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A Additional Notes on Conditional Value-at-Risk

It is well-known that there exists an optimal solution of (2), where η is equal to the α-

quantile, also known as the value-at-risk at confidence level α, denoted by VaRα(Ξ). Accord-

ingly, the w variables provide the excess values with respect to the threshold of VaRα(Ξ).

Without loss of generality assume that ξ1 ≤ ξ1 ≤ · · · ≤ ξ|S|, and let s∗ = min{s ∈

S :
s∗∑
s=1

ps ≥ α}. Then, there exists an optimal solution, where η = VaRα(Ξ) = ξs
∗

and

the optimal objective function value is calculated as

ξs
∗

+
1

1− α

|S|∑
s∗+1

ps(ξs − ξs∗) =
1

1− α
((1− α−

|S|∑
s∗+1

ps)ξs
∗

+

|S|∑
s∗+1

psξs).

This expression shows that CVaR of a random variable corresponds to a weighted sum

of the least favorable outcomes that are larger than or equal to the α-quantile of that

random variable. This interpretation can be easily derived from the following knapsack

type representation of CVaR, which is equivalent to the linear programming dual of (2):

CVaRα(Ξ) = max

{
1

1− α
∑
s∈S

υsξs :
∑
s∈S

υs = 1− α, 0 ≤ υs ≤ ps ∀ s ∈ S

}
.

B Illustrative Examples

Example 1. Consider a setting with four demand nodes and two open facilities, and sup-

pose that the pre-allocation decisions, and the allocation decisions along with the demand

values under a particular scenario s ∈ S are given as in Table 4. By definition of ζ(1) and

Table 4: Illustrative example for calculating the dispersion measures of our particular choice.

Demand

node (i) xi1 xi2 ysi1 ysi2 dsi ζ
(2)
si1 = dsi |ysi1 − xi1| ζ

(2)
si2 = dsi |ysi2 − xi2| ζ

(1)
si = ζ

(2)
si1 + ζ

(2)
si2

1 0.5 0.5 1 0 120 60 60 120
2 0.5 0.5 0.3 0.7 200 40 40 80
3 0.5 0.5 0 1 300 150 150 300
4 0.5 0.5 0.2 0.8 400 120 120 240

ζ(2), we obtain ζ
(1)
s = (120, 80, 300, 240)> and ζ

(2)
s = (60, 40, 150, 120, 60, 40, 150, 120)>.

Setting ᾱ = 0.50 we specify k′ = b|I|(1− ᾱ)c = 2 and k = b|I||J |(1− ᾱ)c = 4, and then

averaging the largest two (resp., four) components of ζ
(1)
s (resp., ζ

(2)
s ) provides us with

‖ζ(1)
s ‖CVaR0.5 = (300 + 240)/2 = 270 and ‖ζ(2)

s ‖CVaR0.5 = (150 + 150 + 120 + 120)/4 = 135.
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Example 2. Let us consider a simple setting with a single demand point (node 1) having a

deterministic demand of 100 and two candidate locations for the facilities with a fixed setup

cost of 1000. Suppose that the unit cost of allocating the demand to facility j is a random

variable with two equally likely outcomes: cs1j = 1 if j = s, and cs1j = 40 otherwise, for

j, s = 1, 2. It is easy to see that, for the underlying unrestricted problem, there exists an

optimal solution where each demand point is fully assigned to the closest open facility under

each scenario; we refer to this structure as the “single-sourcing” property. Accordingly, for

our simple problem instance, the optimal solution of the underlying unrestricted model is to

locate a facility at both candidate locations, and allocate the demand to the facilities at node

1 and node 2 under scenarios 1 and 2, respectively. The associated expected total cost is

calculated as 1000∗2+(0.5∗100∗1+0.5∗100∗1) = 2100. Here, our main concern is the ner-

vousness caused by the significant difference in the scenario-dependent allocation decisions;

each demand is fully served by two different facilities under two scenarios. We cannot know

in advance which scenario will occur in the future, and therefore, it is not straightforward

to take preparedness actions for such very different potential allocation plans. One possible

option is to make preparedness decisions based on the expected demand to be satisfied by

each facility (50 for each facility in our example). However, even in this case, there is

fifty percent deviation in allocation decisions under each scenario, leading to a nervousness

problem in the system.

Following our modeling approach, we introduce the scenario-independent pre-allocation

decisions (x11 and x12) and opt for limiting the deviations of the scenario-dependent alloca-

tion vectors ((ys11, y
s
12), s = 1, 2) from the pre-determined counterpart ((x11, x12)). To this

end, suppose that we use the |I|-dimensional deviation vector ζ(1), whose single component

takes the value of ζ
(1)
s1 = d1(|ys11 − x11| + |ys12 − x12|) under scenario s = 1, 2. For this

one-dimensional vector, setting α = 0.90, the corresponding constraint (6) simply becomes

CVaR0.9(ζ
(1)
1 ($)) ≤ ε. The threshold value ε depends on the deviation tolerance of the de-

cision maker: if it is very small, a scenario-independent solution might be observed, on the

other hand, if it is sufficiently large, the optimal solution of the unrestricted model might

be obtained. For example, we obtain the following solutions for this problem instance under

different threshold values:

• For a sufficiently small value of ε: the optimal solution is to locate only one of the

facilities, and assign the demand point to that facility under each scenario. The

associated expected total cost is calculated as 1000+0.5∗100∗1+0.5∗100∗40 = 3050.

In this case, we have the single-sourcing structure for the decisions in both stages.

• For a sufficiently large value of ε: the optimal solution coincides with that of the

underlying unrestricted model (discussed above) with the following pre-determined al-

location decisions x11 = x12 = 0.5. The associated expected total cost is equal to 2100.
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In this case, we have the single-sourcing structure only for the second-stage decisions.

• For the ε values between the previously listed two limiting ones, we in general do

not have the single-sourcing structure in any stage. The optimal solution suggests to

open both facilities with the following additional allocation decisions: x11 = 0.5 − a,

x12 = 0.5 + a, y1
11 = 2a, y2

12 = 1 − 2a for 0 ≤ a ≤ 0.50. The value of the variable

a depends on the threshold parameter ε. The associated expected total cost would be

between 2100 and 3050. Note that this particular form of the solution is just for our

specific problem instance, and it cannot be generalized.

C Omitted Theorem and Proofs

C.1 Proof of Theorem 1

Proof. It is easy to see that if dsi = 0 or vsi + η̄s = 0, then the solution (ysi , r
s
i ) where

ysij = xij and rsij = 0 for all j ∈ J is optimal to the primal subproblem. It is also easy to

prove that the dual solutions given in 1a and 1b are optimal for the dual subproblem as the

objective function values of these dual solutions are equal to the primal objective function

values.

For the second case, we first prove that the defined solution (ysi , r
s
i ) is feasible for the

primal subproblem. It is easy to check that the constraints (11b) and (11c) are satisfied.

Now consider the case 2a. Clearly, ysi is nonnegative. In addition, rsi,π(1) = dsi (1 −
xi,π(1)) and rsij = dsixij for all j ∈ J \ {π(1)}. Then, by the specified condition of

(vsi + η̄s) /2dsi ≥
∑

j∈J ′\{π(1)} xij , we have
∑

j∈J r
s
ij = dsi (1− xi,π(1)) +

∑
j∈J ′\{π(1)} d

s
ixij =

2dsi
∑

j∈J ′\{π(1)} xij ≤ vsi + η̄s, and the constructed solution (ysi , r
s
i ) is feasible. It is easy to

verify the feasibility of the dual solution. It is also easy to see that the objective function

values of the primal and dual solutions coincide, proving that they are optimal to their

corresponding problems.

Finally, consider the case 2b. By the choice of j′, we know that
∑

j∈J ′:π−(j)≥π−(j′) xij ≥
(vsi + η̄s) /2dsi . Then it is easy to verify that ysi is nonnegative. Now we compute rsi :

rsi,π(1) = (vsi + η̄s) /2, ri,j′ = (vsi + η̄s) /2−dsi
∑

j∈J ′:π−(j)>π−(j′) xij , r
s
ij = dsixij for all j ∈ J ′

with π−(j) > π−(j′), and rij = 0 otherwise. Hence, we have
∑

j∈J r
s
ij = (vsi + η̄s) /2 +

(vsi + η̄s) /2− dsi
∑

j∈J ′:π−(j)>π−(j′) xij +
∑

j∈J ′:π−(j)>π−(j′) d
s
ixij = vsi + η̄s.

Now we prove that the defined dual solution is feasible. It is easy to verify that the

constraints (12c) and the nonnegativity restrictions are satisfied. We will show that the

dual solution also satisfies the constraints (12b). For j ∈ J \ J ′, if (csi,π(1) + csij′)/2 ≥ csij ,

then γsi − βsij = dsi (c
s
i,π(1) + csij′)/2 − dsi ((c

s
i,π(1) + csij′)/2 − csij) = dsi c

s
ij . This is equal

to dsi (c
s
ij + λsij − ρsij) since λsij = ρsij = 0. If (csi,π(1) + csij′)/2 < csij , then βsij = 0 and
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γsi − βsij = dsi (c
s
i,π(1) + csij′)/2 < dsi c

s
ij . In both cases, γsi − βsij ≤ dsi c

s
ij and this is equal to

dsi (c
s
ij + λsij − ρsij) since λsij = ρsij = 0.

For j ∈ J ′ with π−(j) < π−(j′), γsi − βsij = dsi (c
s
i,π(1) + csij′)/2 and csij + λsij − ρsij =

csij + (csij′ − csij)/2− (csij − csi,π(1))/2 = (csi,π(1) + csij′)/2. Now it is easy to see that γsi −βsij ≤
dsi (c

s
ij + λsij − ρsij).
Finally, for j ∈ J ′ with π−(j) ≥ π−(j′), using the relation csij′ ≤ csij , we have

γsi − βsij = dsi
csi,π(1) + csij′

2
= dsi

(
csi,π(1) + csij′ + csij − csij

2

)
≤ dsi

(
csi,π(1) + csij + csij − csij′

2

)
.

The last quantity is equal to dsi (c
s
ij + λsij − ρsij). This shows that the dual solution satisfies

the constraints (12b) and proves its feasibility.

Now we compute the objective function value of the dual solution:

− (vsi + η̄s)ψsi + γsi −
∑
j∈J

zjβ
s
ij +

∑
j∈J

dsixij
(
ρsij − λsij

)
= − (vsi + η̄s)

csij′ − csi,π(1)

2
+ dsi

csij′ + csi,π(1)

2

+
∑

j∈J ′ : π−(j)<π−(j′)

dsi

(
csij −

csij′ + csi,π(1)

2

)
xij +

∑
j∈J ′ : π−(j)≥π−(j′)

dsi
csij′ − csi,π(1)

2
xij

= dsi
csi,π(1)

2

xi,π(1) −
∑

j∈J ′ : π−(j)>1

xij +
vsi + η̄s

dsi
+ 1

+
∑
j∈J ′:

1<π−(j)<π−(j′)

dsi c
s
ijxij

+ dsi
csi,j′

2

− ∑
j∈J ′ : π−(j)<π−(j′)

xij +
∑

j∈J ′ : π−(j)≥π−(j′)

xij −
vsi + η̄s

dsi
+ 1


= dsi c

s
i,π(1)y

s
i,π(1) +

∑
j∈J ′ : 1<π−(j)<π−(j′)

dsi c
s
ijy

s
ij + dsi c

s
i,j′y

s
ij′ =

∑
j∈J ′

dsi c
s
ijy

s
ij .

The above chain of equations shows that objective function values of the dual and primal

solutions coincide, which proves that both solutions are optimal to their corresponding

problems.

C.2 Theorem 2 and Its Proof

For the case of CFSDP, the primal subproblem for demand point i ∈ I and scenario s ∈ S
takes the following form

Qsi (z,x,w,v, η, η̄) = min
∑
j∈J

csijd
s
iy
s
ij (14a)
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s.t.
∑
j∈J

ysij = 1, (γsi ) (14b)

ysij ≤ zj , ∀ j ∈ J (−βsij) (14c)

dsiy
s
ij ≤ dsixij + vsij + η̄s, ∀ j ∈ J (−λsij) (14d)

dsiy
s
ij ≥ dsixij − vsij − η̄s, ∀ j ∈ J (ρsij) (14e)

ysi ∈ R
|J |
+ . (14f)

Before stating the counterpart of Theorem 1, we first present the dual formulation of (14):

max γsi −
∑
j∈J

zjβ
s
ij +

∑
j∈J

(
dsixij

(
ρsij − λsij

)
−
(
vsij + ηs

) (
ρsij + λsij

))
(15a)

s.t. γsi − βsij ≤ dsi
(
csij + λsij − ρsij

)
, ∀ j ∈ J (15b)

βsi ,λ
s
i ,ρ

s
i ≥ 0. (15c)

This dual subproblem provides the optimality cut taking the following form for s ∈ S and

i ∈ I:

θsi ≥ γsi −
∑
j∈J

βsijzj +
∑
j∈J

dsi (ρ
s
ij − λsij)xsij −

∑
j∈J

(λsij + ρsij)(v
s
ij + η̄s).

Note that one can also use an aggregated version of these optimality cuts in an implemen-

tation of the corresponding Benders decomposition algorithm.

Theorem 2. Consider the primal subproblem (14) along with its dual (15) for a particular

pair of scenario s ∈ S and demand point i ∈ I.

1. If dsi = 0 or vsij + η̄s = 0 for all j ∈ J , then the solution (ysi ) such that ysij = xij for

all j ∈ J is optimal to the primal subproblem (14).

(a) If dsi = 0, then the solution such that all dual variables equal to zero is an optimal

solution to the dual subproblem (15).

(b) If vsij + η̄s = 0 for all j ∈ J , let c̄sij be the minimum unit allocation cost for i

among the locations with xij > 0, i.e., c̄sij = min
j∈J :xij>0

csij. Then, an optimal dual

solution is given by

γsi = c̄sijd
s
i ,

βsij =
(
γsi − csijdsi

)+
for j ∈ J with zj = 0, βsij = 0 for j ∈ J with zj = 1,

ρsij =
(
csij − c̄sij

)+
for j ∈ J with xij > 0, ρsij = 0 for j ∈ J with xij = 0,

λsij = 0 for j ∈ J.
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2. If dsi > 0 and vsij + η̄s > 0 for some j ∈ J , then J ′, π(t) and π−(j) are defined as in

Theorem 1. We find j′ ∈ J ′ with smallest π−(j′) such that

1

dsi
(dsixij′ − η̄s − vsij)+ ≤ 1−

∑
j∈J ′:

π−(j)<π−(j′)

1

dsi
(dsixij + η̄s + vsij)

−
∑
j∈J ′:

π−(j)>π−(j′)

1

dsi
(dsixij − η̄s − vsij)+ ≤ 1

dsi
(dsixij′ + η̄s + vsij).

• The solution ysi with the following structure is an optimal solution to the primal

subproblem:

ysij =



1
dsi

(dsixij + η̄s + vsij), if j ∈ J ′ and π−(j) < π−(j′),

1
dsi

(dsixij − η̄s − vsij)+, if j ∈ J ′ and π−(j) > π−(j′),

1−
∑

j∈J ′:π−(j)<π−(j′)

1

dsi
(dsixij + η̄s + vsij)

−
∑

j∈J ′:π−(j)>π−(j′)
1
dsi

(dsixij − η̄s − vsij)+, if j = j′,

0, if j ∈ J \ J ′,

for all j ∈ J .

• The dual solution (γsi ,β
s
i ,λ

s
i ,ρ

s
i ) with the following structure is optimal to the

dual subproblem:

γsi = dsi c
s
ij′ ,

λsij = ρsij = 0 and βsij = dsi (c
s
ij′ − csij)+ for j ∈ J \ J ′,

λsij = (csij′ − csij)+ and βsij = 0, for j ∈ J ′,

ρsij = (csij − csij′)+ for j ∈ J ′ with dsixij − η̄s − vsij ≥ 0,

ρsij = 0 for j ∈ J ′ with dsixij − η̄s − vsij < 0.

Proof. Since it is easy to see that the primal and dual solutions defined in case 1 are optimal

for their corresponding problems, we skip that part.

For the case 2, the defined primal and dual and solutions are clearly feasible for their

corresponding problems. The objective function value of the dual solution is given by

dsi c
s
ij′ +

∑
j∈J ′

(−(dsixij + η̄s + vsij)(c
s
ij′ − csij)+ + (dsixij − η̄s − vsij)+(csij − csij′)+)
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= dsi c
s
ij′ +

∑
j∈J ′:

π−(j)<π−(j′)

−(dsixij + η̄s + vsij)(c
s
ij′ − csij) +

∑
j∈J ′:

π−(j)>π−(j′)

(dsixij − η̄s − vsij)+(csij − csij′)

= dsi c
s
ij′ +

∑
j∈J ′:

π−(j)<π−(j′)

−(csij′ − csij)dsiysij +
∑
j∈J ′:

π−(j)>π−(j′)

(csij − csij′)dsiysij

= csij′d
s
i

1−
∑
j∈J ′:

π−(j)<π−(j′)

ysij −
∑
j∈J ′:

π−(j)>π−(j′)

ysij

+
∑
j∈J ′:

π−(j)<π−(j′)

csijd
s
iy
s
ij +

∑
j∈J ′:

π−(j)>π−(j′)

csijd
s
iy
s
ij

= csij′d
s
iy
s
ij′ +

∑
j∈J ′:

π−(j)<π−(j′)

csijd
s
iy
s
ij +

∑
j∈J ′:

π−(j)>π−(j′)

csijd
s
iy
s
ij =

∑
j∈J ′

csijd
s
iy
s
ij .

Since the objective function values of the dual and primal solutions are equal to each other,

these solutions are optimal for their corresponding problems.

D Additional Numerical Results

D.1 For Section 4.1

Table 5: Fixed costs in different problem instances.

Instance Type Fixed Cost (f) Instance Type Fixed Cost (f)

cap71 7,500 cap73 17,500
cap72 12,500 cap74 25,000

D.2 For Section 4.2

In this section, we investigate the impact of our modeling approach on the multi/single-

sourcing structure of the optimal solutions. First recall the single-sourcing property of the

underlying unrestricted model (see Example 1), i.e., there exists an optimal solution where

each demand point is fully assigned to the closest open facility under each scenario—as this

is the case for the deterministic UFL problem. For this unrestricted model, we consider

an auxiliary pre-allocation decision vector x specified as x = ys for all s ∈ S. We perform

an analysis to quantify and demonstrate the deviations from such a single-sourcing plan—

an extended version of the discussion in Example 2. To this end, we follow two types of

calculations to quantify both the deviations from the single-sourcing property in the first

stage (by focusing on the scenario-independent x decision vectors) and in the second stage

(by focusing on the scenario-dependent y vectors). We consider the problem instances of
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type cap71 with 25 demand points and 100 scenarios for varying values of ᾱ and ε, and

particularly, solve CSTDP for the following parameters settings: ᾱ = 0.5, 0.6, 0.7, 0.8, 0.9

when b = 0.005, and ᾱ = 0.9 when b = 0.01, 0.05. For all the instances, except those

with ᾱ = 0.9 and b = 0.05 (seven facilities are opened), a total of eight facilities are

opened. To quantify the first-stage single-sourcing level, for each instance, we determine

the percentage of the nodes whose demand is pre-assigned to at most τ many facilities:

G1 = |{i ∈ I : |{j ∈ J : xij > 0}| ≤ τ}|/|I| for τ = 1 . . . , 8. We can clearly say that a higher

value of G1 corresponds to a higher level of first-stage single-sourcing. The values of the

G1 metric (under varying values of τ) associated with the optimal solutions of CSTDP

are presented in Figure 1. Single-sourcing in the first-stage is attained for ᾱ = 0.5 and

ᾱ = 0.6, while the deviations from the first-stage single-sourcing is observed for larger ᾱ

values. For ᾱ = 0.7 and ᾱ = 0.8, all demand points are pre-allocated to at most four

and five facilities, respectively, while for ᾱ = 0.9, there are some nodes whose demand is

satisfied from seven different facilities. Similarly, for smaller values of b, we can observe a

lower level of single-sourcing. For example, when b = 0.05, each node is assigned to at most

four facilities, whereas for b = 0.01 the maximum number of facilities that serve the same

demand point is six. Thus, for larger ᾱ and smaller b values, the level of deviation from

the first-stage single-sourcing is generally higher.

Figure 1: Results on the multi/single-sourcing structure in the first-stage for varying ᾱ and
ε.

We follow a similar approach to analyse the second-stage multi/single-sourcing structure

under each scenario. We focus on a random variable G2 representing the percentage of the

nodes whose demand is allocated to at most τ many facilities. We calculate the realization

of G2 under each scenario s ∈ S, i.e., Gs2 = |{i ∈ I : |{j ∈ J : ysij > 0}| ≤ τ}|/|I| along

with its expectation Ḡ2 =
∑

s∈S G
s
2/|S|. In line with an expectation-based view, we can
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Figure 2: Results on the multi/single-sourcing structure in the second-stage for varying ᾱ
and ε.

say that a higher value of Ḡ2 on average, in general, indicates a higher level of second-stage

single-sourcing. Figure 2 presents the values of the Ḡ2 metric (under varying values of τ)

associated with the optimal solutions of CSTDP. We observe a similar behavior as in

the first-stage case: for smaller ᾱ values CSTDP becomes less restrictive, and most of the

nodes are allocated to a single facility. Observe that for ᾱ = 0.5, the Ḡ2 takes a value larger

than 0.95, and all demand points are assigned to at most two facilities. This setting has

the highest single-sourcing level according to our expectation-based view. Even if there is

no monotone structure, the deviations from the single-sourcing becomes more pronounced

as ᾱ increases. Similarly, the level of second-stage single-sourcing increases as b gets larger.

Consequently, Figures 1 and 2 indicate that the right tail of the G1 and Ḡ2 functions in

general tends to shift to the left for less restrictive cases (larger b and smaller ᾱ), which

implies that a larger number of demand points has a smaller number of facility sources.

D.3 For Section 4.3

Table 6 is the counterpart of Table 3 for 50 demand points. On the other hand, Table 7

reports the worst and the best solution times and the final gaps over 10 instances for each

setting considered in Tables 3 and 6.

We perform a similar experiment for CFSDP and present the results for 25 demand

points in Table 8. First we observe that it is harder to solve CFSDP than CSTDP for

the same problem sizes: DEF can be solved to optimality only for 100-300 scenarios, and

terminates with 100% optimality gap for larger instances. As it can be clearly observed from

Table 8, the first type of decomposition approach (OPT1) perfoms better than the second
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Table 7: Minimum and maximum values of solution times and final gaps for CSTDP

DEF OPT1 OPT2-CPLEX OPT2-ALG
min max min max min max min max

|I| |S| cap cpu cpu cpu cpu cpu cpu cpu cpu
(fgap) (fgap) (fgap) (fgap) (fgap) (fgap) (fgap) (fgap)

25 100 71 68 235 63 262 31 47 9 19
72 64 153 70 138 26 41 11 20
73 88 304 47 107 21 43 9 17
74 60 125 17 39 14 30 5 13

300 71 671 2,681 323 1,000 223 406 56 233
72 755 1,840 473 1,898 247 400 178 350
73 1,493 4,826 194 893 170 317 106 475
74 524 1,201 68 138 83 160 33 176

500 71 3,225 6,498 553 1,394 690 1,970 314 765
72 2,315 5,516 788 1,384 625 1,943 472 1,017
73 6,214 (4.38) 308 (4.99) 452 1,692 363 1,855
74 1,824 5,148 116 443 171 507 156 500

800 71 7,200 (19.95) 1,201 2,265 1,932 3,185 885 5,750
72 7,201 (0.04) 1,134 4,266 1,230 3,783 1,019 2,993
73 (0.08) (5.02) 746 2,263 898 3,627 859 4,648
74 4,484 (0.05) 172 661 383 1,051 274 888

1000 71 (0.05) (19.77) 1,741 5,024 2,264 (0.38) 1,917 (2.49)
72 (0.03) (9.78) 1,111 4,303 2,446 (7.99) 2,024 (0.52)
73 (0.13) (5.12) 1,119 3,400 2,306 5,191 1,790 (11.53)
74 7,170 (0.06) 324 2,244 658 1,463 431 1,449

50 100 71 375 1,547 668 (2.33) 69 485 25 416
72 1,123 2,335 1,827 (1.99) 87 625 50 473
73 1,341 4,767 3,469 (6.83) 215 835 89 602
74 1,346 5,262 1,315 (5.32) 79 655 38 535

200 71 3,079 6,198 1,383 (1.52) 432 3,374 206 1,325
72 3,917 (24.48) 5,636 (3.21) 1,381 6,451 449 6,623
73 6,689 (100) 5,356 (3.63) 2,192 (2.28) 735 5,745
74 7,200 (100) 2,696 (5.36) 1,753 4,859 615 3,461

300 71 (0.06) (100) 4,618 (1.84) 1,017 (4.83) 508 3,022
72 (100) (100) (0.82) (3.64) 4,023 (4.86) 989 (4.28)
73 (100) (100) (1.96) (4.9) 3,141 (7.63) 1,967 (7.0)
74 (100) (100) 3,956 (6.09) 1,016 (4.76) 638 (8.95)

400 71 (100) (100) 3,311 (3.29) 4,278 (7.84) 1,107 2,901
72 (100) (100) (1.72) (4.36) 4,051 (10.61) 2,211 (7.64)
73 (100) (100) (3.28) (4.96) (0.2) (5.58) 2,973 (10.3)
74 (100) (100) 6,378 (5.88) 3,492 (5.42) 2,742 (9.51)

500 71 (100) (100) 6,950 (2.7) 3,824 (12.44) 1,499 6,156
72 (100) (100) (2.36) (5.21) (3.92) (9.76) 3,425 (9.95)
73 (100) (100) (3.67) (5.49) (4.53) (9.97) (4.8) (11.36)
74 (100) (100) (0.05) (5.45) 4,958 (6.2) 3,323 (10.31)
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type of decomposition methods (OPT2-CPLEX and OPT2-ALG). Also, using the algorithm

given in Theorem 2 does not improve the solution times. Note that in our second type of

decomposition algorithms, the Benders master problem RMP(2) of CFSDP involves a

larger number of scenario-dependent decision variables compared to that of CSTDP, and

this may be the main cause of this difference. Thus, keeping the complicating constraints

in the relaxed master problem does not help us to improve the solution times for CFSDP.

Actually, for a larger number of scenarios, even a feasible solution could not be found within

the time limit by the second type of decomposition algorithms (see the Column “# feas”).

Since OPT1 is clearly the best solution method for CFSDP, in Table 9, we report the

worst and the best solution times and the final gaps over 10 instances only for OPT1. It

can be observed from Tables 8 and 9 that its performance is the best for the cap73 and

cap74 instances (all the instances are solved to optimality within the time limit) where the

fixed costs are relatively larger.
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Table 9: Minimum and maximum values of solution times and final gaps for OPT1—
CFSDP.

|S| cap min cpu max cpu |S| cap min cpu max cpu
(min fgap) (max fgap) (min fgap) (max fgap)

100 71 125 1,380 800 71 4,869 (4.88)
72 49 427 72 2,399 (5.65)
73 35 289 73 485 2,887
74 15 104 74 224 1,039

300 71 841 3,725 1000 71 3,479 (7.95)
72 398 2,372 72 2,155 (8.77)
73 116 662 73 795 5,405
74 34 277 74 193 1,483

500 71 1,346 6,961
72 640 6,883
73 239 2,235
74 110 386
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