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Appendix A: Other related literature

In this appendix, we provide a review of some additional literature that is related to our work of

addressing parameter ambiguity in Markov decision processes.

A.1. Literature on parameter ambiguity in MDPs

The approach of incorporating multiple models of parameters is seen in the reinforcement learning

literature, however the objective of the DM in these problems is di↵erent than the objective of the

DM in this article. For example, consider what is perhaps the most closely related reinforcement

learning problem: the Contextual Markov Decision Process (CMDP) proposed by Hallak et al.

(2015). The CMDP is essentially the same as the MMDP set-up in that one can think of the CMDP

as an integer number, C, of MDPs all defined on the same state space and action space, but with

di↵erent reward and transition probability parameters. In the CMDP problem, the DM will interact

with the CMDP throughout a series of episodes occurring serially in time. At the beginning of the

interaction, the DM neither has any information about any of the C MDPs’ parameters, nor does

she know which MDP she is interacting with at the beginning of each episode. Our work di↵ers

from that of Hallak et al. (2015) in that we assume the DM has a complete characterization of each

of the MDPs, but due to ambiguity the DM still does not know which MDP she is interacting with.

Others have studied related problems in the setting of multi-task reinforcement learning (Brunskill

and Li 2013). Our work di↵ers from this line of research in that we are motivated by problems

with shorter horizons while multi-task learning is appropriate for problems in which the planning

horizon is su�ciently long to observe convergence of estimates to their true parameters based on

a dynamic learning process.

Our work is also distinct from the more traditional approach of mitigating parameter ambiguity

in MDPs known as robust dynamic programming. Iyengar (2005) and Nilim and El Ghaoui (2005)

provide algorithms for solving the max-min problem by providing polynomial-time methods that

assume that a rectangularity assumption is valid for the ambiguity set. While rectangular ambiguity

sets are desirable from a computational perspective, they can give rise to policies that are overly-

conservative because the DM must account for the possibility that parameters for each state-action-

time triplet will take on their worst-case values simultaneously. Much of the research in robust

dynamic programming has focused on ways to mitigate the e↵ects of parameter ambiguity while

avoiding policies that are overly conservative by either finding non-rectangular ambiguity sets that

are tractable for the max-min problem or optimizing with respect to another objective function

usually assuming some a priori information about the model parameters (Delage and Mannor 2009,

Xu and Mannor 2012, Wiesemann et al. 2013, Mannor et al. 2016, Li et al. 2017, Scheftelowitsch

et al. 2017, Goyal and Grand-Clement 2018).
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A.2. Parameter ambiguity in medical decision making

To our knowledge, the optimal design of medical screening and treatment protocols under parameter

ambiguity is limited to the work of Kaufman et al. (2011), Sinha et al. (2016), Zhang et al. (2017),

and Boloori et al. (2020). Kaufman et al. (2011) consider the optimal timing of living-donor liver

transplantations, for which some critical health state are seldom visited historically. They use the

robust MDP framework, modeling ambiguity sets as confidence regions based on relative entropy

bounds. The resulting robust solutions are of a simple control-limit form that suggest transplanting

sooner, when patients are healthier, than otherwise suggested by traditional MDP solutions based

on maximum likelihood estimates of transition probabilities. Sinha et al. (2016) use a robust MDP

formulation for response-guided dosing decisions in which the dose-response parameter is allowed

to vary within an interval uncertainty set and show that a monotone dosing policy is optimal for the

robust MDP. Zhang et al. (2017) propose a robust MDP framework in which transition probabilities

are confined to statistical confidence intervals. They employ a rectangularity assumption implying

independence of rows in the transition probability matrix, and they assume an adversarial model in

which the DM decides on a policy and an adversary optimizes the choice of transition probabilities

that minimizes expected rewards subject to an uncertainty budget on the choice of transition

probabilities. Boloori et al. (2020) leverages the results of Saghafian (2018) to inform decision-

making related to immunosuppressive medication use for patients after organ transplantations to

balance the risk of diabetes after transplantation and the risk of organ rejection. While these

articles address parameter ambiguity in the transition probabilities, they all assume a rectangular

ambiguity set which decouples the ambiguity across decision epochs and states. In contrast, the

MMDP formulation that we propose allows a relaxation of this assumption. It allows for the

ambiguity in model parameters to be linked across tuples of states, actions, and decision epochs.
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Appendix B: Analysis of the adaptive problem

In this appendix, we present the adaptive counterpart of the WVP presented in the main body

of this article. To distinguish, we refer to the adaptive counterpart of the WVP as the adaptive

problem and the WVP as described in the main body as the non-adaptive problem. The main

results related to the adaptive problem are presented in Table EC.1.

B.1. Problem statement

The adaptive problem generalizes the non-adaptive problem to allow the DM to utilize realizations

of the states to adjust her strategy. In this problem, nature and the DM interact sequentially where

the DM gets new information in each decision epoch of the MMDP and the DM is allowed to utilize

the realizations of the states to infer information about the ambiguous problem parameters when

selecting her future actions. In this setting, nature begins the interaction by selecting a model, m2

M, according to the model weights ⇤, and the model selected is not known to the DM. An initial

state s1 2 S is determined according to the model’s initial distribution, µm
1 . Next, the DM observes

the state, s1, and makes her move by selecting an action, a1 2A. At this point, the next state, s2 2 S,

is determined according to the distribution given by p
m
1 (·|s1, a1)2M (S). The interaction continues

where the DM observes the state and selects an action, and the next state is determined according

to the distribution defined by the corresponding row of the transition probability matrix. For

simplicity, we consider the adaptive problem only for the case where rewards are model-independent

and transitions are model-dependent. We leave future analysis with model-dependent rewards to

future research. It is important to note that the model weights are exogenous parameters, which

are assumed to be known to the DM. That is, the DM precisely knows the probability distribution

of nature. Other frameworks could instead assume some information asymmetry in which the DM

did not know nature’s distribution. We also leave this for future research.

B.2. Comparison of the adaptive and non-adaptive problems

In this section, we will analyze the WVP as defined in (5). We will describe the classes of poli-

cies that achieve the optimal weighted value, the complexity of solving the problem, and related

problems that may provide insights into promising solution methods. These results and solution

methods are summarized in Table 1. For ease of reading, we defer all proofs to Appendix C.

B.3. General properties of the weighted value problem

In both the adaptive and non-adaptive problems, nature is confined to the same set of rules.

However, the set of strategies available to the DM in the non-adaptive problem is just a subset of

the strategies available in the adaptive problem. Therefore, if W ⇤
N and W

⇤
A are the best expected

values that the DM can achieve in the non-adaptive and adaptive problems, respectively, then it

follows that W ⇤
N W

⇤
A, and moreover, the inequality may be strict.
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Proposition EC.1. It is possible that there are no optimal policies that are Markovian for the

adaptive problem.

The result of Proposition EC.1 is that the DM may benefit from being able to recall the history of

the MMDP. This history allows for the DM to infer which model is most likely, conditional on the

observed sample path, and tailor the future actions to reflect this changing belief about nature’s

choice of model. Therefore, the DM must search for policies within the history-dependent policy

class to find an optimal solution to the adaptive MMDP. Hence, the adaptive problem does not

reduce to the non-adaptive problem in general.

B.4. Analysis of the adaptive problem

We have shown that, in a similar way that POMDPs may have history-dependent policies that

are optimal when they are defined on a discrete state space, the MMDP may also have a history-

dependent policy in general when defined on the discrete state space. Just like POMDPS, we

can reformulate the MMDP in such a way that would have a Markovian optimal policy, but this

requires using a continuous-state representation. We begin by establishing an important connection

between the adaptive problem and the POMDP (Smallwood and Sondik 1973):

Proposition EC.2. Any MMDP can be recast as a special case of a POMDP such that the

maximum weighted value of the MMDP is equivalent to the expected discounted rewards of the

POMDP.

Corollary EC.1. There is always a deterministic policy that is optimal for the adaptive prob-

lem.

The implication of Proposition EC.2 is illustrated in Figure EC.1 which displays the relationship

between MDPs, MMDPs, and POMDPs. Given Proposition EC.2, we can draw on similar ideas

proposed in the literature for solving POMDPs and refine them to take advantage of structural

properties specific to MMDPs. However, we show that even though MMDPs have special structure

on the observation matrix and transition probability matrix (see the proof of Proposition EC.2 in

Table EC.1 Summary of the main properties and solution methods related to the adaptive WVP for the

MMDP.

Property Result Support

Always a Markov policy that is optimal? No Proposition EC.1

Always a deterministic policy that is optimal? Yes Corollary EC.1

Computational Complexity PSPACE-hard Proposition EC.3

Exact solution method Outer linearization Procedure 2

with state-wise pruning Procedure 3
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MDP MMDP POMDP

Figure EC.1 A Venn diagram illustrating the relationship between an MDP, MMDP, and POMDP. As shown in

Proposition EC.2, any MMDP is a special case of a POMDP due to the structure of the transition

matrix and observation conditional probabilities. Further, an MDP is a special case of an MMDP

in which the MMDP only has one model.

Appendix C), we cannot expect any improvements in the complexity of the problem due to this

structure. We note we have developed this proof independently of a proof of an equivalent result

which was found in the thesis of Le Tallec (2007) describing the complexity of MDPs with “general

random uncertainty”.

Proposition EC.3. The adaptive problem for MMDPs is PSPACE-hard.

Although the adaptive problem is PSPACE-hard and we cannot expect to develop an algorithm

whose solution time is bounded above by a function that is polynomial in the problem size, we now

discuss some special properties of the problem that can be exploited to develop an exact algorithm

for solving this problem in Section 5. We start by establishing a su�cient statistic for MMDPs:

Definition EC.1 (Information state for MMDPs). The information state for an MMDP

is given by a vector:

bt :=
⇥
bt(1,1), . . . , bt(S,1), bt(1,2), . . . , bt(S,2), . . . , bt(1,M), . . . , bt(S,M)

⇤0

with elements:

bt(st,m) := P (st,m|s1, a1, . . . , st�1, at, st) .

The fact that the information state is a su�cient statistic follows directly from Proposition EC.2,

the formulation of a POMDP, and the special structure in the observation matrix.

Given this su�cient statistic, we establish some structural properties of the weighted value

problem:

Proposition EC.4. The information state, bt, has the following properties:

1. The value function is piece-wise linear and convex in the information state, bt.

2. bt(s,m)> 0) bt(s0,m) = 0, 8s0 6= s.
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3. The information state as defined above is Markovian in that the information state bt+1 depends

only on the information state and action at time t, bt and at respectively, and the state observed

at time t+1, st+1.

According to part 1, the optimal value function can be expressed as the maximum value over a

set of hyperplanes. This structural result forms the basis of our exact algorithm in Appendix B.5.

Part 2 states that only elements in the vector with the same value for the state portion of the

state-model pair (s,m) can be positive simultaneously, which implies that at most |M| elements

of this vector are zero. This result allows us to ignore the parts of this continuous state space that

have zero probability of being occupied. Part 3 allows for a sequential update of the belief that a

given model is the best representation of the observed states given the DM’s actions according to

Bayes’ rule. Consider the information state at time 1 at which point state s1 has been observed.

This information state can be represented by the vector with components:

b1(s,m) =

8
<

:

�mµ
m
1 (s)P

m02M �mµ
m0
1 (s)

if s= s1,

0 otherwise.

Now, suppose that the information state at time t is bt, the DM takes action at 2A, and observes

state st+1 at time t+1. Then, every component of the information state can be updated by:

bt+1(s,m) =

(
T

m(bt, at, st+1) if s= st+1,

0 otherwise,

where T
m(bt, at, st+1) is a Bayesian update function that reflects the probability of model m being

the best representation of the system given the most recently observed state, the previous action,

and the previous belief state:

T
m(bt, at, st+1) :=

P
st2S p

m
t (st+1|st, at)bt(st,m)

P
m02M

P
st2S p

m0
t (st+1|st, at)bt(st,m0)

.

As mentioned previously, our focus in this article is on applications of the MMDP framework to

medical problems in contexts for which learning by Bayesian updating is not appropriate. However,

the adaptive framework would apply to other contexts. We describe solution methods that exploit

these structural properties in Appendix B.5.

B.5. Solution Methods for the Adaptive Problem

In this section, we describe an exact solution method that can be used to solve the adaptive

problem for an MMDP. We begin by describing Procedure 2 which is an exact solution method

for solving the adaptive weighted value problem. The correctness of this solution method follows

from Proposition EC.2 which states that every MMDP is a special case of a POMDP and that the
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maximum weighted value is equivalent to the expected discounted rewards of the corresponding

POMDP. Therefore, we transform the MMDP into a POMDP and use a solution method analogous

to a well-known solution method for POMDPs (Smallwood and Sondik 1973). This method exploits

the property that the value function is piece-wise linear convex and therefore can be represented

as the maximum over a set of supporting hyperplanes (Proposition EC.4).

In the worst case, the number of hyperplanes needed to represent the value function could

potentially be as large as 1 + |A|+
PT�1

t=1 |A|
|S|+T�t for T � 2, but in many cases the number of

hyperplanes that are actually needed to represent the optimal value function is much smaller.

Pruning describes the methods by which hyperplanes that are not needed to represent the optimal

value function are discarded. The pruning method described in Procedure 3 is based on the LP

method described in Smallwood and Sondik (1973), but exploits the result of Proposition 2 for

computational gain. This result states that only certain parts of the information space are reachable

due to the special structure of the MMDP and this allows for the LP problems for pruning to be

decomposed into a set of smaller LPs.

For this procedure, we will use the information state as defined in Definition EC.1 and define

the following notation:

r
m
T+1 :=

2

64
rT+1(1)

...
rT+1(|S|)

3

75 , r
m
t (at) :=

2

64
rt(1, at)

...
rt(|S|, at)

3

75 ,8m2M,8at 2A,

rT+1 :=

2

64
r
1
T+1
...

r
|M|
T+1

3

75 , rt(at) :=

2

64
r
1
t (at)
...

r
|M|
t (at)

3

75 ,8at 2A,

For every action, we define the block diagonal matrix:

Pt(at) :=

2

664

P
1
t (at) 0 . . . 0
0 P

2
t (at) . . . 0

...
...

. . .
...

0 0 . . . P
M
t (at)

3

775 ,

where each matrix P
m
t (at), 8m 2M is the transition probability matrix in decision epoch t 2

T associated with action at 2 A for model m 2M. The matrix Q represents the analog of the

conditional probability matrix for observations:

Q := [I|S|, . . . , I|S|| {z }
|M| times

]0,

where I|S| denotes an |S|⇥ |S| identity matrix. We use Q(st) to denote the column vector corre-

sponding to st 2 S such that the elements indexed (s,m) in this vector have values

q(st|(s,m)) =

(
1 if s= st

0 otherwise
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for all m2M.

The space of all information states at time t is

Bt =

(
bt : bt(s,m)� 0, 8(s,m)2 S ⇥M,

X

m2M

bt(s,m) = 1,8s2 S

)
.

Procedure 2 is a backwards induction algorithm which generates a set of hyperplanes at each

decision epoch. Procedure 3 eliminates hyperplanes that are not necessary to represent the optimal

value function. The DM selects the optimal sequence of actions for the observed history in an

analogous way to a POMDP: update the information state based on the observation and select the

action corresponding to the maximizing hyperplane at this particular information state.

Procedure 2 Algorithm for solving the adaptive weighted value problem (2)

Input: MMDP

Initialize BT+1 = {rT+1}

The value-to-go at time T +1. vT+1(bT+1) = �
0
T+1bT+1, 8bT+1 2BT+1

t T

while t� 0 do

for Every action at do

Bt(at) 
n
�t(at) : �t(at) = rt(at)+

X

st+12S

Pt(at)diag(Q(st+1))�
st+1
t+1 ,

8�
1
t+1⇥ · · ·⇥�

|S|
t+1 2Bt+1⇥ · · ·⇥Bt+1

o

end for

Bt [at2ABt(at)

State-wise Prune(Bt)

The value-to-go at time t is vt(bt) =max�t2Bt �
0
tbt, 8bt 2Bt

t t� 1

end while

Output: Collection B0, . . . ,BT

Remark EC.1. While the non-adaptive problem has connections to stochastic programming, it

also has connections to POMDPs as described above. The non-adaptive problem described in the

main body of this article can be viewed as the problem of finding the best memoryless controller

for this POMDP (Vlassis et al. 2012). Memoryless controllers for POMDPs are defined on the most

recent observation only. For an MMDP, this would translate to the DM specifying a policy that
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Procedure 3 State-wise Prune
Input: A set of vectors in R|S⇥M|, B.

for Every vector � 2B do

for Every state s2 S do

Let B(s) = {�s : �s(m) = �(s,m),� 2B}

Solve the LP (EC.1)

z
⇤
s := min

µs2M (M),x2R
x��

0
sµs (EC.1)

s.t. x� �̄
0
sµs 8�̄s 2B(s),

X

m2M

µs(m) = 1

If
Q

s2S z
⇤
s > 0, remove � from B.

end for

end for

Output: B

is based only on the most recent observation of the state (recall that the DM gets no information

about the model part of the state-model pair). Because no history is allowed to be incorporated

into the definition of the policy, this policy is permissible for the non-adaptive problem. These

connections between MMDPs and stochastic programs and POMDPs allow us to better understand

the complexity and potential solution methods for finding the best solution to the non-adaptive

problem.

B.6. Computational Experiments

In this section, we describe a set of computational experiments for comparing solution methods

for the adaptive problem and the non-adaptive problem on the basis of run-time and quality of

the solution. Our experiments were based on a series of random instances of MMDPs. To generate

the random test instances, first the number of states, actions, models, and decision epochs for the

problem were defined. Then, model parameters were randomly sampled. In all test instances, it was

assumed that the sampled rewards were the same across models, the weights were uninformed priors

on the models, and the initial distribution was a discrete uniform distribution across the states.

The rewards were sampled from the uniform distribution: r(s, a) ⇠ U(0,1),8(s, a) 2 S ⇥A. The

transition probabilities were obtained by sampling from a uniform distribution so that p̃m(s0|s, a)⇠

U(0,1). Then, for every (m,s,a, s
0)2M⇥S ⇥A⇥S, the transition probabilities were normalized

so that the row of the transition probability matrix had elements that sum to one:

p
m(s0|s, a) :=

p̃
m(s0|s, a)P

s002S p̃
m(s00|s, a)

.
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To solve the adaptive version of these instances, Procedure 2 with was used with pruning Pro-

cedure EC.1. Procedure 2 was implemented using Python using SciPy’s linprog package to solve

the linear programs in the pruning for Procedure 3. Procedure 2 was terminated if |B|> 10,000.

The non-adaptive problem was solved exactly using the MIP formulation in (6). Each algorithm

was implemented using Python 3.5.2. All MIPs were solved using AMPL Version 20150815 and

CPLEX 12.6.1.

Our experiments investigated the di↵erence between the non-adaptive and adaptive WVP solu-

tion on a set of random instances of MMDPs with 2 states, 2 actions, 2 models for 2 to 5 decision

epochs. For each choice of decision epochs, 30 random instances were generated for a total of 120

random instances. For each instance, the non-adaptive problem was solved using the MIP formu-

lation and the adaptive problem was solved using Procedure 2 with pruning. These experiments

revealed a very small gap between the adaptive and non-adaptive solutions. For these instances,

the average gap (calculated as W⇤
A�W⇤

N
W⇤

N
⇥100%) was less than 0.1% and the worst-case gap was less

than 3%.

To investigate the gap between the solutions of the non-adaptive and the adaptive problems for

larger problem sizes, we compared the non-adaptive solution obtained via the MIP to the upper

bound from Proposition 4. A base case problem of 4 states, 4 actions, 4 models, and 4 decision

epochs was defined. A variety of problem sizes were tested by changing one aspect of the base case

problem size at a time. The number of states was varied from 4 to 10, the actions from 4 to 10,

and the models from 4 to 10, for a total of 28 di↵erent problem sizes. For each problem size, 100

instances were generated for a total of 2800 random instances. Over these 2,800 random instances,

the worst-case gap between the MIP solution and the upper bound was 5.01%, and the average

gap was 0.46%. Furthermore, the upper bound from Proposition 4 can be used to bound the gap

between the non-adaptive solution and the adaptive solution.

In summary, the results of our experiments show that on the small problems that we considered,

the gap between the optimal adaptive solution and the optimal non-adaptive solution can be quite

small. However, we hypothesize that there would be more value to solving the adaptive problem

relative to the non-adaptive problem for longer time horizons, although the value would also depend

on the problem characteristics.
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Appendix C: Proofs

Proposition 1 There is always a Markov deterministic policy that is optimal for the WVP.

Proof of Proposition 1. Let µ
⇡
t be the probability distribution induced over the states by the

partial policy used up to time t in the MMDP, so that µ
⇡
t (st,m) = P (st | ⇡1:(t�1)), where ⇡1:(t�1)

is the partial policy over decision epochs 1 through (t� 1). Now we will prove the proposition by

induction on the decision epochs.

The base case of the proof is the last decision epoch, T : For any partial policy ⇡1:(T�1), there

will be some stochastic process that induces the probability distribution µ
⇡
T . Given µ

⇡
T , the best

decision rules are found by:

max
q

X

sT2S

max
X

aT2A

qt(aT |sT )
X

m2M

µ
⇡
T (sT ,m)

2

4, rmT (sT , aT )+
X

sT+1

p
m(sT+1|sT , aT )r

m
T+1(sT+1)

3

5

s.t. qT (aT |sT )� 0, 8sT 2 S, aT 2A,

X

aT2A

qT (aT |sT ) = 1,8sT 2 S.

Since we are selecting the action probabilities independently for each state, we can focus on the

maximization problem:

max
qT (sT )

X

aT2A

qt(aT |sT )
X

m2M

µ
⇡
T (sT ,m)

2

4rmT (sT , aT )+
X

sT+1

p
m(sT+1|sT , aT )r

m
T+1(sT+1)

3

5

s.t. qT (aT |sT )� 0,
X

aT2A

qT (aT |sT ) = 1,

which is a linear programming problem, and will have a solution where at most 1 action has a

non-zero value of qT (aT |sT ). Thus, for any given partial policy ⇡ = (⇡1, . . . ,⇡T�1), the optimal

decision rule at time T will be deterministic.

Next, we assume that for any partial policy ⇡1:t = (⇡1,⇡2, . . . ,⇡t), there exists deterministic

decision rules that are optimal for the remainder of the horizon: ⇡
⇤
(t+1):T = (⇡⇤

t+1,⇡
⇤
t+2, . . . ,⇡

⇤
T ),

and that the partial beginning policy used up to decision epoch t, (⇡1, . . . ,⇡t�1), has induced the

probability distribution µ
⇡
t . We will show that it follows that there exists a deterministic decision

rule that is optimal for decision epoch t:

X

st2S

max
q

X

at2A

qt(at|st)
X

m2M

µ
⇡
t (st,m)

2

4rmt (st, at)+
X

st+1

p
m(st+1|st, at)v

m
t+1(st+1)

3

5

s.t. qt(at|st)� 0,
X

at2A

qt(at|st) = 1.
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Once again, we can focus on the maximization problem within the sum:

max
qt(at|st)=1

X

at2A

qt(at|st)
X

m2M

µ
⇡
t (st,m)

2

4rmt (st, at)+
X

st+1

p
m(st+1|st, at)v

m
t+1(st+1)

3

5

s.t. qt(at|st)� 0,
X

at2A

qt(at|st) = 1.

This is a linear program so there will exist an extreme point solution that is optimal. This extreme

point solution corresponds to a deterministic decision rule for decision epoch t. ⇤

Proposition 2 Solving the WVP is NP-hard.

Proof of Proposition 2. We show that any 3-CNF-SAT problem can be transformed into the

problem of determining if there exists a Markov deterministic policy for an MMDP such that

the weighted value is greater than zero. Let’s suppose we have a 3-CNF-SAT instance: a set of

variables U = {u1, u2, . . . , un} and a formula E = C1 ^ C2 . . . ^ Cm. We will construct an MMDP

with one decision epoch from this instance of 3-CNF-SAT. In the only decision epoch, the state

space consists of one state per variable, ui, i= 1, . . . , n. At the terminal stage, there are two states

labeled “T” and “F”. There are no immediate rewards for this problem. For every state ui, there

are two actions true or false. The terminal rewards correspond to a cost of 0 for reaching the

terminal state “T” and a cost of 1 upon reaching the terminal state “F”.

The transition probabilities for model j correspond to the structure of clause Cj and are defined

as follows: for any variable ui, i < n that does not appear in Clause j, both actions lead to the

state ui+1 with probability 1. If variable un does not appear in Clause j, both actions lead to the

state “F” with probability 1. For any variable ui that appears non-negated in clause Cj, the action

true leads from state ui to state “T” with probability 1 and the action false leads from state ui

to state ui+1 with probability 1. For the variables that appear negated in the clause, the action

true leads from state ui to state ui+1 with probability 1 and the action false leads from state ui to

state “T” with probability 1. The initial distribution of all models is variable u1 with probability

1.

We will show that there is a truth assignment for the variables in U that satisfies E if and only

if there is a Markov deterministic policy for the MMDP that achieves a weighted value equal to 0.

First, we show that if there is a truth assignment for the variables in U that satisfies E, then

there exists a Markov deterministic policy for the MMDP that achieves a weighted value equal

to 0. To construct such a policy, take the action true in every state ui such that ui is true is

the satisfying truth assignment and take the action false otherwise. Because this true assignment
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satisfies each clause, the corresponding policy will reach state “T” with probability 1 in each model.

By construction, this policy will have a weighted value of zero.

Next, we show that if there is a policy ⇧=⇧MD that achieves a weighted value of 0, that there

exists a truth assignment that will satisfy E. Suppose that policy ⇡ 2⇧MD achieves a cost of zero.

This implies that for every clause, the policy ⇡ leads to the state “T” with probability 1. We can

construct a truth assignment from this policy by assigning ui to be true if ⇡(ui) is true, and ui to

be false if ⇡(ui) is false.

Therefore, we have created a one-to-one mapping of truth assignments to MD policies such that

any policy that satisfies E will also have weighted value 0. Hence, if we were able to find a policy

that achieves a weighted value of 0 in polynomial time, we would also be able to solve 3-CNF-SAT

in polynomial time. Thus, the MMDP weighted value problem with ⇧=⇧MD is NP-hard. ⇤

u1

u2

u3

u4

T

F

falsetrue

true

false

true

false

(a) The transitions probabilities in

model 1 that represent the first clause:

C1 =!u1_ !u2 _u3.

u1

u2

u3

u4

T

F

truefalse

false

true

false

true

(b) The transitions probabilities in

model 2 that represent the second

clause: C2 = u1 _u2_ !u4.

Figure EC.2 An illustration of how a 3-CNF-SAT instance, E = (u1_ !u2_u3)^(u1_ u2_ !u4), can be represented

as an MMDP. Solid lines represent the transitions associated with the action true and dashed

lines represent the transitions associated with the action false. All transitions shown happen with

probability 1.

Proposition 3. The WVP can be formulated as the following MIP:

max
⇡, v

X

m2M

X

s2S

�mµ
m
1 (s)v

m
1 (s) (EC.2a)

s.t.
X

a2A

⇡t(a|s) = 1, 8s2 S, t2 T , (EC.2b)
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M⇡t(a|s)+ v
m
t (s)�

X

s02S

p
m
t (s

0
|s, a)vmt+1(s

0) r
m
t (s, a)+M, (EC.2c)

8m2M, s2 S, a2A, t2 T ,

v
m
T+1(s) r

m
T+1(s), 8m2M, s2 S, (EC.2d)

⇡t(a|s)2 {0,1}, 8a2A, s2 S, t2 T , (EC.2e)

v
m
t (s) unrestricted, 8s2 S, t2 T ,m2M. (EC.2f)

Proof of Proposition 3 The decision variable vt(s) represents the optimal value-to-go for state

s 2 S at time t 2 T . The dual variables correspond to the probability of selecting an action given

a state. Corner point solutions correspond to deterministic policies, and the optimal policy is

deterministic by construction.

For an MMDP, we cannot use the standard LP formulation used to solve MDPs because of the

requirement that the policy must be the same in each of the di↵erent models. The mixed-integer

program shown in (EC.2) gives a formulation that ensures that the policy ⇡ 2 ⇧MD is the same

in each model. Each decision variable, vmt (s) represents the value-to-go from state s 2 S at time

t2 T for model m2M corresponding to the policy ⇡ 2⇧MD that maximizes the weighted value of

the MMDP. To enforce that the same policy in each model, m2M, we introduce binary decision

variables, xs,a,t for every state, s 2 S, action, a 2A, and decision epoch t 2 {1,2, . . . , T}. If xs,a,t

takes on a value of 1, this means that the best policy dictates taking action a in state s at time t

for every model, and xs,a,t = 0 otherwise. If the choice of M is su�ciently large (e.g., M > (|T |+

1) ·maxm2M,s2S,a2A,t2T rt(s, a)), then the inequalities will become tight when the corresponding

binary decision variable xs,a,t = 1, because all of the other actions’ constraints will have a large

value, M , added to their value in the second inequality. The equality constraint ensures that every

state-time pair only has one action prescribed. ⇤

Proposition 4. For any policy ⇡̂ 2⇧, the weighted value is bounded above by the weighted sum

of the optimal values in each model. That is,

X

m2M

�mv
m(⇡̂)

X

m2M

�m max
⇡2⇧MD

v
m(⇡), 8⇡̂ 2⇧

Proof of Proposition 4 The result follows from this series of inequalities:

X

m2M

�mv
m(⇡̂) max

⇡2⇧MD

X

m2M

�mv
m(⇡) (EC.3)



X

m2M

�m max
⇡2⇧MD

v
m(⇡),

where (EC.3) states than any MD policy will have a weighted value at most the optimal MD

policy’s weighted value. This optimal weighted value, in turn, is at most the value that can be

achieved by solving each model separately and then weighting these values. ⇤
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Figure EC.3 An illustration of an MMDP for which the WSU approximation algorithm does not generate an

optimal solution to the non-adaptive weighted value problem. Possible transitions for actions 1

and 2 are illustrated with the dashed and solid line respectively. The probability of each possible

transition in both of the models is listed by the corresponding line. The DM receives a reward of 1

if state D is reached. Otherwise, no rewards are received.

Proposition 5 WSU is not guaranteed to produce an optimal solution to the WVP.

Proof of Proposition 5. Consider the counter-example illustrated in Figure EC.3 for �1 =

0.8,�2 = 0.2. The MMDP has 5 states, 2 actions, 2 models, and 2 decision epochs. First, we can

explicitly enumerate all possible deterministic policies for the non-adaptive weighted value problem.

Table EC.2 An explicit enumeration of the weighted value under every possible deterministic policy for the

non-adaptive weighted value problem.

Policy Expected Values

State A State B Value in Model 1 Value in Model 2 Weighted Value

1 1 0 0.9 0.9�2 = 0.72
1 2 0.1 0 0.1�1 = 0.08
2 1 0 0.1 0.1�2 = 0.02
2 2 0.1 0 0.1�1 = 0.08

By explicitly enumerating all of the possible deterministic policies, we see that selecting action 1

for state A and action 1 for state B leads to the maximum expected weighted value of 0.9�2 = 0.72.

Now, consider the resulting policy generated from WSU. There is only one option for state C, so
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WSU will select ⇡(C) = 1 and update the value for each model as v
1(C) = 0 and v

2(C) = 0. For

state B, WSU will select

⇡̂(B) argmax
a2{1,2}

{�1p
1(D|B,a)+�2p

2(D|B,a)}

and because �1 > �2, the algorithm will select ⇡(B) = 2, and then update v1(B) = 1 and v
2(B) = 0.

Then, the algorithm will select an action for state A as

⇡̂(B) argmax
a2{1,2}

{�1p
1(B|A,a)};

and so, the algorithm is indi↵erent between action 1 and action 2 because both give �1p
1(B|A,a) =

0.1�1. Therefore, the policy resulting from WSU is either ⇡̂= {⇡̂(A) = 1, ⇡̂(B) = 2, ⇡̂(C) = 1} or ⇡̂=

{⇡̂(A) = 2, ⇡̂(B) = 2, ⇡̂(C) = 1}, both of which give a weighted value of 0.1�1 which is suboptimal.

This shows that WSU may generate a policy that is suboptimal for the non-adaptive weighted

value problem. ⇤

Lemma 1 For |M|= 2, if �1
m > �

2
m, then the corresponding policies, ⇡̂(�1) and ⇡̂(�2) generated

via WSU for these values will be such that

v
m(⇡̂(�1))� v

m(⇡̂(�2)).

Proof of Lemma 1. For ease of notation, we refer to ⇡̂(�1) as ⇡1. The value-to-go under policy

⇡ in model m from state s will be denoted as v
m
t (s,⇡). Because |M| = 2, we will refer to the

two models as m and m̄ where �m is the weight on model m and (1 � �m) is the weight on

model m̄. Suppose the proposition is not true; that is, suppose there exists �
1
m > �

2
m such that

v
m(⇡̂(�1))< v

m(⇡̂(�2)). Then, it must be the case that for some t2 T , s2 S that

v
m
t (s,⇡1)< v

m
t (s,⇡2). (EC.4)

Let t be the last decision epoch in which ⇡
1
t (st) 6= ⇡

2
t (st). Note that this implies that vmt0 (s

0
,⇡

1)) =

v
m
t0 (s

0
,⇡

2), 8t
0
> t, s

0
2 S.

First, consider the weighted value problem for �m = �
1
m. Consider a state s at time t for which

⇡
1
t (s) 6= ⇡

2
t (s). Because the approximation algorithm selected ⇡

1
t (s) as the action, it must be that:

�
1
mv

m
t (s,⇡1)+ (1��

1
m)v

m̄
t (s,⇡1)� �

1
mv

m
t (s, a)+ (1��

1
m)v

m̄
t (s, a), 8a2A

)�
1
mv

m
t (s,⇡1)+ (1��

1
m)v

m̄
t (s,⇡1)� �

1
mv

m
t (s,⇡2)+ (1��

1
m)v

m̄
t (s,⇡2) (EC.5)

Next, consider the weighted value problem for �m = �
2
m. In this case, for the same state s as above,

it must be that the approximation algorithm selected action ⇡
2
t (s) because:

�
2
mv

m
t (s,⇡2)+ (1��

2
m)v

m̄
t (s,⇡2)� �

2
mv

m
t (s, a)+ (1��

2
m)v

m̄
t (s, a), 8a2A

)�
2
mv

m
t (s,⇡2)+ (1��

2
m)v

m̄
t (s,⇡2)� �

2
mv

m
t (s,⇡1)+ (1��

2
m)v

m̄
t (s,⇡1). (EC.6)
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Rearranging (EC.5), we have

�
1(vmt (s,⇡1)� v

m
t (s,⇡2))+ (1��

1
m)(v

m̄
t (s,⇡1)� v

m̄
t (s,⇡2))� 0, (EC.7)

and rearranging (EC.6), we have

�
2
m(v

m
t (s,⇡2)� v

m
t (s,⇡1))+ (1��

2
m)(v

m̄
t (s,⇡2)� v

m̄
t (s,⇡1))� 0 (EC.8)

)��
2
m

�
v
m
t (s,⇡1)� v

m
t (s,⇡2)

�
� (1��

2
m)

�
v
m̄
t (s,⇡1)� v

m̄
t (s,⇡2)

�
� 0. (EC.9)

Adding (EC.7) and (EC.9), we have:

(�1
m��

2
m)

�
v
m
t (s,⇡1)� v

m
t (s,⇡2)

�
+
�
(1��

1
m)� (1��

2
m)
� �

v
m̄
t (s,⇡1)� v

m̄
t (s,⇡2)

�
� 0

)(�1
m��

2
m)

�
v
m
t (s,⇡1)� v

m
t (s,⇡2)+ v

m̄
t (s,⇡2)� v

m̄
t (s,⇡1)

�
� 0. (EC.10)

Because �
1
m > �

2
m, it must be that

v
m
t (s,⇡1)� v

m
t (s,⇡2)+ v

m̄
t (s,⇡2)� v

m̄
t (s,⇡1)� 0

)v
m̄
t (s,⇡2)� v

m̄
t (s,⇡1)� v

m
t (s,⇡2)� v

m
t (s,⇡1)

)v
m̄
t (s,⇡2)> v

m̄
t (s,⇡1), (EC.11)

where (EC.11) follows because of (EC.4). However, because v
m
t (s,⇡1)< v

m
t (s,⇡2) and v

m̄
t (s,⇡1)<

v
m̄
t (s,⇡2), this implies that

�
1
mv

m
t (s,⇡1)+ (1��

1
m)v

m̄
t (s,⇡1)< �

1
v
m
t (s,⇡2)+ (1��

1
m)v

m̄
t (s,⇡2),

which contradicts that the approximation algorithm would have selected action ⇡
1
t (s) for the

weighted value problem with �m = �
1
m. Therefore, it must be the case that if �1

m > �
2
m, then

v
m(⇡̂(�1))� v

m(⇡̂(�2)).

⇤

Proposition 6 For any MMDP with |M|= 2, the error of the policy generated via WSU, ⇡̂, is

bounded so that

W (⇡⇤)�W (⇡̂) �1

�
v
1(⇡1)� v

1(⇡2)
�
+�2

�
v
2(⇡2)� v

2(⇡1)
�
.

where ⇡
m is the optimal policy for model m and ⇡

⇤
2⇧MD is the optimal policy for WVP.
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Proof of Proposition 6. Let � be the weight on model 1, ⇡1 be an optimal policy for model 1,

and ⇡
2 be an optimal policy for model 2. Due to the result of Proposition 1, it follows that

v
1(⇡̂(�))� v

1(⇡2) = v
1(⇡̂(0)), 8�2 [0,1],

v
2(⇡̂(�))� v

2(⇡1) = v
2(⇡̂(1)), 8�2 [0,1].

and therefore,

W (⇡̂(�)) = �v
1(⇡̂(�))+ (1��)v2(⇡̂(�))� �v

1(⇡2)+ (1��)v2(⇡1). (EC.12)

Due to the upper bound discussed in Remark 4,

W (⇡̂(�)) �1v
1(⇡1)+�2v

2(⇡2). (EC.13)

From (EC.12) and (EC.13), the result follows. ⇤

Proposition EC.1. It is possible that there are no optimal policies that are Markovian for the

adaptive problem.

Proof of Proposition EC.1. Consider the MMDP illustrated in Figure EC.4.

First, we describe the decision epochs, states, rewards, and actions for this MMDP. This MMDP

is defined for 3 decision epochs where state 1 is the only possible state for decision epoch 1, states

2 and 3 are the states for decision epoch 2, and state 4 is the only state reachable in decision epoch

3. States 5 and 6 are terminal states. This MMDP has two models M= {1,2}. For each model,

the only non-zero reward is received upon reaching the terminal state 5. In states 1, 2, and 3, the

DM only has one choice of action a= 1. In state 4, the DM can select between action a= 1 and

a= 2.

Now we will describe the transition probabilities for each model. Each line represents a transition

that happens with probability one when the corresponding action is selected. Solid lines correspond

to transitions for model m= 1 and dashed lines correspond to transitions for model m= 2.

Since state 4 is the only state in which there is a choice of action, we define the possible policies

selecting an action in this state. Consider the adaptive problem for this MMDP. The optimal

decision rule for state 4 will depend on the state observed at time t= 2: If the history of the MMDP

is (s1 = 1, a1 = 1, s2 = 2, a2 = 1), then select action 1, otherwise select action 2. In model 1, the only

way to reach state 4 is through state 2. Upon observing this sample path, the policy prescribes

taking action 1 which will lead to a transition to state 5 and thus a reward of 1 will be received.

On the other hand, in model 2, the only way to reach state 4 is through state 3. Therefore, the
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policy will always prescribe taking action 2 in model 2 which leads to state 5 with probability 1.

This means that evaluating this policy in model 1 gives an expected value of 1 and evaluating this

policy in model 2 gives an expected value of 1. Therefore, for any given weights �, this policy has

a weighted value of W ⇤
A = 1.

Now, consider the non-adaptive problem for the MMDP. Before the DM can observe the state

at time t= 2, she must specify a decision rule to be taken in state 4. For state 4, there are two

options: select action 1 or select action 2. Let q be the probability of selecting action 1. If action

1 is selected, this will give an expected value of 1 in model 1 and an expected value of 0 in model

2, which produces a weighted value of �1. Analogously, if action 2 is selected, the weighted value

in the MMDP will be �2. Thus, the optimal policy for the non-adaptive problem gives a weighted

value of maxq2[0,1]{q�1, (1� q)�2} which will be exactly max{�1,�2}.

This means that for any choice of � such that �1 < 1 and �2 < 1, the MMDP has W
⇤
N =

max{�1,�2} < 1 =W
⇤
A. In this MMDP, there does not exist a Markov policy that is optimal for

the adaptive problem. ⇤

1

2

3

4

5

6

! = 1 ! = 2 ! = 3 ! = 4

' = 1

' = 1

' = 1

' = 1

' = 1

' = 2

' = 1

' = 2

(!(5) = 1

(!(6) = 0

Figure EC.4 An example of an MMDP for WA >WN . The MMDP shown has six states, two actions, and two

models. Each arrow represents a transition that occurs with probability 1 for the corresponding

action labeling the arrow. Solid lines represent transitions in model 1 and dashed lines represent

transitions in model 2. There are no intermediate rewards in this MMDP, but there is a terminal

reward of 1 if state 5 is reached.

Proposition EC.2. Any MMDP can be recast as a special case of a POMDP such that the

maximum weighted value of the MMDP is equivalent to the expected discounted rewards of the

POMDP.

Proof of Proposition EC.2. Let (T ,S,A,M,⇤) be an MMDP. From this MMDP, we can con-

struct a POMDP in the following way. The core states of the POMDP will be constructed as
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state-model pairs, (s,m) 2 S ⇥M. The action space for the POMDP is the same as the action

space for the MMDP, A. We construct the rewards for the POMDP, denoted r
P , as follows:

r
P ((s,m), a) := �mr

m(s, a),8s2 S,m2M, a2A.

The transition probabilities among the core states are defined as follows:

p((s0,m0)|(s,m), a) =

(
p
m(s0|s, a) if m0 =m,

0 otherwise.

This observation space of the POMDP has a one-to-one correspondence to the state space of the

MMDP. We will label the observation space for the POMDP as O := {1, . . . , S} where S := |S|. In

this POMDP, the observations give perfect information about the state element of the state-model

pair, but no information about the model element of the state-model pair, and the conditional

probabilities are defined accordingly:

q(s|(st,m)) =

(
1 if s= st,

0 otherwise.

This special structure on the observation matrix ensures that the same policy is evaluated in each

model of the MMDP. By the construction of the POMDP, any history-dependent policy that acts on

the sequence of states (observations in the case of the POMDP) and actions (s1, a1, s2, . . . , at�1, st)

will have the same expected discounted rewards value in the POMDP as the weighted value for

the MMDP. ⇤
Remark EC.2. If the state-model pairs that make up the POMDP core state space are ordered

as (1,1), . . . , (S,1), (1,2), . . . , (S,2), . . . , (1,M), . . . , (S,M), then the transition probability matrix

has the following block diagonal structure:

Pt(at) :=

2

664

P
1
t (at) 0 . . . 0
0 P

2
t (at) . . . 0

...
...

. . .
...

0 0 . . . P
M
t (at)

3

775 .

The block diagonal structure of the transition probability matrix implies that the underlying

Markov chain defined on the core states is reducible.

Proposition EC.3. The adaptive problem for MMDPs is PSPACE-hard.

Proof of Proposition EC.3. This result follows from the original proof of complexity for

POMDPs from Papadimitriou and Tsitsiklis (1987). Although the MMDP is a special case of a

POMDP, we illustrate that the special structure in the observation matrix and transition prob-

abilities is precisely the special case of POMDPs used in the original complexity proof. To aid
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the reader’s understanding, we reproduce the proof here with the modifications to make it specific

to MMDPs. We also provide Figure EC.5 which illustrates the construction of an MMDP from

the quantified satisfiability problem with two clauses for two existential variables and a universal

variable.

First, we assume that �m 2 (0,1) 8m2M. To show that the adaptive weighted value problem for

MMDPs is PSPACE-hard, we reduce QSAT to this problem. We start from any quantified boolean

formula (Q1u1)(Q2u2) · · · (Qnun)F (u1, u2, . . . , un) with n variables, n quantifiers (i.e, Qi is 9 or 8),

and m clauses C1,C2, . . . ,Cm. We construct an MMDP with m models such that its optimal policy

has weighted value of 0 or less if and only if the formula is true. The MMDP is constructed as

follows: for every variable ui, we will generate states corresponding to two decision epochs 2i� 1

and 2i. In decision epoch 2i� 1, there will be two states, A0
i and Ai. In decision epoch 2i, there

will be four states, T 0
i , F

0
i , Ti, and Fi. After the last decision epoch (at time 2n+1), there will be

2 states, An+1 and A
0
n+1. The initial state is A

0
1 for every model. The action space is constructed

as follows: for every existential variable ui, the states A
0
i and Ai each have two possible actions,

true (T) and false (F), which are elements of the action set {T,F}. All other states have only

one action. The models of the MMDP correspond to the clauses in the quantified formula. Each

model’s transition probabilities are defined as follows: for every existential variable, the transitions

out of A0
i and Ai are deterministic according to the action taken. For state A0

i (Ai), selecting action

true will ensure that the next state is T 0
i (Ti) and selecting action false will ensure that the next

state is F
0
i (Fi). For every universal variable ui, the transitions from A

0
i (Ai) to T

0
i (Ti) and from

A
0
i (Ai) to F

0
i (Fi) occur with equal probability. The di↵erences between the models’ transition

probabilities occur depending on the negation of variables within the corresponding clause. For

every variable ui that is not negated in the clause, transitions occur deterministically from T
0
i to

Ai+1, F 0
i to A

0
i+1, Ti to Ai+1, and Fi to A

0
i+1. For every variable ui that is negated in the clause,

transitions occur deterministically from T
0
i to A

0
i+1, F

0
i to Ai+1, Ti to A

0
i+1, and Fi to Ai+1. The

initial state is A0
1 for every model. There is a terminal cost of 1 upon reaching state A

0
n+1 and no

cost for reaching An+1. Other than the terminal costs, there are no costs associated with any of

the states or actions.

Now that we have constructed the MMDP, we must show that there exists a policy that achieves

a weighted value of zero if and only if the statement is true. First, we show that if there exists a

history-dependent policy with a weighted value of zero, then the statement must be true. Consider

that such a policy exists. Recall that for every model, we start in state A
0
1. In order to achieve a

weighted value equal to zero, the policy must ensure that we end in state An+1 for every model. If

not, we incur a cost of 1 at time 2n+1 in one of the models m2M which has weight �m > 0, and

thus the weighted value is not zero. If we were able to reach state An+1 in every model, this would
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imply that our policy is able to select actions for states A0
i and Ai for existential variables ui based

on observation of the previous universal variables in a way that the clause is satisfied. Since this

occurs for all models, each clause must be true.

Next, we show that if the quantified formula is true, then there exists a policy that achieves a

weighted value of zero. If the quantified formula is true, this means that there exist choices of the

existential variables that satisfy the statement. For every existential variable ui, one can select the

appropriate action in {T,F} so that based on the values of the previous universal variables, the

statement is still true. This corresponds to a policy that will end up in state An+1 with probability

one for all models. Thus, this policy achieves a weighted value equal to zero. ⇤
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(a) The transitions probabilities in Model 1 represents the first clause over the

quantified variables, u1_ !u2_ !u3.
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(b) The transitions probabilities in Model 2 that represents the second clause over

the quantified variables, u1 _u2 _ u3.

Figure EC.5 An illustration of how the quantified formula 9u18u29u3(u1_ !u2 _ u3) ^ (u1 _ u2_ !u3) can be

represented as an MMDP. Solid lines represent transitions that occur with probability. Dashed lines

represent transitions that occur out of the state with equal probability. Transitions corresponding

to the actions true and false are labeled with T and F , respectively. State A0
i represents the case

where the clause is false at this point and states Ai represents the case where the clause is true at

this point.
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Proposition EC.4 The information state, bt, has the following properties:

1. The value function is piece-wise linear and convex in the information state, bt.

2. bt(s,m)> 0) bt(s0,m) = 0, 8s0 6= s.

3. The information state as defined above is Markovian in that the information state bt+1 depends

only on the information state and action at time t, bt and at respectively, and the state observed

at time t+1, st+1.

Proof of Proposition EC.4.1. We will prove this by induction. At time T +1, the value function

is represented as

vT+1(bT+1) = b
0
T+1rT+1,8bT+1 2B,

which is linear (and therefore piecewise linear and convex) in bT+1. Now, we perform the induc-

tion step. The inductive hypothesis is that the value function at t + 1 is piecewise linear and

convex in bt+1 and therefore can be represented by set of hyperplanes B such that vt+1(bt+1) =

max�t+12Bt+1 �
0
t+1bt+1.

vt(bt) =max
at2A

8
<

:b
0
trt(at)+↵

X

st+12S

�(st+1|bt, at)vt+1(T (bt, at, st+1))

9
=

;

= max
aT2A

8
<

:b
0
trt(at)+↵

2

4
X

st+12S

 
X

m02M

X

st2S

p
m0
(st+1|st, at)bt(st,m

0)

!
· vt+1(T (bt, at, st+1))

3

5

9
=

;

=max
at2A

8
<

:
X

st2S

X

m2M

r
m
t (st, at) · bt(st,m)+↵

X

st+12S

X

m2M

max
�t+12Bt+1

�t+1(st+1,m) ·
X

st2S

p
m(st+1|st, at)bt(st,m)

9
=

;

=max
at2A

8
<

:
X

st2S

X

m2M

0

@r
m
t (st, at)+

X

st+12S

max
�t+12Bt+1

�t+1(st+1,m) · pm(st+1|st, at)

1

A bt(st,m)

9
=

; ,

(EC.14)

which is piece-wise linear and convex in bt. Therefore, we can represent (EC.14) as the maximum

over a set of hyperplanes:

vt(bt) = max
�t2Bt

{�
0
tbt} ,

where

Bt := {�t : �t = rt(a)+↵P
0
t (a)�t+1, a2A,�t+1 2Bt+1}.

⇤
Proof of Proposition EC.4.2 This follows directly from the definition of the information state

EC.1 and the definition of the conditional probabilities in (C). To elaborate, we prove this by
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induction: In the initial decision epoch, s1 is observed and so for every m 2M, only the state

corresponding to (s1,m) can have a positive value. Now, suppose that at time t, only |M| values

of bt are positive and they correspond to the state-model pairs (s,m) with s= st. Then, the DM

selects an action at and a new state, st+1, is observed. At this point, only states (s,m) with s= st+1

can have positive values. ⇤
Proof of Proposition EC.4.3 Next, we show that the information state can be e�ciently trans-

formed in each decision epoch using Bayesian updating. That is, we aim to show that the informa-

tion state is Markov in that the information state at the next stage only depends on the information

state in the current stage, the action taken, and the state observed in the next stage:

bt+1 = T (bt, at, st+1) (EC.15)

Consider the information state at time 1 at which point state s1 has been observed. This infor-

mation state can be represented by the vector with components:

b1(s,m) =

8
<

:

�mµ
m
1 (s)P

m02M �mµ
m0
1 (s)

if s= s1,

0 otherwise.

Now, suppose that the information state at time t is bt, the decision-maker takes action at 2A, and

observes state st+1 at time t+1. Then, every component of the information state can be updated

by

bt+1(s,m) =

(
T

m(bt, at, st+1) if s= st+1,

0 otherwise,

where

T
m(bt, at, st+1) :=

P
st2S p

m
t (st+1|st, at)bt(st,m)

P
m02M

P
st2S p

m0
t (st+1|st, at)bt(st,m0)

,

which follows from the following:

bt+1(st+1,m) = P (m | ht+1)

= P (m | st+1, at, ht) (EC.16)

=
P (m,st+1 | at, ht)

P (st+1 | at, ht)
(EC.17)

=
P (st+1 |m,at, ht)P (m | at, ht)P

m02M P (st+1 |m,at, ht)P (m | at, ht)
(EC.18)

=
P (st+1 |m,at, ht)P (m | ht)P

m02M P (st+1 |m,at, ht)P (m | ht)
(EC.19)

=

P
st2S p

m
t (st+1 | st, at)1(st)P (m | ht)P

m02M
P

st2S p
m0
t (st+1 | st, at)1(st)P (m0 | ht)

(EC.20)

=

P
st2S p

m
t (st+1 | st, at)bt(st,m)

P
m02M

P
st2S p

m0
t (st+1 | st, at)bt(st,m0)

, (EC.21)
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if st+1 2 S is in fact the state observed at time t+1. (EC.16) follows from the definition of ht+1,

and (EC.17) and (EC.18) follow from the laws of conditional probability and total probability.

(EC.19) follows because the action is selected independently of the context. (EC.20) follows from

the definition of pm(st+1 | st, at) and an indicator which denotes the state at time t, and (EC.21)

follows from the definition of the information state at time t. We define the operator T such that

the element at (s,m) in T (bt, at, st+1) is exactly T
m(bt, at, st+1) if s= st+1 and 0 otherwise.

Therefore, the information state is Markovian in that the information state at time t+ 1 only

relies on the information state at time t, the action taken at time t, and the state observed at time

t+1. ⇤
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Appendix D: Additional results and computational experiments

In this appendix, we provide more results from our computational experiments and introduce

another set of test instances that we use to compare the Weight-Select-Update (WSU), maen value

problem (MVP), and mixed-integer programming (MIP) solution methods. We also provide more

results from the case study described in Section 7.

D.1. Additional results from the random instance computational experiments

Figure EC.6 demonstrates the run-time of the three proposed solution methods on the various sizes

of the random test instances described in Section 6 in the main body.

(a) Decision epochs (b) States (c) Actions (d) Models

Figure EC.6 Boxplots showing the e↵ect of the number of decision epochs, states, actions, and models on com-

putation time in the random instances. A base case problem size of 4 states, 4 actions, 4 models,

and 4 decision epochs was used. In (a), only the number of decision epochs was varied (from 3 to

5). In (b), only the number of states was varied (4 to 7). In (c), only the number of actions was

varied (4 to 7). In (d), only the number of models was varied (from 4 to 10).

Each algorithm was run on a set of 90 instances of the corresponding problem size. We observe

that computation time to solve the MIP increases most quickly with respect to the number of

decision epochs than the number of models. However, we see that the computation times required

for the WSU and MVP heuristics increase at a much slower rate.

D.2. Additional computational experiments

We now describe a second set of computational experiments comparing the WSU, MVP, and MIP

solution methods. These test instances are based on a small MDP for determining the most cost-

e↵ective HIV treatment policy (Chen et al. 2017).
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D.2.1. Test instances We also consider a second set of test instances which matches the medical

decision making context of our case study. The example we consider has been used many times in

the medical decision making literature for illustrative purposes to demonstrate various methods.

In this set of experiments, we consider an MDP for determining the optimal timing of treatments

for HIV. In the MDP, HIV is characterized according to 4 health states: Mild, Moderate, Severe,

or Dead. The patient transitions from the less severe states to the more severe states according to

a Markov chain. The DM can choose to start the patient on one of three treatments: Treatment

A, Treatment B, and Treatment C. Treatment A is the least e↵ective but also the least expensive

while Treatment C is the most e↵ective but comes at the highest cost. Chen et al. (2017) provides

a summary table of parameter values for this MDP as well as some sampling distributions for

each parameter. In our experiments, we construct an MMDP by sampling parameters from the

corresponding distributions. We consider 10, 20, and 30 models in the MMDP and vary the number

of decision epochs from 5 to 10 to explore how the proposed methods perform.

D.2.2. Results Figure EC.7 demonstrates the run-time of the three proposed solution methods

on the medical decision making instances. We find that the MVP and WSU were able to solve these

instances relatively quickly (under 0.1 CPU seconds for each instance) while the average time to

solve the MIP noticeably increases as the size of the number of decision epochs increases (from 1.73

CPU seconds on average for 4 decision epochs to 141.84 CPU seconds for 6 decision epochs). For

the instances with 6 decision epochs, the MIP computation time rose from 21.73 CPU seconds on

average for 5 models to 111.04 CPU seconds for 15 models. Comparing WSU and MVP in terms of

optimality gap, we observe that for these test instances, both WSU and MVP perform quite well

with maximum optimality gaps under 0.45% and 0.69% respectively. These results suggest that

the MVP and WSU heuristics may be suitable for generating solutions to medical decision making

instances. The case study in Section 7 considers a larger medical decision making problem in the

context of preventive blood pressure and cholesterol management.

D.3. Additional results from the case study of blood pressure and cholesterol management

We now discuss the policies associated with the solution generated using WSU when the weights

are treated as an uninformed prior on the models for the case study described in Section 7.

Figures EC.8(a) and EC.8(b) illustrate medication use for male and female patients, respectively,

under three di↵erent policies: the ACC/AHA model’s optimal policy, the FHS model’s optimal

policy, and a policy generated via WSU with �F = �A = 50%. These figures illustrate the probability

that a patient who follows the specified policy from age 54 will be on the corresponding medication,

conditioned on the patient being alive, as a function of their age. For men, the optimal policy for

FHS model and the optimal policy for the ACC/AHA model agree that all men should start statins
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(a) Computation time vs. number of

decision epochs

(b) Computation time vs. number of

models

Figure EC.7 Boxplots showing the e↵ect of the number of decision epochs and number of models on computation

time in the medical decision making instances. Each algorithm was run on a set of 100 instances

of the corresponding problem size. We observe that computation time to solve the MIP increases

more quickly with respect to the number of decision epochs than the number of models. However,

we see that the computation time required for the WSU and MVP heuristics increases at a much

slower rate.

immediately, which could be explained by the relatively low disutility and high risk reduction of

statins in both models. However, the models disagree in the use of fibrates and the 4 classes of blood

pressure medications. The optimal policy for the ACC/AHA model suggests that all men should

start fibrates immediately, suggesting that cholesterol control is important in the ACC/AHAmodel.

However, fibrates are less commonly prescribed under the FHS model’s optimal policy with about

two-thirds of men on this medication by age 65. The policy generated with WSU agrees with the

ACC/AHA policy’s more extensive use of fibrates which may suggest that focusing on cholesterol

control could be a good strategy in both models. Among the blood pressure medications, there are

some disagreements between the optimal policies of the two models, with the most distinct being

for the use of calcium channel blockers. This is likely to be due to the relatively high disutility (from

side e↵ects of calcium channel blockers) and low risk reduction associated with this medication.

In the ACC/AHA model, the risk reduction of calcium channel blockers is worth the disutility

in many cases, but in the FHS model, there are few instances in which the disutility associated

with this medication is worth the gain in QALYs. The policy generated with WSU generates a

policy that strikes a balance between these two extremes. While the di↵erences are not quite as

extreme, WSU also generates a policy that balances the utilization of thiazides prescribed by each

model’s optimal policy. For the other classes of blood pressure medications, both models agree

that these medications should be commonly used for men, but disagree in the prioritization of

these medications. The ACC/AHA model tends to utilize these medications more at latter ages,
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(b) Female

Figure EC.8 The percentage of patients who have not died or had an event by the specified age that will be on a

medication under each of three di↵erent treatment policies: the ACC/AHA model’s optimal policy,

the FHS model’s optimal policy, and a policy generated via WSU with �F = 50%, as evaluated in

the FHS model.
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while the FHS model starts more men on these medications early. Interestingly, WSU suggests that

starting ACE/ARBs and beta blockers earlier is a good strategy in both models.

For women, the optimal policy for FHS and the optimal policy for ACC/AHA agree that all

women should be on a statin by age 57. The models mostly agree that relatively few women should

start taking ACE/ARBs or calcium channel blockers. These results are not surprising as statins

have low disutility and high risk reduction in both models, making them an attractive medication

to use to manage a patient’s cardiovascular risk, while calcium channel blockers and ACE/ARBs

are the two medications with lowest expected risk reduction in both models. The models disagree

in how to treat women with thiazides, beta blockers, and fibrates. Beta blockers and thiazides have

a higher estimated risk reduction in the FHS model than in the ACC/AHA model, which may be

why these medications are considered good candidates to use in the FHS model but not in the

ACC/AHA model. WSU finds a middle ground between the use of thiazides and beta blockers in

the two models, but suggests more use of ACE/ARBs for some women.
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Appendix E: Case study with multiple natural history models

In this appendix, we provide an example of the case study presented in Section 7 but modified to

include more than two models. As in Section 7, the MMDP presented here includes two possible

models for cardiovascular risk. However, we now also consider three natural history models of

blood pressure and cholesterol progression. The two models of cardiovascular risk are the FHS risk

model (Wolf et al. 1991, Wilson et al. 1998) and the ACC/AHA risk model (Go↵ et al. 2014),

as before. These are the most well-known risk models used by physicians in practice. The three

models of blood pressure and cholesterol progression include the maximum likelihood estimate from

longitudinal data plus two other scenarios with quicker and slower progression. We may view the

scenarios to be based on sensitivity analysis relative to our base case model adapted from Mason

et al. (2014). The “Basecase Progression” model was estimated from empirical data of Denton et al.

(2009). Figure EC.9 illustrates how the “Quick Progression” and “Slow Progression” scenarios

relate to the basecase scenario. In the “Quick Progression” scenario, all transition probabilities

that corresponding to a worsening of the health condition (e.g., low SBP to high SBP) are scaled

by � = 150% and all transitions corresponding to an improvement of health (e.g., high SBP to

low SBP) are scaled by ↵ = 50%. Analogously, in the “Slow Progression” scenario all transition

probabilities corresponding to a worsening of the health condition are scaled by � = 50% and

improving transitions are scaled by ↵= 150%. These two scenarios – slow and quick progression –

may be viewed as models defined by di↵erent patient groups with di↵ering physiological factors or

phenotypes governing disease progression. We create each model of the final MMDP by selecting

one of the two cardiovascular risk models and one of the nature history models. Therefore, this

version of the MMDP has 4099 states, 64 actions, 20 decision epochs, and 6 models each with equal

weight.

E.1. Results

Using the MMDP described above, we evaluated the performance of the WSU policy relative to

each individual models’ policy as well as a Rectangular Max-Min (RMM) formulation. The RMM

is the classical max-min finite scenario model of Nilim and El Ghaoui (2005) wherein the MMDP is

projected onto an (s, a)-rectangular ambiguity set. More information about the RMM formulation

can be found in Appendix E.2.

Figure EC.10 shows the weighted QALYs gained relative to no treatment for the WSU heuristic

and for the individual policies corresponding to each model of the MMDP. These results show that

using the WSU heuristic to generate a solution to the WVP can provide a policy that performs

better than each of the policies found by independently solving individual models of the MMDP.

Figure EC.11 shows the performance of the WSU policy and the RMM policy in terms of the

weighted value across the models and also in the worst-case model for each policy. Although
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Figure EC.9 An illustration of the natural history models used in the cardiovascular disease (CVD) case study.
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Figure EC.10 The weighted QALYs gained relative to no treatment (reported as QALYs per 1000 persons)

reported for each of the individual models’ optimal policies and the policy from the WSU heuristic.

the WSU is not explicitly accounting for worst-case outcomes, we observe that the WSU policy

outperforms the RMM policy in terms of worst-case. The reason for this is that, by projecting the

MMDP onto a rectangular ambiguity set in RMM, the DM has to protect against a worst case in

which the model of the MDP is allowed to change across states, actions, and decision-epochs. The

worst case that the DM is protecting against is not a realistic representation of what is happening

in the worst-case model and so this policy does not perform well. The WSU policy also performs

better in terms of the weighted value case. These findings suggests that a weighted approach to

parameter ambiguity might outperform a rectangular ambiguity set approach.
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Figure EC.11 The weighted QALYs gained relative to no treatment over all 6 models and worst-case QALYs

gained relative to no treatment over all 6 models (reported as QALYs per 1000 persons) for the

weighted value problem policy (found with WSU) and the RMM policy.

Figure EC.12(a) illustrates the percentage of men that would be on a given medication by a par-

ticular age under the WSU heuristic’s policy and under each policy found by solving an individual

model of the MMDP. The lines with circular markers represent the optimal policies corresponding

to each model that considers the FHS risk model and the lines with triangular markers represent

the optimal policies corresponding to each model that considers the ACC/AHA risk model. The

color indicates which model of the transitions among the health states was used. The black line

represents the medication usage corresponding to the WSU policy. For cholesterol control, there is

little disagreement about whether or not men should start statins right away which is consistent

with findings in the medical literature that suggest statins are highly e↵ective at lowering risk of

cardiovascular events. There is more disagreement on the use of fibrates. The ACC/AHA models

all suggest that all men should start fibrates immediately, but the FHS models indicate that not all

men should start this drug by age 75. The WSU policy agrees with the ACC/AHA models in this

case. In terms of blood pressure medication use, the WSU policy recommends initiation of beta

blockers and ACE/ARBS that is similar to that suggested by the FHS models. However, the WSU

policy suggests lower levels of thiazide initiation that the FHS models. Each of the policies agree

that calcium channel blockers should be not be used as often which makes sense given that these

drugs are the least e↵ective in this model with similar disutility. Relative to each of the models,

the WSU policy suggests a similar strategy for cholesterol control as the ACC/AHA models while

more aggressive use of thiazides than the FHS models. For most blood pressure medications, the

initiation suggested by WSU is in line with that suggested by the FHS models and more aggressive

than that suggested by the ACC/AHA models.
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Figure EC.12 The percentage of patients who have not died or had an event by the specified age that will

be on a medication under di↵erent policies. We consider each model’s individual policy and the

policy generated via WSU. The color of the line indicates the natural history model was used and

the marker indicates the risk model. WSU is denoted by the black line with the X marker. The

medication usage is evaluated in the (FHS, Baseline) model.
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Figure EC.12(b) illustrates medication usage for women. Overall, the WSU policy is more aggres-

sive than the optimal policies for the FHS models and the slow progression ACC/AHA models in

terms of cholesterol control. However, the WSU agrees with the ACC/AHA policies in terms of low

initiating rates of blood pressure medications. The reason for this is that, for many women, blood

pressure medications lead to side e↵ects without reducing risk of CVD events in the ACC/AHA

model. Therefore, using no medication appears like a better treatment option in this model. WSU

protects against this by not selecting an action that would decrease the weighted value for a par-

ticular state.

In summary, the results of this case study illustrate how the policy generated by WSU trades

o↵ performance with respect to multiple models of CVD including two statistical models of risk

of heart events (ACC/AHA and FHS) and three di↵erent models of the natural history of blood

pressure and cholesterol. Our findings suggest that the WSU heuristic recommends less aggressive

cholesterol treatment for men and more aggressive use of the blood pressure medication class of

thiazides than the ACC/AHA guidelines. For women, there are more serious conflicts concerning the

recommendations for the models indicating that blood pressure therapy appears beneficial in the

FHS models but harmful when using the ACC/AHA risk estimator to estimate risk. Therefore, the

WSU policy recommends the use of cholesterol medications rather than blood pressure medications

for women. This information could be useful for informing policy-makers who are tasked with

designing screening and treatment protocols in the face of conflicting information from the medical

literature.

E.2. Rectangular Max-Min Formulation

In this section, we provide more detail about the RMM formulation. Procedure 4 solves a robust

MDP formulation of the MMDP using the finite scenario model describe in Nilim and El Ghaoui

(2005). To guarantee a tractable robust MDP formulation, we employ the commonly used (s, a)-

rectangularity property which imposes independence between rows of the transition probability

matrix. To satisfy the (s, a)-rectangularity property, we project the parameters in the MMDP onto

an (s, a)-rectangular ambiguity set. The projection is done by constructing a ambiguity set that is

independently constructed for each (s, t, a)-tuple for (s, t, a)2 S ⇥ T ⇥A:

P =⇥s2S,a2A,t2T Pt(s, a)

and

R =⇥s2S,a2A,t2T Rt(s, a)

with

Rt(s, a) =
�
r
1
t (s, a), r

2
t (s, a), . . . , r

|M|
t (s, a)

 
,8s2 S, t2 T , a2A
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Procedure 4 The RMM algorithm.
Input: MMDP

Let vWC
T+1(sT+1) =minm2M{r

m
T+1(sT+1)}

t T

while t� 1 do

for Every state st 2 S do

⇡
WC
t (st) argmax

at2A

n
min
m2M

⇣
r
m
t (st, at)+

X

st+12S

p
m
t (st+1|st, at)v
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t+1 (st+1)

⌘o
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n
min
m2M

⇣
r
m
t (st, at)+

X

st+12S

p
m
t (st+1|st, at)v

WC
t+1 (st+1)

⌘o

end for

t t� 1

end while

Output: The policy ⇡
WC = (⇡WC

1 , . . . ,⇡
WC
T )2⇧MD

and

Pt(s, a) =
�
p
1
t (·|s, a), p

2
t (·|s, a), . . . , p

|M|
t (·|s, a)

 
,8s2 S, t2 T , a2A.

The resulting ambiguity set is discrete and (s, a)-rectangular. The goal of the DM is then to solve

the robust MDP formulation:

max
⇡2⇧

min
P2P,R2R

E⇡,P,R

"
TX

t=1

rt(s,⇡t(s))+ rT+1(s)

#
. (EC.22)

By construction, the ambiguity set has the (s, a)-rectangularity property so (EC.22) can be solved

e�ciently using Procedure 4.
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