}\right)!\geq$ $\sqrt{2 \pi}\left(\frac{n-1}{2}\right)^{\frac{n}{2}} e^{-\left(\frac{n-1}{2}\right)}$, and defining $\delta_{p}=\frac{1}{2}\left(-2-\log _{2}\left(0.5+\epsilon_{p}\right)-\log _{2}\left(0.5-\epsilon_{p}\right)\right)>0$. As a result,

$$
\begin{equation*}
\left|\frac{\partial r^{*}(n, p)}{\partial p}\right| \leq \sqrt{n+2} \cdot 2^{-\delta_{p}(n-1)}, \quad \lim _{n \rightarrow \infty}\left|\frac{\partial r^{*}(n, p)}{\partial p}\right|=0 \tag{38}
\end{equation*}
$$

Also note that $\left|\frac{\partial r^{*}(n, p)}{\partial p}\right|$ given by Equation (35) is finite for any given n, so Equation (38) suggests that $\left|\frac{\partial r^{*}(n, p)}{\partial p}\right|$ is finite for any $n \in\{1,2,3, \ldots\}$ and any $p \in\left[0.5+\epsilon_{p}, 1\right]$.

Equations (32), (33), 38), and the fact that $r^{*}(n, p)$ is decreasing in terms of p result in the following equation for any $n \in\{1,2,3, \ldots\}$ with confidence level $1-2 e^{-\frac{a^{2}}{2}}$:

$$
\begin{equation*}
0 \leq C r\left(n, p_{k^{*}}\right)-C r_{l}\left(n, n_{e}\right)=\alpha \cdot\left[r^{*}\left(n, p_{k^{*}}\right)-r^{*}\left(n, \hat{p}_{u}^{*}\left(n_{e}\right)\right)\right] \leq \frac{a \cdot \alpha \cdot \sqrt{n+2} \cdot 2^{-\delta_{p} \cdot(n-1)}}{\sqrt{n_{e}}} \tag{39}
\end{equation*}
$$

The above equation is true when n is odd, but recall that $r^{*}(n, p)=r^{*}(n+1, p)$ for an odd number n. In order to come up with a unified formula for $C r\left(n, p_{k^{*}}\right)-C r_{l}\left(n, n_{e}\right)$ for even and odd numbers n, define $\Delta C r\left(n, n_{e}\right)$ as

$$
\begin{equation*}
\Delta C r\left(n, n_{e}\right) \triangleq \frac{a \cdot \alpha \cdot \sqrt{n+2} \cdot 2^{-\delta_{p} \cdot(n-2)}}{\sqrt{n_{e}}} \tag{40}
\end{equation*}
$$

where $\lim _{n_{e} \rightarrow \infty} \Delta C r\left(n, n_{e}\right)=0, \forall n \in\{1,2,3, \cdots\}$. The same bounds can be found for $C r_{u}\left(n, n_{e}\right)-$ $C r\left(n, p_{k^{*}}\right)$, so

$$
\begin{align*}
& 0 \leq C r\left(n, p_{k^{*}}\right)-C r_{l}\left(n, n_{e}\right) \leq \Delta C r\left(n, n_{e}\right), \tag{41}\\
& 0 \leq C r_{u}\left(n, n_{e}\right)-C r\left(n, p_{k^{*}}\right) \leq \Delta C r\left(n, n_{e}\right) .
\end{align*}
$$

The upper bound in Equation (18) with confidence level $1-2 e^{-\frac{a^{2}}{2}}$ is proved as follows. Equation (41) results in the following for any $n \in\{1,2,3, \ldots\}$:

$$
\begin{equation*}
C r\left(n, \hat{p}^{*}\left(n_{e}\right)\right)-\Delta C r\left(n, n_{e}\right) \leq C r\left(n, p_{k^{*}}\right) \leq C r\left(n, \hat{p}^{*}\left(n_{e}\right)\right)+\Delta C r\left(n, n_{e}\right) \tag{42}
\end{equation*}
$$

Taking minimum with respect to n from all sides of the above inequality results in

$$
\begin{align*}
& C r\left(\hat{N}^{*}\left(n_{e}\right), \hat{p}^{*}\left(n_{e}\right)\right)-\max _{n}\left\{\Delta C r\left(n, n_{e}\right)\right\} \tag{43}\\
\leq & C r\left(N^{*}, p_{k^{*}}\right) \leq C r\left(\hat{N}^{*}\left(n_{e}\right), \hat{p}^{*}\left(n_{e}\right)\right)+\max _{n}\left\{\Delta C r\left(n, n_{e}\right)\right\}
\end{align*}
$$

Using Equations (42) and (43) concludes as

$$
\begin{align*}
& \operatorname{Cr}\left(\hat{N}^{*}\left(n_{e}\right), p_{k^{*}}\right)-\operatorname{Cr}\left(N^{*}, p_{k^{*}}\right) \\
\leq & \max _{n}\left\{\Delta \operatorname{Cr}\left(n, n_{e}\right)\right\}+\Delta \operatorname{Cr}\left(\hat{N}^{*}\left(n_{e}\right), n_{e}\right) \leq \frac{D_{p}}{2 \sqrt{n_{e}}}+\Delta \operatorname{Cr}\left(\hat{N}^{*}\left(n_{e}\right), n_{e}\right), \tag{44}
\end{align*}
$$

where $D_{p}=\frac{a \cdot \alpha \cdot 2\left(4 \delta_{p}+1-\frac{1}{2 \ln 2}\right)}{\sqrt{2 \delta_{p} \ln 2}}$ is a constant that is derived as follows. For a given n_{e}, the function $\Delta C r\left(n, n_{e}\right)$ is increasing in terms of n when $n<\frac{1}{2 \delta_{p} \ln 2}-2$ and is decreasing when $n>\frac{1}{2 \delta_{p} \ln 2}-2$. Hence, $\max _{n} \Delta C r\left(n, n_{e}\right) \leq \Delta C r\left(\frac{1}{2 \delta_{p} \ln 2}-2, n_{e}\right)=\frac{a \cdot \alpha \cdot 2\left(4 \delta_{p}-\frac{1}{2 \ln 2}\right)}{\sqrt{2 \delta_{p} n_{e} \ln 2}}$.

In the following, the upper bound in Equation (19) with confidence level $1-2 e^{-\frac{a^{2}}{2}}$ is derived as

$$
\begin{align*}
& \max _{n \in \mathcal{I}\left(n_{e}\right)}\left(C r\left(n, p_{k^{*}}\right)-C r\left(N^{*}, p_{k^{*}}\right)\right) \\
& \stackrel{(a)}{\leq} \max _{n \in \mathcal{I}\left(n_{e}\right)}\left(C r_{l}\left(n, n_{e}\right)-C r\left(N^{*}, p_{k^{*}}\right)+\Delta C r\left(n, n_{e}\right)\right) \\
& \stackrel{(b)}{=} \max _{n \in \mathcal{I}\left(n_{e}\right)}(\underbrace{C r_{l}\left(n, n_{e}\right)-C r_{u}\left(N_{u}^{*}, n_{e}\right)}_{\text {it is non-positive due to Equation (17) }}+ \tag{45}\\
& \left.\quad C r_{u}\left(N_{u}^{*}, n_{e}\right)-C r\left(N^{*}, p_{k^{*}}\right)+\Delta C r\left(n, n_{e}\right)\right) \\
& \stackrel{(c)}{\leq} \max _{n \in \mathcal{I}\left(n_{e}\right)}\left(C r_{u}\left(N^{*}, n_{e}\right)-C r\left(N^{*}, p_{k^{*}}\right)+\Delta C r\left(n, n_{e}\right)\right) \\
& \stackrel{(d)}{\leq} \max _{n \in \mathcal{I}\left(n_{e}\right)} 2 \Delta C r\left(n, n_{e}\right) \leq \max _{n} 2 \Delta C r\left(n, n_{e}\right) \leq \frac{D_{p}}{\sqrt{n_{e}}},
\end{align*}
$$

where (a) follows by Equation (41), (b) is true by subtracting and adding the term $C r_{u}\left(N_{u}^{*}, n_{e}\right)$, (c) uses the fact that $N_{u}^{*}=\underset{n}{\arg \min } C r_{u}\left(n, n_{e}\right)$, so $C r_{u}\left(N_{u}^{*}, n_{e}\right) \leq C r_{u}\left(N^{*}, n_{e}\right)$, and (d) again follows by Equation (41).

