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A Extensions

A.1 Capacitated garages with multiple periods
Suppose that we model garage capacity explicitly and consider a planning horizon of mul-
tiple periods, for instance, the entire morning rush hour until the garages are filled up. We
index time periods by t = 1, 2, ..., T . The baseline demand α[t] as well as the random shock

θ
[t]
1 are both changing inter-temporally. The random shocks {θ[t]

i }’s are independent and
identically distributed, with identical variance σ2, and correlation ρ[t] = ρ, ∀t. The under-
lying economy is stationary such that β[t] = β and β̂[t] = β̂,∀t. Garages are symmetric
with the same capacity W . In this case, the garages’ equilibrium is characterized by the
following best-response functions:

max
p

[t]
1 ,t=1,2,...,T

π1 =
T∑
t=1

d
[t]
1

(
p

[t]
1 − c

)
, (25)

max
p

[t]
2 ,t=1,2,...,T

π2 =

T∑
t=1

d
[t]
2

(
p

[t]
2 − c

)
, (26)

T∑
t=1

d
[t]
1 ≤W1,

T∑
t=1

d
[t]
2 ≤W2, (27)

wherein

d
[t]
1 = α[t] − β̂p[t]

1 + βp
[t]
2 + θ

[t]
1 ,

d
[t]
2 = α[t] + βp

[t]
1 − β̂p

[t]
2 + θ

[t]
2 . (28)

We summarize the results for this extension in the following proposition.

Proposition 5. The following results for the symmetric capacitated model over multiple
periods hold:

1. When c > 2β̂−β
β̂(β−β̂)

· WT −
β̂

β̂(β−β̂)
·
∑T

t=1 α
[t]

T , the capacity constraints are not binding,

the parking rates in equilibrium remain the same as in the static incapacitated model:

p
[t]
i =

α[t] + β̂c

2β̂ − β
+

θ
[t]
i

2β̂ − βρ
, (29)

∀t = 1, 2, ..., T and i = 1, 2.
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2. Otherwise, the parking rates in equilibrium are given by

lim
T→∞

p
[t]
i →

α[t]

2β̂ − β
+

W/T(
β − β̂

) − β̂(
2β̂ − β

)(
β − β̂

) · ∑T
t=1 α

[t]

T
+

θ
[t]
i

2β̂ − βρ
, (30)

almost surely, ∀t = 1, 2, ..., T and i = 1, 2.

3. When W1 6= W2, an one-period snapshot is equivalent to an incapacitated static model
with heterogeneous cost c1 and c2, wherein c1 and c2 ≥ c.

4. Compared with the static incapacitated version, while the baseline rates suffer from
a constant downward distortion, the response to a private signal remains the same,
and thus, the incentives for information sharing remains the same.

5. When β

β̂
∈ (0, 1], the parking rates as well as the aggregate payoff over T periods

(limT→∞ Eπ) decrease in total capacity W , but increase in average market potentials∑T
t=1 α

[t]

T . (The converse is true when β

β̂
∈ (1, 2).)

From this proposition, as a robustness check, we are assured that the results from a
single-period snap-shot extend naturally toward multiple-periods. The proof is via a dual
approach wherein we use Lagrangian multipliers to calculate the shadow price of limited

capacity. When c > 2β̂−β
β̂(β−β̂)

· WT −
β̂

β̂(β−β̂)
·
∑T

t=1 α
[t]

T , the cost of selling one unit capacity

is less costly than its shadow price, and thus capacity constraint is not binding. In the
same vein, when W1 6= W2, an one-period snapshot is equivalent to an incapacitated static
model with heterogeneous cost c1 and c2, wherein c1 and c2 ≥ c. The additional costs c1−c
and c2 − c capture the shadow price for limited capacity.

In fact, if we extend the restriction of elasticities to β < 2β̂ (allow the cross-price
elasticity to be greater than price elasticity), the capacity W (or average market potentials∑T

t=1 α
[t]

T ) poses opposite effect toward parking rates/payoffs when β > β̂. In fact, let

κ = W/T − β

(2β−β̂)
·
∑T

t=1 α
[t]

T (which is increasing in total capacity W and decreasing

in average baseline rates
∑T

t=1 α
[t]

T ) capture the extra capacity which satisfies per-period

price-sensitive demand. When β > β̂, i.e., price elasticity is more dominant than cross-
price elasticity, the inverse price-demand relationship within a garage dominates. Since an
higher extra capacity κ satisfies higher price-sensitive demand, this implies a lower parking
rate. Therefore, the parking rates (and consequently the aggregate payoff) decrease in the

extra capacity κ, and thus increases in W and decreases in
∑T

t=1 α
[t]

T . Conversely, when

β > β̂, i.e., the strategic complement between two garages dominates, and thus an higher
capacity κ implies higher parking rates from the other garage.
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A.2 Noisy demand forecasting
In the basic model, we assume that private signals are received via a noiseless information
channel. We find this to be a harmless assumption by examining real-time parking demand
data, as private demand forecasts tend to be fairly accurate using historical data (with error
rates around 5%). Nevertheless, we generalize the basic model in this section to incorporate
noisy demand forecast. Suppose that there are two symmetric garages, β11 = β22 = β̂,
β12 = β12 = −β, and c1 = c2 = c:

d1 = α− β̂p1 + βp2 + θ1,

d2 = α+ βp1 − β̂p2 + θ2, (31)

We further assume that (θ1, θ2)> are drawn from symmetric bivariate normal distribution

N
(

0, σ2

[
1 ρ
ρ 1

])
. As a standard stability constraint, we require 0 ≤ β < β̂. In addition,

the garages cannot accurately forecast their demand. Instead, each garage observe a noisy
signal xi = θi + εi, where εi ∼ N(0, γ2). We assume observation channels are independent,
i.e., ε1⊥ε2.

Proposition 6. The following statements are true for the symmetric uncapacitated model
with two garages and noisy demand forecasting:

1. Baseline parking rate structure remains the same as that with perfect demand fore-
casting.

2. In addition, all comparative statics in Proposition 1 hold, i.e., ∂B
∂ρ > 0, ∂B

∂σ > 0,
∂Eπ
∂β̂

< 0, ∂Eπ
∂β > 0 and ∂Eπ

∂ρ > 0.

3. Garages respond more aggressively toward private signals when they are more accu-
rate, and the payoff increases, i.e., ∂B

∂γ < 0 and ∂Eπ
∂γ < 0.

The first two statements confirm our structural results in the basic model with per-
fect demand forecasts, which serve as robustness check with general demand forecasting
accuracy. Not surprisingly, garages respond more aggressively toward private signals when
they are more accurate, and the payoff increases since the value of information increases.
However, information sharing is not always desirable in general, and information sharing
being unprofitable is more likely to happen when forecasting noise increases. Note that
information sharing is always favorable if the demand correlation is positive, since the
knowledge sharing helps garages reduce demand uncertainty and further take advantage of
their monopoly power. Fixing forecasting accuracy and price elasticities, there is a nega-
tive region of demand correlation such that information sharing is not preferred. Usually,
garages tend to positively respond to the other’s signal when information is shared, i.e.,
B12 > 0, since the competitor’s demand surge potentially increases her demand through
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cross-price elasticity. However, under some environment where demand signals are nega-
tively correlated, they form an equilibrium where garages strongly negatively respond to
the shared signal. In the long run, this causes both garages to price lower than the the-
oretical optimum. This underutilization of the demand on average reduces the expected
payoff for both garages.

A.3 Garage coalition model
It is worth noting that multiple garages in an urban area may be controlled by a single
entity and thus not independent in the pricing game. In this subsection, we show that
our insights on information sharing do not heavily rely on the assumption of independent
garages. The model in Section 3.4 can be generalized to a pricing competition among
garage coalitions. (A garage coalition is a parking firm that owns several garages in the
city.) We derive the pricing equilibrium of the coalition competition.

Consider K as a set of independent garage coalitions controlling all garages N =
{1, 2, · · · , n}. Each coalition K ∈ K corresponds to a subset of N , and K is a parti-
tion of N . Every coalition has access to a certain set of demand information, decides the
prices of her garages, and maximizes her total expected payoff. Let N (K) be the informa-
tion index set of coalition K. That is, information θj can be used for the pricing of garage
i ∈ K if and only if j ∈ N (K). Given information θN(K), every coalition K decides the
price vector pK to maximize her own expected total payoff

Eθ
[
Π (K)| θN(K)

]
= Eθ

[∑
i∈K

πi

∣∣∣∣∣ θN(K)

]
= Eθ

[∑
i∈K

dipi

∣∣∣∣∣ θN(K)

]
. (32)

Proposition 7. Suppose coalition K observes signals θN(K). Then, the equilibrium pricing
strategy is given by p (θ) = A+Bθ, where coefficients A ∈ Rn and B ∈ Rn×n are determined
by

A = Q−1 (α+ (Q− β) c) , (33){
QK?BΣ?N(K) − ΣKN(K) = 0,∀K ∈ K,
BKj = 0, ∀j /∈ N (K) ,

(34)

and
Q := β + diag

[(
β>KK

)
K∈K

]
. (35)

The equilibrium payoff is given by

Eθ [Π (K)] = 〈AK − cK , βKK (AK − cK)〉+
〈
BK?ΣB

>
K?, βKK

〉
, ∀K ∈ K. (36)

where 〈·, ·〉 is the Frobenius inner product of two vectors/matrices of the same dimension(s).
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This proposition extends the pricing equilibrium (Proposition 2) to the case where
garages are owned by competing coalitions. Here, Equations (33) & (34) are the extensions

of Equations 8 & 9. The definition of Q has slightly changed. In (35), diag
[(
β>KK

)
K∈K

]
is

an n×n block diagonal matrix whose main-diagonal blocks are square matrices β>KK ,∀K ∈
K. In particular, if every coalition K contains only one garage, this proposition reduces to
Proposition 2. In Equation (36),

〈
BK?ΣB

>
K?, βKK

〉
corresponds to the information value

for coalition K in the coalition model.
The connection between the original model and the coalition model lies in the di-

mensionality of the pricing decision. The coalition model is high-dimensional: Instead of
deciding a single price pi, each entity decides a set of prices pK to maximize the total payoff∑

i∈K πi. The base model is a special case of a single dimension pricing. Therefore, we
start from the base model without coalition formation to capture the main insight related
to information sharing, which is robust shown in this extension. Furthermore, we will show
in the next example additional insights derived from this coalition version.

Consider a symmetric duopoly setting where each garage coalition owns m garages in
the city. The total 2m garages are assumed to have a symmetric influence on each other.
Specifically, βii = 1, σii = 1, and σij = ρ, βij = −β,∀i 6= j. (Note that Assumption

1 requires 1
2m−1 ≤ ρ ≤ 1 and 0 ≤ β ≤ 1

2m−1 β̂.) Then, under the coalition setting,
we can show properties similar to the ones in Proposition 1. In Figure 6, we extend
the 4th observation in Proposition 1 to the coalition competition. As the demand signals
become more positively correlated, the information value (also the expected payoff since the
baseline payoff is independent of ρ) increases. Figure 7 illustrate the additional value gain if
information sharing is adopted. This result echoes Proposition 1 in that information sharing
always generates positive value even if coalition formation is allowed. It also confirms that
information sharing is more beneficial when the cross-elasticity β is higher. The value
gain from sharing is non-monotone in the signal correlation. Because information is most
useful when demand signals are weakly correlated. In the extreme case when demand
signals are perfectly correlated, information sharing has 0 marginal value since competitor’s
information is already contained in the knowledge of demand correlation.

A.4 Optimal information assignment
Proposition 2 presents the exact equilibrium solution for an arbitrary observation matrix
M . A natural question one would be curious about is: among a set of possible infor-
mation structures, which one of them would result in an equilibrium that maximizes the
expected payoff of a particular garage (or their total expected payoff). The result for two-
garage model in Section 3.3 indicates that information sharing is beneficial to both garages.
However, this does not always hold in general.

From the perspective an information service provider, a natural question to ask is
who should know what and how much they should know. The insights from answering
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Figure 6: Information value under private information structure increases in the demand
correlation ρ

Figure 7: Information value increased from sharing
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such questions facilitate the design of information systems. In general, to identify an
information structure that maximizes the total information value, we need to solve the
following optimization problem

max
B,M

{
Bi?ΣB

>
i? : B and M satisfy (9)

}
. (37)

This is a mixed integer program with quadratic objective function (convex-maximization).
Or generally, we can get rid of binary decision variables M and rewrite it as an Quadrati-
cally Constrained Quadratic Program (QCQP)

max
B∈Rn×n

{
Bi?ΣB

>
i? : (QBΣ−Σ) ∗B = O

}
. (38)

Solving the above programs awaits future computational studies, which in itself, is
of great interests. In this research, we focus on the strategic aspects of this operational
challenge. In Section A.5, we consider a certain type of symmetric information structure
— group information sharing. Assume we have one (or multiple) information exchange
platform. Every garage can choose to be a member of the platform and share her private
signal within the group. In section A.5, we will see that such platform benefits their
members and appeals to garages not in the group.

A.5 Information exchange platform
We return to the general model where all parameters can be asymmetric. In this subsection,
we discuss the motivation for garages to form an information sharing group. Proposition
8 states that if all garages are using the information exchange platform, then no one has
an incentive to quit from the group.

Proposition 8. All agents joining the group is a Nash equilibrium.

The equilibrium in Proposition 8 refers to a Nash equilibrium of the group entering
strategy. Proposition 8 applies to arbitrary demand correlations as well as cross-elasticities,
which is more general than existing literature (Raith, 1996) in this regard, to our best
knowledge. It states that given every garage inside the platform, no one can achieve
higher profit by unilaterally withdrawing from it. For a two-garage system, Proposition
8 apparently shows that sharing their signal is in the interest of both garages. For a
system with more than 2 garages, Proposition 8 ensures that everyone in the group is an
equilibrium. The study of the uniqueness and global optimality of such an equilibrium
remains for future research.
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B Proofs.
In this appendix, we provide detailed proofs of the main results. We use * in the proofs to
denote component-wise multiplication of two matrices of identical dimensions.

Proof of Propositions 1 and 2.

Proof. Propositions 1 is a special case of Proposition 2. Here we prove Proposition 2.
Garage i maximizes expected payoff by taking first-order condition:

∂πi
∂pi

=

αi −∑
j

βijpj + θi

+ βii (pi − ci) . (39)

Garage i observes information θNi . Then, her conditional expectation of the entire θ vector
is given by

E [θ |θNi ] = Σ?NiΣ
−1
NiNi

θNi . (40)

Therefore, her anticipation of the pricing vector p is

E [p |θNi ] = E [A+Bθ |θNi ] = A+BΣ?NiΣ
−1
NiNi

θNi . (41)

Setting the expected first-order condition to 0, namely E
[
∂πi
∂pi
|θNi

]
= 0, we obtain(

αi − βi?
(
A+BΣ?NiΣ

−1
NiNi

θNi

)
+ ΣiNiΣ

−1
NiNi

θNi

)
− βii

[
A+BΣ?NiΣ

−1
NiNi

θNi − c
]
i

= 0.

(42)
Matching the coefficient of θNi , we get

(−Qi?BΣ?Ni + ΣiNi) Σ−1
NiNi

θNi −Qi?A+ αi − [β ∗ I]i?c = 0, (43)

where ∗ represents entry-wise multiplication, and Q = β + β ∗ I is the matrix defined in
the proposition. This is a linear equation with respect to θNi . And it holds for any θNi .
Thus, we can get the decision A,B by solving{

−Qi?A+ αi + [β ∗ I]i?c = 0
−Qi?BΣ?Ni + ΣiNi = 0

,∀i ∈ N. (44)

Rewriting the first equation above in vector form, we have

A = Q−1 (α+ [β ∗ I] c) . (45)

Together with the 0 entry constraint, we obtain the system of linear equations which
determines our B matrix {

Qi?BΣ?Ni − ΣiNi = 0,∀i ∈ N
Bij = 0, ∀Mij = 0

. (46)
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Note that, excluding those Bij = 0 entries, we have
∑
i,j
Mij unknowns and

∑
i
|Ni| =∑

i
Mij equations. Thus, there exists at least one solution to this system. In general, the

solution is unique.
The expected payoff of garage i conditioned on her observation θNi is given by

E [πi |θNi ] = E [(αi − βi?p+ θi) (pi − ci) |θNi ] = (αi − βi?E [p |θNi ] + θi) (pi − ci) , (47)

which is a convex quadratic function of pi. Thus, substitute p = A + Bθ which satisfies
the first-order condition, we obtain the expected payoff under equilibrium

E [πi |θNi ] = βii(pi − ci)2 = βii(Ai +BiNiθNi − ci)
2. (48)

The expected payoff before the observation of θNi is

E [πi] = EθNi

[
βii(Ai +BiNiθNi − ci)

2
]

= βii

(
(Ai − ci)2 +BiNiΣNiNiB

>
iNi

)
. (49)

Proof of Lemma 2.

Proof. Rewrite equation (3) in a simpler format,

xij =
l

2
+
β0

λ
((vi − vj)− (pi − pj)) . (50)

The expectation of v is exogenously given. Thus, ∆E [v] = 0. Since E [θ] = 0, and followed
from Proposition 2,

E [p] = E [A+Bθ] = A.

A is independent of the information matrix M as stated in (8). Therefore, ∆E [p] = 0, and
then ∆E [xij ] = 0.

Note that

Cij = E
[∫ xij

0

(
ctx+ cwλx

2
)
λdx+

∫ l−xij

0

(
ctx+ cwλx

2
)
λdx

]
= λE

[
1

2
ctx

2
ij +

1

3
cwλx

3
ij +

1

2
ct (l − xij)2 +

1

3
cwλ (l − xij)3

]
= λ (ct + cwλl)E

[
x2
ij

]
+ constant term.

(51)
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Thus, ∆Cij = λ (ct + cwλl) · ∆ {var [xij ]} = λ2

2β0
∆ {var [xij ]}. For the aggregate cost

summed over all links,

∑
ij∈E

var [xij ] =

(
β0

λ

)2 ∑
ij∈E

var [(vi − pi)− (vj − pj)]

=

(
β0

λ

)2 ∑
ij∈E

(var [vi − pi] + var [vj − pj ]− 2cov (vi − pi, vj − pj))

=

(
β0

λ

)2

〈L, var [v − p]〉 .

(52)

Hence, ∆

{ ∑
ij∈E

Cij

}
= β0

2 〈L, var [v − p]〉.

Similarly,

Uij + Cij = E
[∫ xij

0
λdx+

∫ l−xij

0
(vj − pj)λdx

]
= λE [((vi − pi)− (vj − pj))xij ] + constant term

=
λ2

β0
E
[
x2
ij

]
+ constant term

= 2Cij + constant term.

(53)

Thus, ∆Uij = ∆Cij .

Proof of Proposition 3.

Proof. Both Proposition 3 and 4 are derived from solving (9) for M = In and M = ee>.
Then, (11) to solve the information value and (16) to obtain aggregate cost. We omit the
algebra for solving B and present the solution directly.

In the private information scenario, Bii = 3
16β
−1
0 , ∀i. Then,

vi = 2β0B
2
iiΣii =

27

64
β0. (54)

〈L, var [v − p]〉 =
29

64
n · β0

2
. (55)

For the circular model, the B solution is symmetric, i.e., Bij only depends on the
distance between i and j but not i or j. Thus, we simply give the solution B1?.

B1? =


β−1

0
4yn/2−2yn/2−1

[
yn/2, yn/2−1, · · · , y1, y0, y1, · · · , yn/2−1

]
, if n is even,

β−1
0

4yn/2−2yn/2−1

[
yn/2, yn/2−1, · · · , y1/2, y1/2, · · · , yn/2−1

]
, if n is odd.

(56)
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Here yk is a constant defined in Table 2.
Then, by manipulating the hyperbolic functions, the two cases merge to a single ana-

lytical format in terms of information value and aggregate cost.

vi =
2

3 (yn − 1)

(
1

3
(4yn−1 + yn) + n− 3

)
β0 →

(
2− 8

9

√
3

)
β0 ≈ 0.4604β0 as n→∞.

(57)

〈L, varr〉 =
2n

3 (yn − 1)

(
ȳn−1 − ȳn

ȳ1
+ yn − n

)
· β0

2λ
→ 2n

3
√

3
· β0

2
as n→∞. (58)

Proof of Proposition 4.

Proof. For private information case, let index 1 denote the center garage. Then,

B11 = 2
7m−1β

−1
0 ,

Bjj = 3m−1
7m−1β

−1
0 ,∀j 6= 1.

(59)

The individual information values are,

v1 =
(

2m
7m−1

)2
(m+ 1)β0,

vj = 2
(

3m−1
7m−1

)2
β0,∀j 6= 1.

(60)

The aggregate information value is

v1 +mvj =
2m
(
11m2 − 4m+ 1

)
(7m− 1)2 β0 →

22

49
mβ0 as m→∞. (61)

The aggregate cost is

〈L, var [v − p]〉 =
4m2 (5m− 3)

(7m− 1)2 · β0

2
→ 20

49
m · β0

2
as m→∞.

For the complete information case, we also list the intermediate and final solutions.

B =

(
1

3m

[
2 e>

e ee>/2

]
+

1

2

[
0 0
0 I

])
β−1

0 . (62)

v1 = 1
9 (m+ 1)β0,

vj = 13m−5
36m β0, ∀i 6= j.

(63)

v1 +mvj =
17m− 1

36
β0 →

17

36
mβ0 as m→∞. (64)

〈L, var [v − p]〉 =
13m− 5

36
· β0

2
. (65)

11



Proof of Proposition 5.

Proof. We begin by writing a general dual form, using Lagrangian multipliers λ1 and λ2 > 0
to relax the capacity constraints:

max
p

[t]
1 ,t=1,2,...,T

L1 =

T∑
t=1

(
α[t] − β̂[t]p

[t]
1 + β[t]p

[t]
2 + θ

[t]
1

)(
p

[t]
1 − c

)
−λ1

[
W1 −

T∑
t=1

(
α[t] − β̂[t]p

[t]
1 + β[t]p

[t]
2 + θ

[t]
1

)]
, (66)

max
p

[t]
2 ,t=1,2,...,T

L2 =
T∑
t=1

(
α[t] − β̂[t]p

[t]
2 + β[t]p

[t]
1 + θ

[t]
2

)(
p

[t]
2 − c

)
−λ2

[
W2 −

T∑
t=1

(
α[t] − β̂[t]p

[t]
2 + β[t]p

[t]
1 + θ

[t]
2

)]
. (67)

We can decompose these problems by t = 1, 2, ..., T , and each sub-problem can by solved
by

p
[t]
1 =

α[t] + β̂[t] (c+ λ1)

2β̂[t] − β[t]
+

θ
[t]
1

2β̂[t] − β[t]ρ[t]
,

p
[t]
2 =

α[t] + β̂[t] (c+ λ2)

2β̂[t] − β[t]
+

θ
[t]
2

2β̂[t] − β[t]ρ[t]
. (68)

Plug in prices

T∑
t=1

α[t] − β̂[t]

[
α[t] + β̂[t] (c+ λ1)

2β̂[t] − β[t]
+

θ
[t]
1

2β̂[t] − β[t]ρ[t]

]

+β[t]

[
α[t] + β̂[t] (c+ λ2)

2β̂[t] − β[t]
+

θ
[t]
2

2β̂[t] − β[t]ρ[t]

]
+ θ

[t]
1 = W1, (69)

T∑
t=1

α[t] − β̂[t]

[
α[t] + β̂[t] (c+ λ2)

2β̂[t] − β[t]
+

θ
[t]
2

2β̂[t] − β[t]ρ[t]

]
(70)

+β[t]

[
α[t] + β̂[t] (c+ λ1)

2β̂[t] − β[t]
+

θ
[t]
1

2β̂[t] − β[t]ρ[t]

]
+ θ

[t]
2 = W2, (71)

under stationary conditions: β̂[t] = β̂, β[t] = β, ρ[t] = ρ, we have
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β̂

2β̂ − β

T∑
t=1

α[t] +
T β̂β

2β̂ − β
(c+ λ2)− T β̂2

2β̂ − β
(c+ λ1) +

β̂ + β(1− ρ)

2β̂ − βρ

T∑
t=1

θ
[t]
1 = W1,

β̂

2β̂ − β

T∑
t=1

α[t] +
T β̂β

2β̂ − β
(c+ λ1)− T β̂2

2β̂ − β
(c+ λ2) +

β̂ + β(1− ρ)

2β̂ − βρ

T∑
t=1

θ
[t]
2 = W2.(72)

When W1 = W2 = W , and limT→∞

∑T
t=1 θ

[t]
i

T → Eθ
[t]
i almost surely, due to Strong Law of

Large Numbers, we have

β̂

2β̂ − β

T∑
t=1

α[t] +
T β̂
(
β − β̂

)
2β̂ − β

(c+ λ) +
β̂ + β(1− ρ)

2β̂ − βρ

T∑
t=1

θ
[t]
i = W,

λ =
2β̂ − β

β̂
(
β − β̂

) · W
T
−

(
2β̂ − β

) [
β̂ + β(1− ρ)

]
β̂
(
β − β̂

) [
2β̂ − βρ

] · Eθ[t]
i −

β̂

β̂
(
β − β̂

) · ∑T
t=1 α

[t]

T
− c, (73)

whenever this is non-negative. Plug this in the pricing strategies, and Eθ
[t]
i = 0, we obtain

p
[t]
1 =

α[t]

2β̂ − β
+

W/T(
β − β̂

) − β̂(
2β̂ − β

)(
β − β̂

) · ∑T
t=1 α

[t]

T
+

θ
[t]
1

2β̂ − βρ
,

p
[t]
1 =

α[t]

2β̂ − β
+

W/T(
β − β̂

) − β̂(
2β̂ − β

)(
β − β̂

) · ∑T
t=1 α

[t]

T
+

θ
[t]
2

2β̂ − βρ
. (74)

When W1 6= W2, a similar procedure returns λ1 6= λ2, a one-period snapshot is equivalent
to an incapacitated static model with heterogeneous cost c1 = c+ λ1, and c2 = c+ λ2. For
finite T,

p
[t]
i =

α[t] + β̂ (c+ λi)

2β̂ − β
+

θ
[t]
i

2β̂ − βρ
, (75)

wherein λi will be function of both θ
[t]
1 and θ

[t]
2 , which is inconsistent, and thus we need

E
(
p

[t]
2 |θ

[t]
1

)
to solve garage 1’s maximization problem. This problem is fundamentally more

complicated and awaits future research.
Alternatively, when

2β̂ − β

β̂
(
β − β̂

) · W
T
−

(
2β̂ − β

) [
β̂ + β(1− ρ)

]
β̂
(
β − β̂

) [
2β̂ − βρ

] · Eθ[t]
i −

β̂

β̂
(
β − β̂

) · ∑T
t=1 α

[t]

T
− c < 0, (76)
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we have non-binding capacity constraint (λ = 0). This case is trivial, with

p
[t]
i =

α[t] + β̂c

2β̂ − β
+

θ
[t]
i

2β̂ − βρ
. (77)

Compared with the static incapacitated version:

lim
T→∞

p
[t]
i − pi =

W/T(
β − β̂

) − β̂(
2β̂ − β

)(
β − β̂

) · ∑T
t=1 α

[t]

T
− β̂c

2β̂ − β
< 0,

which means the response to a private signal remains the same, while the baseline rates
suffer from a constant downward distortion. The aggregate payoff is

lim
T→∞

Eπ =

T∑
t=1

β̂

 α[t]

2β̂ − β
−

c−
 W/T(

β − β̂
) − β̂(

2β̂ − β
)(

β − β̂
) · ∑T

t=1 α
[t]

T

2

+
β̂σ2

(2β̂ − βρ)2

 ,

which is decreasing in W and increasing in
∑T

t=1 α
[t]

T when β̂ > β, the converse is true when
β
2 < β̂ ≤ β.

Proof of Proposition 6.

Proof. From Proposition 2, we can obtain the equilibrium pricing strategy pi = A +
Bxi,∀i =1,2, and Eπ1 = Eπ2 = Eπ = β̂

(
(A− c)2 +B2σ2

)
. Garage i maximize expected

payoff by taking first-order condition:

∂E (π1|x1)

∂p1
= α− β̂p1 + βE (p2|x1) + E (θ1|x1)− β̂ (p1 − c) , (78)

Plug in pi = A+Bxi, E (θ1|x1) = 1/γ2

1/σ2+1/γ2x1 = σ2

σ2+γ2x1, and

E (x2|x1) = E (θ2 + ε2|x1) = E (θ2|x1) = E [E (θ2|θ1, x1) |x1] = ρE (θ1|x1) =
ρσ2

σ2 + γ2
. (79)

The first-order condition becomes:

α− 2β̂ (A+Bx1) + β

[
A+B

ρσ2

σ2 + γ2
x1

]
+

σ2

σ2 + γ2
x1 + β̂c = 0. (80)

Matching coefficients:

α− 2β̂A+ βA+ β̂c = 0,
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− 2β̂B + βB
ρσ2

σ2 + γ2
+

σ2

σ2 + γ2
= 0, (81)

we have

A =
α+ β̂c

2β̂ − β
,B =

σ2(
2β̂ − βρ

)
σ2 + 2β̂γ2

. (82)

To summarize:

pi =
α+ β̂c

2β̂ − β
+

σ2(
2β̂ − βρ

)
σ2 + 2β̂γ2

· xi, (83)

Eπ = β̂

[
α+ β̂c

2β̂ − β
− c

]2

+

 σ2(
2β̂ − βρ

)
σ2 + 2β̂γ2

2

· β̂Ex2
i (84)

= β̂

[
α− (β̂ − β)c

2β̂ − β

]2

+
β̂σ4(σ2 + γ2)[(

2β̂ − βρ
)
σ2 + 2β̂γ2

]2 . (85)

It can be checked that ∂B
∂ρ > 0, ∂B

∂σ > 0, ∂B
∂γ < 0, ∂Eπ

∂β̂
< 0, ∂Eπ

∂β > 0 and ∂Eπ
∂ρ > 0.

Suppose that garages share information. We can obtain the equilibrium pricing strategy
p1 = A+B1x1 +B2x2, p2 = A+B2x1 +B1x2. We have

E (θ1|x1, x2) = E [E (θ1|x1, x2, θ2) |x1, x2]

= E [E (θ1|x1, θ2) |x1, x2] , (86)

with marginal distribution being θ1|θ2 ∼ N(ρθ2, σ
2
(
1− ρ2

)
),

E (θ1|x1, θ2) =
σ2
(
1− ρ2

)
σ2 (1− ρ2) + γ2

· x1 +
γ2ρθ2

σ2 (1− ρ2) + γ2
, (87)

E (θ1|x1, x2) =
σ2
(
1− ρ2

)
σ2 (1− ρ2) + γ2

· E (x1|x1, x2) +
γ2ρ

σ2 (1− ρ2) + γ2
· E (θ2|x1, x2)

=
σ2
(
1− ρ2

)
σ2 (1− ρ2) + γ2

· x1 +
γ2ρ

σ2 (1− ρ2) + γ2
· σ2

σ2 + γ2
· x2. (88)

E (θ1 |x1, x2 ) =
σ2

(σ2 + γ2)2 − (ρσ2)2

[
σ2
(
1− ρ2

)
+ γ2, ργ2

] [ x1

x2

]
.
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Garage i maximize expected payoff by taking first-order condition:

∂E (π1|x1, x2)

∂p1
= α−2β̂(A+B1x1+B2x2)+βE (A+B2x1 +B1x2|x1, x2)+E (θ1|x1, x2)+β̂c.

(89)
Matching coefficients:

α−
(

2β̂ − β
)
A+ β̂c = 0⇒ A =

α+ β̂c

2β̂ − β
, (90)

−2β̂(B1x1+B2x2)+βE (B2x1 +B1x2|x1, x2)+
σ2

(σ2 + γ2)2 − (ρσ2)2

[
σ2
(
1− ρ2

)
+ γ2, ργ2

] [ x1

x2

]
= 0

− 2β̂B1 + βB2 +
σ2

(σ2 + γ2)2 − (ρσ2)2 ·
[
σ2
(
1− ρ2

)
+ γ2

]
= 0, (91)

− 2β̂B2 + βB1 +
σ2

(σ2 + γ2)2 − (ρσ2)2 · ργ
2 = 0, (92)

which gives

B1 =
γ2(2β̂ + βρ) + 2β̂(1− ρ2)σ2

4β̂2 − β2

σ2

(σ2 + γ2)2 − (ρσ2)2 ,

B2 =
γ2(2β̂ρ+ β) + β(1− ρ2)σ2

4β̂2 − β2

σ2

(σ2 + γ2)2 − (ρσ2)2 . (93)

Since 2β̂ > β, garages respond positively toward signals.

Eπ = β̂

[
α− (β̂ − β)c

2β̂ − β

]2

+ β̂σ2 σ2(σ2 + γ2)[(
2β̂ − βρ

)
σ2 + 2β̂γ2

]2 . (94)

Eπ′ = β̂

[
α− (β̂ − β)c

2β̂ − β

]2

+ β̂σ2
(
B2

1 +B2
2 + 2ρB1B2

)
. (95)

Recall that E (θ1|x1, x2) has two parts, one associated with forecasting via x1, the
other associated with forecasting indirectly via x2, since θ1 and θ2 is correlated. We can
explicitly observe the corresponding information value in the expression of B1 and B2.
It can be checked that Eπ′ − Eπ > 0 as β/β̂ → 2, i.e., information sharing is desirable
when β/β̂ → 2. More comprehensive characterization can be obtained when γ → 0, as in
Proposition 1.
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Proof of Proposition 7.

Proof. For conciseness, we present the proof of proposition using a two-coalition formula-
tion. The proof naturally extends to the multiple-coalition cases.

We use a sequence of vector-matrix formulations to prove the proposition. To clarify
the notations, 〈·, ·〉 is the Frobenius inner product of two vectors/matrices of the same
dimension(s); zK = [z]K takes the subvector from vector z based on the index set K.
Suppose the two coalitions are denoted by index sets K1 and K2

Π (K1) = 〈dK1 , pK1 − cK1〉 = 〈αK1 − βK1?p+ θK1 , pK1 − cK1〉 .

Define Q := β +

[
β>K1K1

O

O β>K2K2

]
. Utilizing the expression of Q and the linear pricing

p = A+Bθ, we have Since E
[
θ|θN(K1)

]
= Σ?N(K1)Σ

−1
N(K1)N(K1)θN(K1), we have

∂Π (K1)

∂pK1

= −β>K1K1
(pK1 − cK1) + αK1 − βK1?p+ θK1

= [−Qp+ (Q− β) c+ α+ θ]K1
,

= [−QA+ (Q− β) c+ α+ (I −QB) θ]K1
.

E
[
∂Π (K1)

∂pK1

∣∣∣∣ θN(K1)

]
=
[
−QA+ (Q− β) c+ α+ (I −QB) Σ?N(K1)Σ

−1
N(K1)N(K1)θN(K1)

]
K1

.

Under the equilibrium pricing strategy, the R.H.S is 0 for every θN(K1). Therefore, we have

[−QA+ (Q− β) c]K1
= 0,

ΣK1N(K1) −QK1?BΣ?N(K1) = 0.

The same relations apply to K2 as well. Thus, we obtain (33) and (34). (The 0 entries in
B are enforced by the information structure.)

K1’s expected payoff given the information θN(K1) is

E
[
Π (K1)| θN(K1)

]
= E

[
〈αK1 − βK1?p+ θK1 , pK1 − cK1〉| θN(K1)

]
=

〈
E
[
αK1 − βK1?p+ θK1 | θN(K1)

]
, pK1 − cK1

〉
=

〈
β>K1K1

(pK1 − cK1) , pK1 − cK1

〉
.

The last equality follows from the equilibrium condition

E
[
∂Π (K1)

∂pK1

∣∣∣∣ θN(K1)

]
= E

[
−β>K1K1

(pK1 − cK1) + αK1 − βK1?p+ θK1

∣∣∣ θN(K1)

]
= 0.

17



Finally, the expected payoff is

Eθ [Π (K1)] = Eθ
[
Π (K1)| θN(K1)

]
= Eθ

[〈
β>K1K1

(pK1 − cK1) , pK1 − cK1

〉∣∣∣ θN(K1)

]
=

〈
β>K1K1

(AK1 − cK1) , AK1 − cK1

〉
+ Eθ

[〈
β>K1K1

BK1?θ,BK1?θ
〉]

〈
β>K1K1

(AK1 − cK1) , AK1 − cK1

〉
+
〈
BK1?ΣB

>
K1?, βK1K1

〉
.

This is equivalent to (36) and we conclude the proof. �

Proof of Proposition 8.

Proof. Let S = N\ {n} be the set group members, and n be the only agent outside the
info-sharing group. We need to prove the information value vn under this structure is less
than the value when all agents are in the group.

Bnn satisfies {
QSSBSSΣSS +QSnBnnΣnS − ΣSS = 0
QnSBSSΣSn +QnnBnnΣnn − Σnn = 0

. (96)

Eliminate BSS , we get

Bnn = −
QnSQ

−1
SSΣSn − Σnn

QnnΣnn −QnSQ−1
SSQSnΣnSΣ−1

SSΣSn

. (97)

Thus,

vn = βnnB
2
nnΣnn = βnn

(
QnSQ

−1
SSΣSn − Σnn

QnnΣnn −QnSQ−1
SSQSnΣnSΣ−1

SSΣSn

)2

Σnn. (98)

If all agents are in the group, utilizing the inverse of block matrix, we have

B̃n? =
[
Q−1

]
n?

= − 1

Qnn −QnSQ−1
SSQSn

[
QnSQ

−1
SS ,−1

]
. (99)

ṽn = βnnB̃n?ΣB̃
>
n? =

QnSQ
−1
SSΣSS

(
QnSQ

−1
SS

)> − 2QnSQ
−1
SSΣSn + Σnn(

Qnn −QnSQ−1
SSQSn

)2 · βnn (100)

Then, we prove vn < ṽn.

vn
βnn

=
(

QnSQ
−1
SSΣSn−Σnn

QnnΣnn−QnSQ
−1
SSQSnΣnSΣ−1

SSΣSn

)2

Σnn =
QnSQ

−1
SS

ΣSnΣnS
Σnn

(QnSQ
−1
SS)
>−2QnSQ

−1
SSΣSn+Σnn(

Qnn−QnSQ
−1
SSQSn

ΣnSΣ−1
SS

ΣSn
Σnn

)2

<
QnSQ

−1
SS

ΣSnΣnS
Σnn

(QnSQ
−1
SS)
>−2QnSQ

−1
SSΣSn+Σnn

(Qnn−QnSQ
−1
SSQSn)

2 <
QnSQ

−1
SSΣSS(QnSQ

−1
SS)
>−2QnSQ

−1
SSΣSn+Σnn

(Qnn−QnSQ
−1
SSQSn)

2 = ṽn
βnn

.

(101)
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The first inequality follows from
ΣnSΣ−1

SSΣSn

Σnn
< 1 (since Σ is positive definite) and Qnn,

QnSQ
−1
SSQSn, Qnn −QnSQ−1

SSQSn > 0. The second inequality holds since ΣSS − ΣSnΣnS
Σnn

is
positive definite.
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