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Appendix
A. Proof of Theorem 1

Consider the Bernoulli random variables Bk = 1{Rk ≥ R−k} and their unknown means pk =

E[Bk] = P(Rk ≥R−k) for k ∈ K. Possessing N independent observations from the joint rewards

of the K arms in the pure exploration phase, the confidence interval derived from Hoeffding’s in-

equality for estimating pk based on Equation (4) with confidence level 1− 2e−
a2

2 has the property

that

P
(
pk ∈

(
p̂k−

a

2
√
N
, p̂k +

a

2
√
N

))
≥ 1− 2e−

a2

2 , ∀k ∈K. (26)

In order to find a bound on regret, defined in Equation (5) as r(∆p) = P (pk∗ − pk̂ >∆p), note

that
{pk∗ − pk̂ >∆p}

(a)

⊆
{
∃k ∈K such that pk /∈

(
p̂k−

∆p

2
, p̂k +

∆p

2

)}
(b)

⊆
{
∃k ∈K such that pk /∈

(
p̂k−

a

2
√
N
, p̂k +

a

2
√
N

)}
,

(27)

where (a) follows from the fact that if the score of the selected arm k̂ deviates from the score of the

optimal arm k∗ by more than ∆p, then there should exist an arm whose score is estimated by an

error greater than ∆p
2

, and (b) is true if a

2
√
N
≤ ∆p

2
. By using union bound and Equation (26), the
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probability of the right-hand side of the above equation can be bounded as follows, which results

in the following bound on regret:

r(∆p) = P (pk∗ − pk̂ >∆p)≤ 2Ke−
a2

2 = εr. (28)

The above upper bound on regret is derived under the condition that a

2
√
N
≤ ∆p

2
, which by using

a2 = 2 ln
(

2K
εr

)
and simple algebraic calculations results in N ≥ 2 ln( 2K

εr )
∆p2

. �

B. Proof of Theorem 2

Consider the Bernoulli random variables BM
k = 1{RM

k ≥ RM
−k} and their unknown means pMk =

E[BM
k ] = P(RM

k ≥RM
−k) for k ∈ K. Possessing N independent observations from the joint rewards

of the K arms in pure exploration, there are exactly bN
M
c independent samples for estimation of

pMk . Due to the same reasoning in the proof of Theorem 1, the confidence interval for estimating

pMk based on Equation (9) or (12) with confidence level 1− 2e−
a2

2 has the property that

P

pMk ∈
p̂Mk − a

2
√
bN
M
c
, p̂Mk +

a

2
√
bN
M
c

≥ 1− 2e−
a2

2 , (29)

for all k ∈K.

In order to find a bound on regret, defined in Definition 1 as rM(∆p) = P
(
pMk∗ − pMk̂ >∆p

)
, note

that {
pMk∗ − pMk̂ >∆p

}
⊆
{
∃k ∈K s.t. pMk /∈

(
p̂Mk −

∆p

2
, p̂Mk +

∆p

2

)}
(a)

⊆

∃k ∈K s.t. pMk /∈

p̂Mk − a

2
√
bN
M
c
, p̂Mk +

a

2
√
bN
M
c

 ,

(30)

where (a) is true if a

2
√
b NM c
≤ ∆p

2
. By using union bound and Equation (29), the probability of the

right-hand side of the above equation can be bounded as follows, which results in the following

bound on regret:

rM(∆p) = P
(
pMk∗ − pMk̂ >∆p

)
≤ 2Ke−

a2

2 = εr. (31)

The above upper bound on regret is derived under the condition that a

2
√
b NM c
≤ ∆p

2
, which by

using a2 = 2 ln
(

2K
εr

)
and simple algebraic calculations results in bN

M
c ≥ 2 ln( 2K

εr )
∆p2

. �

C. Proof of Theorem 3

The maximum deviation that Crl(n,ne) and Cru(n,ne) can have from Cr(n,pk∗) is investigated

with an associated confidence level. To this end, the maximum deviation of r∗(n, p̂∗l (ne)) and

r∗(n, p̂∗u(ne)) from r∗(n,pk∗) is found with the confidence level. First, the maximum deviation of
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p̂∗l (ne) and p̂∗u(ne) from pk∗ with the associated confidence level is derived below. Equation (16)

suggests that the following holds with confidence level 1− 2e−
a2

2 :

pk∗ − p̂∗l (ne) = pk∗ −max
{
p̂∗(ne)−

a

2
√
ne
,0.5

}
≤ pk∗ − p̂∗(ne) +

a

2
√
ne
≤ a

2
√
ne

+
a

2
√
ne

=
a
√
ne
.

(32)

On the other hand,

pk∗ − p̂∗l (ne)

= pk∗ − p̂∗(ne) + p̂∗(ne)−max
{
p̂∗(ne)−

a

2
√
ne
,0.5

}
≥ max

{ −a
2
√
ne
,0.5− p̂∗(ne)

}
+ min

{ a

2
√
ne
, p̂∗(ne)− 0.5

}
= 0.

(33)

The above two equations imply that 0≤ pk∗ − p̂∗l (ne)≤ a√
ne

with confidence level 1− 2e−
a2

2 . Simi-

larly, it can be proved that 0≤ p̂∗u(ne)− pk∗ ≤ a√
ne

with the mentioned confidence level.

In the following, Lipschitz constant of function r∗(n,p) with respect to p is calculated by differ-

entiating the regret function presented in Equation (14) with respect to p as

∂r∗(n,p)

∂p
=

n∑
i=bn2 c+1

(
n

i

)
· (1− p)i · pn−i ·

(
n− i
p
− i

1− p

)

+
1

2
·
(
n
n
2

)
· (1− p)n2 · pn2 · n

2
·
(1

p
− 1

1− p

)
·1{n is even}.

(34)

Since 0.5≤ p≤ 1, it is easy to verify that ∂r∗(n,p)

∂p
≤ 0, so r∗(n,p) is decreasing in terms of p. Consider

n is an odd number, then ∂r∗(n,p)

∂p
=
∑n

i=bn2 c+1

(
n
i

)
· (1− p)i · pn−i ·

(
n−i
p
− i

1−p

)
=
∑n

i=bn2 c+1

(
n
i

)
· (1−

p)i · pn−i ·
(
n·(1−p)−i
p·(1−p)

)
, where n · (1− p)− i≤ n

2
− i≤− 1

2
as 0.5≤ p≤ 1 and i≥ n+1

2
, which proves

that ∂r∗(n,p)

∂p
≤ 0. Similarly, it can be proved that ∂r∗(n,p)

∂p
≤ 0 for the case when n is an even number

or one can use the following equation for the derivative. The derivative of r∗(n,p) with respect to

p calculated above can be written as follows by algebraic manipulations:

∂r∗(n,p)

∂p
=

{
−n
(
n−1
n−1
2

)
p
n−1
2 (1− p)n−1

2 , if n is odd,

−(n− 1)
(
n−2
n−2
2

)
p
n−2
2 (1− p)n−2

2 , if n is even.
(35)

Note that ∂r∗(n,p)

∂p
= ∂r∗(n+1,p)

∂p
when n is an odd number and p ∈ [0.5,1]. On the other hand, it is

obvious that r∗(n,1) = r∗(n+ 1,1), so

r∗(n,p) = r∗(n+ 1, p), if n is odd. (36)

As a result, in terms of regret, it is not worth it to perform even number of experiments since the

last experiment does not improve regret.
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It is easy to verify that ∂r∗(n,p)

∂p

∣∣
p=0.5

can get arbitrarily large by increasing n. Hence, it is assumed

that pk∗ ∈ [0.5 + εp,1], where εp can be any small number in the interval (0,0.5]. In the following,

the logarithm in base two of
∣∣∣∂r∗(n,p)

∂p

∣∣∣ is taken when n is an odd number, and as mentioned earlier,

when n is even, the answer is the same as for n− 1 which is an odd number.

log2

∣∣∣∣∂r∗(n,p)∂p

∣∣∣∣= log2 n+ log2

(n− 1)!((
n−1

2

)
!
)2 +

n− 1

2

(
log2 p+ log2(1− p)

)
(a)

≤ log2 n+
[
(n− 1

2
) log2(n− 1)− (n− 1) log2 e+ log2 e− 2

(n
2

log2

n− 1

2
− n− 1

2
log2 e+

1

2
log2 2π

)]
− (n− 1)(1 + δp)≤

1

2
log2(n+ 2)− δp(n− 1),

(37)

where (a) follows by Stirling’s approximation, (n − 1)! ≤ (n − 1)n−
1
2 e−n+2 and

(
n−1

2

)
! ≥

√
2π
(
n−1

2

)n
2 e−(n−1

2 ), and defining δp = 1
2

(−2− log2(0.5 + εp)− log2(0.5− εp))> 0. As a result,∣∣∣∣∂r∗(n,p)∂p

∣∣∣∣≤√n+ 2 · 2−δp(n−1), lim
n→∞

∣∣∣∣∂r∗(n,p)∂p

∣∣∣∣= 0. (38)

Also note that
∣∣∣∂r∗(n,p)

∂p

∣∣∣ given by Equation (35) is finite for any given n, so Equation (38) suggests

that
∣∣∣∂r∗(n,p)

∂p

∣∣∣ is finite for any n∈ {1,2,3, . . .} and any p∈ [0.5 + εp,1].

Equations (32), (33), (38), and the fact that r∗(n,p) is decreasing in terms of p result in the

following equation for any n∈ {1,2,3, . . .} with confidence level 1− 2e−
a2

2 :

0≤Cr (n,pk∗)−Crl (n,ne) = α ·
[
r∗ (n,pk∗)− r∗ (n, p̂∗u(ne))

]
≤ a ·α ·

√
n+ 2 · 2−δp·(n−1)

√
ne

. (39)

The above equation is true when n is odd, but recall that r∗(n,p) = r∗(n+ 1, p) for an odd number

n. In order to come up with a unified formula for Cr (n,pk∗)−Crl (n,ne) for even and odd numbers

n, define ∆Cr(n,ne) as

∆Cr(n,ne),
a ·α ·

√
n+ 2 · 2−δp·(n−2)

√
ne

, (40)

where lim
ne→∞

∆Cr(n,ne) = 0, ∀n ∈ {1,2,3, · · · }. The same bounds can be found for Cru(n,ne)−
Cr(n,pk∗), so

0≤Cr(n,pk∗)−Crl(n,ne)≤∆Cr(n,ne),

0≤Cru(n,ne)−Cr(n,pk∗)≤∆Cr(n,ne).
(41)

The upper bound in Equation (18) with confidence level 1−2e−
a2

2 is proved as follows. Equation

(41) results in the following for any n∈ {1,2,3, . . .}:

Cr (n, p̂∗(ne))−∆Cr(n,ne)≤Cr (n,pk∗)≤Cr (n, p̂∗(ne)) + ∆Cr(n,ne). (42)

Taking minimum with respect to n from all sides of the above inequality results in

Cr
(
N̂∗(ne), p̂

∗(ne)
)
−max

n
{∆Cr(n,ne)}

≤Cr (N∗, pk∗)≤Cr
(
N̂∗(ne), p̂

∗(ne)
)

+ max
n
{∆Cr(n,ne)} .

(43)
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Using Equations (42) and (43) concludes as

Cr
(
N̂∗(ne), pk∗

)
−Cr (N∗, pk∗)

≤max
n
{∆Cr(n,ne)}+ ∆Cr(N̂∗(ne), ne)≤

Dp

2
√
ne

+ ∆Cr(N̂∗(ne), ne),
(44)

where Dp = a·α·2(4δp+1− 1
2 ln2)√

2δp ln 2
is a constant that is derived as follows. For a given ne, the function

∆Cr(n,ne) is increasing in terms of n when n < 1
2δp ln 2

− 2 and is decreasing when n > 1
2δp ln 2

− 2.

Hence, max
n

∆Cr(n,ne)≤∆Cr( 1
2δp ln 2

− 2, ne) = a·α·2(4δp−
1

2 ln2)√
2δpne ln 2

.

In the following, the upper bound in Equation (19) with confidence level 1− 2e−
a2

2 is derived as

max
n∈I(ne)

(
Cr(n,pk∗)−Cr(N∗, pk∗)

)
(a)

≤ max
n∈I(ne)

(
Crl(n,ne)−Cr(N∗, pk∗) + ∆Cr(n,ne)

)
(b)
= max

n∈I(ne)

(
Crl(n,ne)−Cru(N∗u , ne)︸ ︷︷ ︸

it is non-positive due to Equation (17)

+

Cru(N∗u , ne)−Cr(N∗, pk∗) + ∆Cr(n,ne)
)

(c)

≤ max
n∈I(ne)

(
Cru(N∗, ne)−Cr(N∗, pk∗) + ∆Cr(n,ne)

)
(d)

≤ max
n∈I(ne)

2∆Cr(n,ne)≤max
n

2∆Cr(n,ne)≤
Dp√
ne
,

(45)

where (a) follows by Equation (41), (b) is true by subtracting and adding the term Cru(N∗u , ne),

(c) uses the fact that N∗u = arg min
n

Cru(n,ne), so Cru(N∗u , ne)≤Cru(N∗, ne), and (d) again follows

by Equation (41). �
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