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Extending the Automated Zoning Procedure to Reconcile Incompatible Zoning 

Systems 

 

Abstract.  This paper concerns the problem of matching incompatible zonal 

geographies, for example in the context of comparing census outputs over time.  The 

automated zoning procedure (AZP) proposed by Openshaw (1977) is reviewed and 

extended to permit its application to the intersection of two zonal systems.  A 

population stress statistic is proposed which may be used in the extended AZP 

algorithm in order to maximise the match between two zonal geographies.  An 

implementation of this approach is described, and illustrated by reference to UK 

Census data. 

  

1. Introduction 

 

A general problem in spatial analysis is that of reconciling data from two 

incompatible zonal systems.  This is a particular issue, for example, when comparing 

the results of two censuses where there has been change in statistical zone boundaries 

during the intercensal period or when comparing published data for one zonal 

geography with an alternative set of application-specific zones.  Previous approaches 

to this problem have included the production of lookup tables from manual records 

and address lists (Atkins et al., 1993); the development of areal interpolation 

techniques (Flowerdew and Green, 1991; 1992), and attempts to identify ‘tracts’ with 

constant boundaries within two incompatible systems of small zones (Morgan and 

Denham, 1982). This is a difficult problem, in which the ‘best’ solution may actually 

represent a complex trade-off between competing constraints.  This paper presents an 

automated zone matching (AZM) algorithm for the design of tracts, that is developed 

from Openshaw’s (1977) automated zoning procedure (AZP).  AZP is a 

computationally intensive procedure which seeks to optimize objectives such as 

minimum or target population sizes, zonal compactness or social homogeneity, 

iteratively recombining a large set of building block polygons into a smaller set of 

output areas.  AZM extends this approach by the introduction of an intermediate layer 

of boundary processing and a new objective function in order to minimize the 

mismatch between two input zonal geographies as part of the zone design process. 
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AZP is being applied to the results of the 2001 Census in England and Wales 

in order to create Output Areas (OAs) which are entirely separate from the system of 

Enumeration Districts (EDs) used for data collection.  This represents the first 

separation of collection and output geographies throughout the UK, and is described 

more fully in Martin (1998).  The advantages of such a procedure include its ability to 

offer uniform OA coverage using an explicit design methodology, something, which 

has always been problematic when using manual approaches to census area design.  

Such an approach does not, however, overcome the perennial (in the UK case) 

problem of changing zonal boundaries between successive censuses, which is the 

focus of the work presented here. 

 

The rest of this paper reviews the use of automated zone design procedures 

and relates them to the specific problem of matching two incompatible zonal 

geographies.  The need for such matching is reviewed, and the unsuitability of areal 

interpolation approaches explained.  A measure of population stress between two 

zonal systems is introduced and exact and approximate matching situations illustrated.  

These concepts are incorporated into a new zone design tool, and empirical 

applications are presented in urban and rural study areas in the UK.  Conclusions are 

drawn with regard to the utility of zone design tools for matching incompatible 

geographies, and the situations in which such an approach might be applied. 

 

2. Automated zone design 

 

Data describing the socioeconomic characteristics of populations, most 

typically from censuses, are conventionally collected and mapped for zonal units.  

The use of areal aggregations stems from data collection considerations; a 

requirement for counts for existing geographical areas and the need to preserve the 

confidentiality of individuals. A difficulty with most zonal geographies is that their 

relationship with the underlying population characteristics is undefined, resulting in 

the familiar modifiable areal unit problem (MAUP).  Openshaw (1984) argues 

strongly that the most appropriate response to the MAUP is to design purpose-specific 

zonal systems.  There is a long history of the modification of electoral geographies in 

order to achieve approximately equal political representation, and the automated 
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partitioning of geographical space in this context is discussed by Horn (1995) and 

Mehrotra et al. (1998). 

 

Openshaw’s (1977) Automated Zoning Procedure (AZP) provides a means to 

automate the process of designing a zonal system in order to maximise the value of 

some objective function.  The procedure is based on the iterative recombination of 

building block zones into output regions from an initial random aggregation (IRA) by 

examining the effect of swapping individual building blocks between output regions.  

Improving swaps are retained as part of the emerging solution and the IRA is thus 

refined to produce an ‘optimal’ boundary configuration, given a particular set of 

design constraints.  Important aspects of the implementation of AZP-type algorithms 

are the methodology used for the construction of the IRA, and the method used for the 

weighting and combination of the different constraints (each measured in different 

units) into a single objective function.  An essential part of the implementation of such 

zonal recombination is the maintenance of a contiguity matrix, allowing the 

identification of valid swaps between adjacent zones.  Practical implementation thus 

requires the use of a topologically structured GIS database. 

 

Application of these zone design methodologies to published census data is 

demonstrated by Openshaw and Rao (1995), who consider the ‘reengineering’ of 

1991 UK Census outputs by using enumeration districts (EDs) as input building 

blocks, assembling larger zones using a variety of objective criteria.  Openshaw and 

Alvanides (1999) demonstrate similar applications using a national application with 

ward-level data.  In both cases, the census user is encouraged to reaggregate the 

standard zones for which data are published to provide larger, purpose-specific zones 

designed according to clearly defined criteria. Openshaw and Rao (1995) discuss 

various search algorithms including the simple AZP, simulated annealing (SA) in 

which suboptimal swaps are permitted in the early stages of iteration, allowing the 

procedure to escape from potential local suboptima and a tabu search approach, in 

which recently tried swaps cannot be considered again until a certain number of 

iterations have elapsed.  There has also been consideration of parallel 

implementations of AZP, although the partitioning of the problem into independent 

spatial sub-regions is problematic due to the fact that a boundary reconfiguration may 

have ramifications across the whole of the problem space.  Software tools for the 



 4 

implementation of automated zone design include the SAGE package (Haining et al., 

1998; 2001) and ZD2K (http://www.ccg.leeds.ac.uk), the latter designed with the 

specific objective of providing a tool for the reaggregation of 2001 Census output 

geography. 

 

An automated zoning procedure has been adopted for the creation of 2001 

Census OAs in England, Wales and Northern Ireland. Scotland has a rather different 

trajectory, and will be creating its own OAs using an alternative methodology, 

designed to maximise compatibility with those used there in 1991, based on their 

membership of higher level areal units.  2001 OAs are being designed by the Census 

Offices after enumeration, coding and ‘one number census’ imputation are complete 

(ONS/GROS/NISRA, 1999), and represent a completely new subdivision of the 

country, separate from the ED-based collection geography.  The use of EDs for output 

in previous censuses has a number of weaknesses, including wide variations in 

population size (some EDs being too small to appear separately in the published 

tables) and a poor match to the widely used postal geography.  These difficulties may 

be significantly reduced by AZP using the smallest divisions of the postal geography 

as building blocks to design OAs with explicit target minimum threshold populations.  

This approach will create a larger number of smaller 2001 OAs than 1991 EDs, 

making them more amenable to use as building blocks in user-specific geographies.  

Automated zone design for 2001 Census processing is not the subject of this paper, 

having been discussed more fully in Martin (1997; 1998).   However, the way in 

which these new 2001 OAs are used is very relevant here. 

 

3. Matching zonal systems 

 

Census users are faced with many challenges, one of which relates to the 

matching of census output geography to other geographies.  This occurs where there 

is a need to compare published data with those from a previous census in order to 

examine change over time, and also where data need to be aggregated to other 

(usually larger) areal units which are important for research or policy purposes, but 

which cannot be assembled by neat aggregation of the census OAs.  The challenge is 

thus one of finding the ‘best match’ between two zonal geographies at a given scale of 

aggregation. 
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The usual approach to this problem in a research context has been to adopt 

some form of areal interpolation, and the terminology of ‘source’ zones (for which 

counts are currently held), ‘target’ zones (for which counts are required) and 

‘intermediate’ zones (the intersection of source and target zones) has become 

widespread.  Simple areal interpolation assumes that attribute values are uniformly 

distributed across the entire area of each zone, and may be redistributed from source 

zones to target zones in proportion to the areas of intersection.  This procedure is 

appropriate for ratios and percentages, and for when the zones are ‘natural’ areal units 

such as soil types or land use classes.  However, uniform population density very 

rarely occurs, and Flowerdew and Green (1991; 1992) suggest an enhanced approach 

which is able to take account of ancillary information in order to weight the 

interpolation process when count data such as population totals are to be estimated.  

An overview of interpolation methods for socioeconomic data is provided by 

Goodchild et al. (1993) and a comparison of methodologies by Fisher and Langford 

(1995).   Others have considered implementations of such techniques within specific 

software environments (Bloom et al., 1996); the use of specific ancillary variables 

(Langford et al., 1991; Xie, 1995) and enhanced algorithms (Mugglin et al., 1999; 

2000). Fundamentally, each of these is concerned with the statistical interpolation of 

data between zonal systems rather than the need for direct or approximate matching 

between zones: they make the best use of the existing zones rather than attempting 

zone redesign. 

 

The need to identify best matches between zonal geographies is of particular 

concern to those who for some reason are unable or unwilling to engage in areal 

interpolation, and who are therefore forced to reaggregate. Specifically, it is a 

challenge for data providers such as Census Offices and government departments who 

are required to report population statistics for different zonal geographies but who 

must always be conscious of the risk of differencing if data are released for slightly 

differing zones.  Although population thresholds may be applied to published data to 

prevent the inadvertent disclosure of information about individuals, the publication of 

above-threshold data for two slightly different geographies may result in the ability to 

produce data for sub-threshold intersections of these geographies (Duke-Williams and 

Rees, 1998).  These organizations may have access to the actual counts for both 
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source and target zones, but are unable to publish both sets due to the differencing 

risk.  Further, there may be many other situations in which a requirement to produce 

precise counts precludes the use of areal interpolation or weighted allocation from 

lookup tables. Lookup tables that include population counts in the overlaps between 

two sets of zones provide a very simple and useful tool for reallocation of population, 

but do not incorporate adjacency information, and provide information only at the 

lowest level of aggregation. 

 

In the UK, EDs are designed solely for census purposes and the combination 

of continual change in higher level administrative boundaries and new residential 

development cause large numbers of EDs to be changed between successive censuses.  

In England and Wales, only 44% of ED boundaries remained unchanged between the 

1971 and 1981 Censuses, and only 32% between 1981 and 1991 (again, the 

geography system in Scotland is rather different to that described here).  The new 

smaller OAs to be used for 2001 offer many advantages in terms of increased 

aggregation flexibility, but will produce even higher levels of boundary change, with 

very few 2001 OAs likely to be coterminous with 1991 EDs.  At the time of the 1981 

Census, a major manual effort was undertaken to identify small areas whose external 

boundaries were unchanged, resulting in 48,300 census tracts (mainly in urban areas) 

comprising aggregations of one or more 1971 and 1981 EDs which could be grouped 

to form areas with identical boundaries.  A further 10,700 parishes or communities 

were identified (mainly in rural areas of England, and in Wales) which remained 

largely unchanged between the two censuses (Morgan and Denham, 1982).  In 1991 

no such exercise was undertaken, leaving census users with no directly comparable 

small areas between 1981 and 1991.  Instead, a lookup table of 1991 EDs to 1981 

wards was created by an approximate methodology based on a combination of 

existing lookup tables and GIS analysis of centroids and boundaries (Atkins et al., 

1993).  It is this general problem of devising tracts for comparison between zonal 

geographies which is the focus of the rest of this paper, hence the term ‘automated 

zone matching’ (AZM). 

 

Development of the AZM concept requires some measure of the fit between 

two zonal systems containing population data, and it is proposed that this is most 

helpfully considered as the ‘stress’ between the two geographies which results from 
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population misallocation due to approximate matching of source and target zones. 

Such a stress value could be expressed in terms of any attribute of the zonal data, such 

as geographical area, but the concern here is with population counts and we shall 

therefore refer only to population stress in the remainder of this discussion.  Consider 

the example illustrated in Figure 1. When a zone from one (source) system is used to 

represent a zone from another (target), a perfect match would represent zero stress.  

As the match illustrated is approximate, both omission and commission errors may 

occur.   

 

In addition to the correctly matched population Pts, some population Pt which 

really belongs in target zone t is omitted, while other population Ps which belongs in 

the source zone s but not the target zone is incorrectly included.  The total population 

stress qt for zone t may be viewed as some measure of the omission and commission 

errors as a proportion of the true population.  Here, we use the sum of the squared 

omission and commission errors due to its approximation by zone s, divided by its 

true population, which is the sum of Pts (the correctly matched part) and Pt (the 

omitted part).  The errors are squared in this context in order to give greater weight to 

large misallocations that would be highly unattractive from a zone design perspective. 
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Such a measure may be used as an objective function in an AZP-type 

algorithm, such that it is minimized during the iterative recombination stage.  This is 

effectively an objective function for maximising the population match between two 

geographies.  It will be reduced to zero if a perfect match is achieved between the two 

zonal geographies.  In the aggregation of smaller to larger areal units within a perfect 

hierarchy, there is no population stress, as every member of the population may be 

correctly matched to a target zone on the basis of their source zone location.  Some 
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pairs of geographies are more similar than others. If minor boundary revisions are 

made to an administrative geography, but it retains the same number of zones, most of 

which are unchanged, the stress between the two systems will be small, with very few 

persons likely to have been reallocated between zones due to the revisions.  If, 

however, the first boundary set is replaced with another that subdivides the space in 

an entirely different way, there is likely to be high population stress, with great 

difficulty in approximating the populations of the new zones from the old.  This stress 

will tend to be at its highest when the source populations are high in relation to the 

target populations, and will vary at differing levels of aggregation according to the 

precise relationship between the input geographies. 

 

Haining et al. (2001) consider the provision of software tools for spatial 

analysis, and note that although there is a role for the incorporation of frequently-used 

functions within GIS software, specialist functions are probably best left to specialist 

software.  In this context, the ability to extract topological information from GIS is a 

very important consideration.  The work described in this paper has been implemented 

using a newly written AZM program, which embodies the original AZP and AZP-SA 

algorithms, combined with the necessary structures for boundary matching. AZM has 

been written in Visual Basic 6 and will run under Windows 95/NT 4 or later. As with 

Haining et al.’s (2001) SAGE software, it has been designed with polygon and arc 

attribute output from Arc/Info as the primary input, but will read the required 

topological information from any similarly formatted ASCII files. The program, 

including documentation, is available for download and experimentation from 

http://www.geog.soton.ac.uk/users/martindj/. 

 

While existing zone design tools, including the original AZP algorithm, 

effectively create an output geography from an input geography, this formulation 

requires a third, intermediate, layer.  Two input geographies are intersected in an 

external GIS and the attributes of the intersected polygons and arcs are supplied to the 

program to provide the input building block layer. It is thus necessary to maintain not 

only the contiguity matrices but the membership lists of each layer with respect to 

each other layer, making this task significantly more demanding than a conventional 

AZP problem in both conceptual and computational terms.  These concepts are 
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illustrated with reference to the series of Figures 3-6, all of which are based on the 

intersection of two input zonal geographies, A and B, illustrated in Figure 2.   

 

In each of the Figures 3-6 the first diagram (a) is the same, and shows the 

input zone layer resulting from the intersection of zonal geographies A and B.  The 

second diagram (b) in each sequence shows the intermediate layer following 

aggregation analysis and this forms the input to iterative recombination using some 

objective function. The ability to derive layer (b) from layer (c) is an entirely new 

feature of AZM compared to AZP.  The third diagram (c) represents a valid output 

layer from this processing.  The details of the associated populations and objective 

function are irrelevant here, the purpose being to illustrate the role of fixed and 

approximated geographies.  If neither input geography is fixed, the intermediate layer 

is the same as the input layer, the program implements a conventional zone design 

procedure, treating all the input building blocks as separate entities (Figure 3), in this 

case producing three output zones which cut across both the input geographies.  If one 

zonal geography is fixed (in this case B), then the smallest possible building blocks 

which nest exactly within each of the zones in that geography are aggregated to form 

intermediate building blocks (Figure 4) before recombination iteration, again resulting 

in three output zones, which respect B but cut across A.  If both zonal geographies are 

fixed, then a more complex aggregation analysis is required to find the smallest 

clusters of input building blocks which can be assembled from both input layers 

simultaneously without cutting across either (Figure 5).  No iterative recombination is 

required if the objective is to produce the smallest possible output zones.  A fourth 

scenario (Figure 6) is that in which one of the zonal geographies is fixed (in this case, 

A), and the design objective is to achieve the minimum population stress with 

geography B, using the stress measure introduced above.  The two zones of geography 

B in the upper half of the map are reproduced exactly, whereas those in the lower half 

cannot be exactly reconstructed from geography A, and the result is therefore 

approximate. 

 

If the objective is to achieve the best possible match between two zonal 

geographies, and this has priority over all other constraints, an initial non-random 

aggregation may be produced which begins to assign successive building blocks into 

tracts on the basis of the target zone to which they contribute the greatest proportion 
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of their population.  Using this simple allocation, similar to the use of a lookup table, 

the contiguity of the formative tracts must be monitored very carefully, as direct 

allocation will frequently result in non-contiguous tracts.  This computed low-stress 

solution will thus attempt to create an output tract corresponding with each zone to be 

matched.  Iteration may then be started from this configuration, which attempts to 

refine the solution in terms of any other design constraints that may be set.  This has 

the effect of giving the algorithm a starting position that is strongly biased in favour of 

a good match between the two zonal systems.  Alternatively, the population stress 

measure may be used in the same way as the other constraints in order to refine the 

output configuration from an initial pseudorandom aggregation. 

 

4. Application 

 

Two very different application areas have been selected for this study, to 

demonstrate the application of the zone matching approach in both urban and rural 

UK contexts.  The urban example is the City of Southampton, and the rural the 

County of Pembrokeshire.   

 

Southampton is a medium-sized city (1991 population 197 000) on the South 

Coast of England which at the time of the 1991 Census was divided into 417 

enumeration districts (EDs) nested within 15 wards. The Pembrokeshire study area 

represents a remote rural region, with small settlements and extensive areas of 

sparsely populated land.  Unlike the major metropolitan areas, rural areas in England 

and Wales have a further tier of local boundaries known as communities in Wales and 

parishes in England, which are to be respected in the construction of 2001 Census 

output areas (OAs).  The study area is slightly less than the entire county, being that 

part for which the Office for National Statistics (ONS) has created prototype 2001 

OAs.  It contained 308 1991 EDs, although it is important to distinguish here between 

EDs/OAs and polygons, as the county includes a number of offshore islands both 

populated and unpopulated, which are represented by separate polygons in the dataset.   

 

As part of preparation for the 2001 census, unit postcode polygons have been 

created around address locations by ONS for various test areas, including 

Southampton and Pembrokeshire.  Thiessen polygons have been generated around 
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each address, taking into account some additional topographic information, and 

boundaries dissolved between address polygons having a common postcode, in order 

to create a set of synthetic boundaries for the smallest units in the postal geography.  

These are based on 95 011 address locations in Southampton and 50 348 in 

Pembrokeshire. Using an implementation of the AZP algorithm, the postcodes have 

been grouped into 762 and 353 prototype OAs respectively, using the 2001 Census 

confidentiality thresholds of 100 persons and 40 households, and a target population 

of 250.  A simple tenure-based measure of homogeneity and square of perimeter 

divided by area constraints were applied in the production of these areas. Detailed 

2001 OA design considerations are discussed more fully in Martin et al. (2001).  The 

OA boundaries resulting from this combination of constraints are indicative of what 

might be released to UK census users early in 2003. 

  

All GIS-based boundary manipulation has been performed within Arc/Info.  

The 1991 ED and 2001 OA boundaries have been intersected, sliver polygons merged 

with the neighbour with which they share the longest common boundary, and 

addresses counted within each intersection polygon.  This results in intersection 

coverages containing 1 771 polygons in Southampton and 1 022 in Pembrokeshire, in 

which each polygon retains identifiers from both the ED and OA input layers. 

Polygon and arc attribute tables have been exported and used within the AZM 

program described above. In the following experiments 1999 address counts are used 

in lieu of actual 2001 population counts that are not yet known.  Figures 7 and 8 show 

the 1991 EDs and 2001 OAs for Southampton, and Figures 9 and 10 show the 

corresponding EDs and OAs for the Pembrokeshire study area. 

 

These datasets have been used to investigate a series of alternative zoning 

scenarios.  In each of these the OA boundaries are fixed in order to reproduce the 

situation that will face users of the 2001 Census data when they are published.  More 

experiments have been conducted with the Southampton data, as this represents a 

situation of considerably more complex boundary change between 1991 and 2001.   

 

In the first scenario, both the 1991 ED and 2001 OA boundaries are fixed, and 

test areas are divided into tracts which can be exactly constructed from either of the 

input geographies: these are equivalent of the 1971-81 tracts described by Morgan and 
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Denham (1982).   This is the equivalent of the zoning problem illustrated in Figure 5.  

No AZP iteration is required but AZM performs an analysis of intersection zones’ 

membership of the input geographies, and aggregation is conducted until tracts have 

been achieved which are exact aggregations of both input geographies. 

  

A series of further solutions are then sought at three different scales, 

corresponding approximately with the ward, the 1971-81 tract (the only empirical 

precedent for such an exercise in England and Wales) and the ED.  In each case, the 

2001 OA geography is fixed, but the solution may cut across the 1991 EDs, producing 

the equivalent problem to that introduced in Figure 6.  At each scale the AZM 

algorithm is run firstly with only population and shape controls set, then with 

population stress added as a design constraint and finally with a computed low stress 

solution as the initial configuration.  250 iterations have been run in each case.  The 

scales of analysis have been set by taking the mean address count for Southampton 

wards (6 333), 1971-81 tracts (4 000) and EDs (228), and setting these as the target 

populations.  A final option is to run the computed low stress solution without setting 

minimum or target populations and attempt to create a configuration in which there is 

one output tract corresponding to each zone of the approximated geography. 

 

5. Results 

 

The results of the detailed experiments are shown in Tables 1 and 2.  Table 1 

shows the results of the full range of zoning scenarios for Southampton and Table 2 

shows the results of only two experiments in Pembrokeshire. In the latter case it is 

much easier to achieve matches due to the higher degree of coincidence between ED 

and OA boundaries: this is due to the fact that in many cases both the ED and OA 

boundaries have actually been drawn to coincide with community boundaries.  The 

first four table columns describe the zoning constraints, being a description of the 

scenario used, the minimum and target populations set and whether the shape 

constraint was applied.  In the descriptions, 'A' indicates that the population stress 

measure has been applied to maximize the approximation, and 'I' indicates that the 

IRA has been replaced with a computed match configuration.  The last six columns 

describe the characteristics of the output geography, namely the number of tracts 

created, their mean population and standard deviation, and the percentages of 



 13 

approximated EDs preserved without splitting, and of population correctly assigned 

into a tract which matches between the two geographies.  

 

The simplest task is the intersection of 2001 OAs and 1991 EDs with both 

geographies fixed, represented by the first row in each table.  In this case, we are 

seeking the smallest output tracts that may be created precisely from both 

geographies. This processing is analytical and involves no iteration cycle, so the 

population and shape constraints are redundant. In Southampton, the large degree of 

boundary change from 1991 to 2001 leads to a subdivision of the city into 14 tracts 

with a mean address count of 6 787, which are broadly equivalent to the 15 wards, 

although some boundary change and development causes two pairs of wards to be 

merged and one small ‘island’ zone to be formed. This solution is illustrated in Figure 

11.  The equivalent scenario in Pembrokeshire is shown as Figure 12.  Here, the 

community boundaries are common to many 1991 EDs and 2001 OAs, allowing 82 

tracts to be produced with a mean address count of 614.  Due to this high degree of 

exact matching, the full range of approximate design scenarios has not been applied to 

the Pembrokeshire data. 

 

Table 1 clearly reveals that poorer results are obtained as the scale of the 

output tracts is reduced, with great difficulty encountered when the target size is small 

in relation to the OA size.  The final row in both tables 1 and 2 shows the results when 

no threshold or target are set and the shape constraint is not applied, but the initial 

configuration is simply computed so as to assign the population of each ED into the 

tract with which it has the greatest population overlap.  In both the Southampton and 

Pembrokeshire contexts, there is still some loss of zones, with fewer tracts returned in 

each case compared to the corresponding number of EDs.  Only 7% of EDs remain 

unsplit in Southampton and 30% in Pembrokeshire under this scenario. 

   

It is apparent that at all levels of aggregation the proportion of population 

correctly preserved is much higher than that of EDs which can be preserved intact in 

the output solution. Including population stress in competition with the population and 

shape constraints generally results in only small overall improvements to the match, 

possibly because it is only one of four equally- weighted competing factors and 
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therefore receives too low an emphasis in situations where matching is really the 

users’ intention.  

 

At each aggregation scale, the best matching results are obtained when a non-

random initial configuration is used to maximize the match between the two input 

geographies. This approach effectively forces the algorithm to begin with the best-

matching number of OAs to EDs, and the additional constraints serve only to refine 

this configuration.  At both the ward and tract scales, it is possible to achieve an 89% 

match in the populations – in other words a mean of 89% of the population of each 

1991 ED is correctly carried through to the grouping of 2001 OAs to which it is 

assigned.  

  

The 21 tract solution is presented as Figure 13, which illustrates the 

irregularity of shape which is necessary to achieve this level of matching, although 

this will have been increased by the relatively high population threshold in proportion 

to the target population.  Even this approach does not guarantee a single OA to match 

every ED as some may be split between a number of OAs, none of which contributes 

the majority of its population to that ED, and others may be below the population 

thresholds set for this exercise.  When an IRA is used, the algorithm proceeds to 

refine this by considering all the current constraints in parallel, and this has the effect 

of trading off target population size, shape and population stress.  The most 

appropriate choice will depend on the importance to the user of achieving maximal 

matching between the geographies. There will be many, particularly urban, situations 

in England and Wales in which a high degree of match is only possible at the cost of 

significant irregularity of shape and/or broad variations in the population of the tracts.  

Generally, the degree of matching possible improves with target population size, 

making the approximation areas at the scale of the ward and above feasible with 

relatively low levels of approximation using this methodology. 

 

6. Conclusion 

 

This paper has reviewed the problem of matching population data between 

incompatible areal units, frequently encountered when census and administrative 

geographies change over time.  The problem of maximising the goodness of fit of one 
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zonal system to another has been characterised as one of minimizing population 

stress, and a stress statistics has been proposed.  In certain situations, such as those in 

which both zonal geographies must be matched perfectly, the problem is one that may 

be solved analytically, but where it is necessary to approximate one geography by 

precise aggregation of another then the problem is more appropriately tackled with an 

iterative zoning procedure.  Openshaw’s (1977) AZP has been extended into an 

automated zone matching (AZM) algorithm by employing an intermediate boundary 

processing layer and a program written for its implementation. 

 

A series of practical trials have been illustrated using the 1991 and 2001 

Census geographies for Southampton and Pembrokeshire.  These illustrate that (for 

UK-specific historical reasons) it will be much easier to achieve exact census tracts in 

rural areas where both 1991 and 2001 geographies have been drawn with reference to 

a common set of community and parish boundaries.  In urban areas, the problem is 

complex, and there are no easy solutions or perfect matches but AZM offers an 

automated approach to the matching problem and allows an evaluation of the trade-off 

between resolution and precision in the creation of approximate tracts.  The 

implementation described here will offer the possibility of very rapid identification of 

the smallest exactly matching zones, avoiding the significant manual effort or indirect 

calculations characteristic of previous attempts to devise intercensal tracts. 
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Table 1:  Summary characteristics of Southampton tract geographies 

Scenario Min Target Shape Tracts Mean St Dev %EDs % Pop 

ED fixed N/A N/A Off 14 6 787 4 024 100 100 

Ward scale 5 000 6 333 On 15 6 334 392 44 84 

Ward scale A 5 000 6 333 On 15 6 334 459 51 86 

Ward scale A,I 5 000 6 333 On 15 6 334 897 52 89 

Tract scale  3 500 4 000 On 23 4 131 314 41 83 

Tract scale A 3 500 4 000 On 23 4 131 384 39 84 

Tract scale A,I 3 500 4 000 On 21 4 524 599 47 89 

ED scale 200 228 On 327 291 76 3 59 

ED scale A 200 228 On 323 294 76 3 59 

ED scale A,I 200 228 On 294 323 102 11 76 

Smallest possible N/A N/A Off 405 235 137 7 67 
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Table 2:  Summary characteristics of Pembrokeshire tract geographies 

Scenario Min Target Shape Tracts Mean St Dev %EDs % Pop 

ED fixed N/A N/A Off 82 614 539 100 100 

Smallest possible N/A N/A Off 233 216 129 30 77 
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  Target zone t 

Figure 1: Approximate match between a source zone s and target zone t 
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Figure 2: Two input zonal geographies, A and B 
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Figure 3: AZM with neither layer fixed 

Pts Ps 

Pt 



 22 

 

 

 

 

          (a)  (b)       (c) 

Figure 4: AZM with layer B fixed 

 

 

 

 

 

 

 

 

 

 

          (a)  (b)        (c) 

Figure 5: AZM with both layers fixed 

 

 

 

 

 

 

 

 

 

 

         (a)   (b)        (c)  

Figure 6: AZM with layer A fixed and layer B approximately matched 
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Figure 7: 1991 Census enumeration districts for the City of Southampton 

 

 

 

 

Figure 8: Prototype 2001 output areas for the City of Southampton 
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Figure 9: 1991 Census enumeration districts for the Pembrokeshire study area 

 

 

 

 
Figure 10: Prototype 2001 output areas for the Pembrokeshire study area 
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Figure 11: Exact aggregation of Southampton 1991 EDs and prototype 2001 OAs into tracts  

 

 

Figure 12: Exact aggregation of Pembrokeshire 1991 EDs and prototype 2001 OAs into tracts  

 

 

Figure 13: Approximate aggregation of Southampton OAs into tracts giving 89% population match 

with EDs 
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