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ABSTRACT
Ice Ih, the common form of ice in the biosphere, contains proton disorder. Its proton-
ordered counterpart, ice XI, is thermodynamically stable below 72 K. However, even
below this temperature the formation of ice XI is kinetically hindered and experi-
mentally it is obtained by doping ice with KOH. Doping creates ionic defects that
promote the migration of protons and the associated change in proton configura-
tion. In this article, we mimic the effect of doping in molecular dynamics simulations
using a bias potential that enhances the formation of ionic defects. The recombi-
nation of the ions thus formed proceeds through fast migration of the hydroxide
and results in the jump of protons along a hydrogen bond loop. This provides a
physical and expedite way to change the proton configuration, and to accelerate dif-
fusion in proton configuration space. A key ingredient of this approach is a machine
learning potential trained with density functional theory data and capable of mod-
eling molecular dissociation. We exemplify the usefulness of this idea by studying
the order-disorder transition using an appropriate order parameter to distinguish
the proton environments in ice Ih and XI. We calculate the changes in free energy,
enthalpy, and entropy associated with the transition. Our estimated entropy agrees
with experiment within the error bars of our calculation.

1. Introduction

By 1933 there was a growing body of evidence that calorimetric and spectroscopic
determinations of the entropy of water did not agree with each other(1 , 2 ). The cru-
cial assumption of calorimetric measurements (later to be proven wrong) was that the
third law of thermodynamics was valid for ice, i.e. at 0 K the entropy of ice had to be
zero. It was also known from x-ray diffraction experiments that oxygen atoms in ice
had the structure that we now call hexagonal diamond with each oxygen tetrahedrally
coordinated(3 ). However, Bernal and Fowler(4 ) had pointed out in 1933 that it was
conceivable that the orientation of water molecules in ice could be random while main-
taining the periodic arrangement of oxygen atoms in the lattice. They thus proposed
the ice rules stating that, even in presence of disorder in the molecular orientations,
each pair of oxygen nearest neighbors share only one hydrogen atom, and each oxygen
atom has two strongly bonded and two weakly bonded hydrogen atoms. The next
step forward came from Pauling(5 ) in 1935 who made a famous back-of-the-envelope
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calculation showing that the disorder of hydrogen atoms (protons) gave rise to a resid-
ual entropy in good agreement with the entropy inferred from spectroscopy. Pauling’s
calculation reconciled spectroscopic and calorimetric measurements, and bolstered the
hypothesis that ice had proton disorder. Later, his estimate of the entropic contribu-
tion from proton disorder was subject to several refinements(6 , 7 ). The solid form of
water that we have so far simply referred to as ice, is nowadays called ice Ih since a
large number of other ice polymorphs have since been discovered.

A proton ordered counterpart of ice Ih is a consequence of the third law of thermody-
namics, yet for many years there was no experimental confirmation of its existence. In
the context of the study of the dielectric properties of ice, Bjerrum(8 ), Onsager(9 ), and
others realized that strict adherence to the ice rules could kinetically hinder changes
in proton configuration. They then proposed mechanisms that could alter the proton
configuration due to the presence of defects that locally violate the ice rules. These
defects are the Bjerrum and ionic defects (OH– and H3O+). Onsager also surmised
that doping ice with HF could increase the number of ionic and Bjerrum defects, and
thus facilitate this process(10 ). Tajima et al. showed in 1982 that it was possible to
obtain a ferroelectric proton-ordered form by doping ice with KOH instead of HF(11 ).
Subsequently, the structure of the proton ordered form was completely determined(12 )
and the polymorph is now called ice XI. This polymorph is now believed to be more
stable than ice Ih below 72 K at ambient pressure(11 ).

Molecular simulations are a useful tool to obtain microscopic insight into physic-
ochemical phenomena and several works have been devoted to the study of the ice
Ih/XI transition. Many of these aimed at calculating the residual entropy of ice Ih us-
ing structurally accurate models in combination with simplified energy models(13 , 14 ).
The subtle variation of energy of different proton configurations has been studied by
Buch et al. using a polarizable water potential(15 ) and by Singer et al. using density-
functional theory (DFT) and graph invariants(16 ). Sampling proton configurations in
realistic molecular simulations is difficult as these simulations suffer from the same
limitation of experiments regarding the kinetic hindrance of changes in proton config-
uration. In a pioneering simulation of ice in 1972, Rahman and Stillinger devised an
algorithm to change the proton configuration by displacing protons along hydrogen-
bond loops(17 ). This type of algorithm has often been used in the context of Monte
Carlo simulations(18–21 ). Recently, Lasave et al. have studied the ice Ih/XI transition
using replica-exchange Monte Carlo simulation of a spin-like Hamiltonian explicitly in-
troducing ionic defects(22 ).

Here, we aim at studying the ice Ih/XI transition within molecular dynamics simu-
lations. Our work contains at least two elements of novelty. First, we employ a machine
learning potential trained with density-functional theory data. Therefore our model is
able to describe the subtle variation in energy between different proton configurations
and also the dissociation of the water molecule. Second, we employ enhanced sam-
pling methods in order to accelerate changes in proton configuration. Our approach is
based on the introduction of a bias potential that promotes the formation of oxygen
atoms with three-fold proton coordination. This procedure leads to proton jumps along
hydrogen-bond loops that result in changes of the proton configuration. At variance
with other approaches, our method does not create permanent ionic defects in the
structure of ice. We then take advantage of the enhanced diffusion in proton config-
uration space to study the ice Ih/XI transition using an order parameter tailored for
that purpose.
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2. Methods

2.1. Machine learning model for water

One of the fundamental ingredients of our approach is a model of water able to describe
the self-ionization and the proton transfer process. We employ a machine learning
model of water(23 ) built using the DeePMD framework(24 , 25 ). The model is based
on deep neural networks and was trained with density functional theory (DFT) data
obtained by adopting the strongly constrained and appropriately normed (SCAN)
functional. Further details of the model are provided in ref. (23 ).

We used systems of 96 water molecules. Simulations were performed in the
isothermal-isobaric ensemble and we employed a timestep of 0.5 fs. The temperature
was kept constant using the stochastic velocity rescaling thermostat with a relaxation
time of 0.1 ps. The pressure was maintained at 1 bar using an anisotropic Parrinello-
Rahman barostat. Even though the sides of the box were allowed to change, the angles
were fixed at 90o. All simulations were performed using the molecular dynamics engine
LAMMPS(26 ) driven by the DeePMD-kit(27 ).

2.2. Enhanced sampling using a variational principle

In this work we focus on two processes: the formation of ionic defects and the change
in proton configuration to drive the transformation from ice Ih to ice XI. These pro-
cesses are rare events in the scale of a molecular dynamics simulation and we thus
have to resort to techniques to accelerate them. Enhanced sampling methods aim
at increasing the probability to observe rare but crucial fluctuations. Here we take
advantage of the variationally enhanced sampling (VES) method introduced by Vals-
son and Parrinello(28 ). This method is similar in spirit to umbrella sampling(29 ) or
metadynamics(30 , 31 ), and is based on the introduction of a bias potential V (s) that
is a function of a set of collective variables (CVs) s. The CVs are continuous and
differentiable functions of the atomic coordinates R and are chosen to describe the
evolution of the process under study. At the core of the VES method is a functional
of V (s), and it can be shown that the minimum of this functional is reached for

V (s) = −F (s)− 1

β
log p(s), (1)

where F (s) = −(1/β) log
∫
dR δ(s − s(R))e−β[U(R)+PV] is the free energy, β is the

inverse temperature, U(R) is the potential energy, P is the pressure, V is the volume,
and p(s) is the target probability distribution of the CVs. p(s) has to be chosen properly
in order to surmount free energy barriers and increase the probability of observing rare
configurations. Typical choices of p(s) are the uniform distribution p(s) = const and
the well-tempered distribution(32 , 33 ) p(s) = P (s)1/γ where γ ≥ 1 is the bias factor
and P (s) =

∫
dR δ(s− s(R))e−β[U(R)+PV] is the unbiased distribution of the CVs.

In practice, one has to expand the bias potential in basis functions and the expan-
sion parameters are determined using an algorithm akin to stochastic gradient descent.
Further details can be found in ref. (28 ). We employed Legendre polynomials and the
well-tempered target distribution. Multiple walkers were used to improve the conver-
gence of the bias potential. The PLUMED enhanced sampling plugin(34–36 ) was used
in tandem with LAMMPS in order to determine and apply the bias potential.

The bias potential alters the probability of observing a given configuration, and
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Figure 1. Radial distribution function gOH(r) between oxygen and hydrogen atoms and switching function
f(r) used to calculate the coordination number of hydrogen with oxygen. The environment around an oxygen

atom shows a case in which the ice rules are satisfied, i.e. there are two hydrogen atoms at ∼ 1 Å and another

two hydrogen atoms at ∼ 1.7 Å. Therefore the coordination number computed using f(r) is ∼ 2 in this case.
Oxygen and hydrogen atoms shown in red and white, respectively.

therefore the calculation of observables requires special attention. A thorough discus-
sion on the calculation of observables using the reweighting technique has been given
in refs. (37–39 ).

2.3. Collective variable to enhance the formation of ionic defects

The simplest ionic defects are the hydronium H3O+ and hydroxide OH– ions. More
complex entities such as the Zundel ion H5O +

2 and the Eigen ion H9O +
4 are also

possible, which, however, represent only limiting or ideal structures(40 ). In order to
promote the formation of these defects it seems natural to consider the coordination
number of each oxygen with hydrogen.

The coordination number of the i−th oxygen is,

ni =
∑
j∈H

f(rij), (2)

where rij is the norm of the distance between oxygen atom i and hydrogen atom j,
and f(rij) is a continuous and differentiable switching function that is one at short
distance and zero at distances larger than some radius rmax. For our simulations we
have chosen,

f(y) =


1 if y < 0

(y − 1)2(1 + 2y) if 0 < y < 1

0 if y > 1

, (3)

where y = (r − r0)/(rmax − r0), r0 is a distance below which all hydrogen atoms are
considered neighbors, and beyond the distance rmax all hydrogen atoms are ignored.
For the model studied here, the first and second peaks of the O-H radial distribution
function gOH(r) are located at around 1 and 1.7 Å as shown in Figure 1. These peaks
correspond to the two strongly bonded and two weakly bonded protons considered in
the ice rules (see oxygen environment in Figure 1). Based on this information we have
used r0 = 1 Å and rmax = 1.5 Å. The switching function f(r) based on this choice is
shown in Figure 1. Therefore, ni ≈ 2 if the ice rules are satisfied.

By promoting changes in the coordination number we will create local deviations
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from the ice rules. We now consider the number of oxygen atoms that have a coor-
dination number larger than two. This is equivalent to the number of oxygen atoms
with three-fold hydrogen coordination since coordination numbers larger than three
were not observed. Thus, we use the notation NH3O. This quantity can be written as,

NH3O =
∑
i∈O

θ(ni − n0) (4)

where θ(ni − n0) is a characteristic function such that θ(ni − n0) = 0 if ni < n0

and θ(ni − n0) = 1 if ni > n0. We choose n0 = 2.5 in order to count the number
of oxygen atoms that have a coordination number larger than two. NH3O can also be
made continuous and differentiable by replacing θ(ni − n0) by a suitable switching
function,

NH3O =
∑
i∈O

xp − xq

1− xq
, (5)

where N is the total number of oxygen atoms, x = ni/n0, and the exponents p and
q control the steepness of the switching function. The choice p = 24, q = 48 provides
a good compromise between a clear separation of oxygen atoms with ni = 2 and
ni = 3, and a smooth transition from zero to one in the switching function. We shall
use this definition of NH3O as a collective variable in the VES formalism to promote
the formation of ionic defects with excess protons. The formation and subsequent
migration of the ionic defects will lead to changes in proton configuration.

2.4. Collective variable to drive the ice Ih/XI transition

Now that we have discussed how to promote changes in proton configuration, we turn
our attention to the transformation of ice Ih into ice XI. In this section we describe an
order parameter that distinguishes ice Ih from ice XI. Both polymorphs share the same
structure of the oxygen atoms yet differ in the position of the protons. The positions of
the protons in ice XI are uniquely defined since it is an ordered structure. However, the
hexagonal diamond structure of the oxygen sublattice has four different environments
(the number of molecules in the primitive cell of ice Ih is four) and we will have to
characterize each of them. Furthermore, ferroeletric ice XI has two possible orientations
with opposite dipole moments within the same sublattice of oxygen atoms. This results
from the mirror symmetry with respect to the basal plane. The symmetry between the
two possible orientations leads to spontaneous symmetry breaking, i.e. the two states
are degenerate and the system will choose one of them during the transformation.

In order to describe the local structure of ice XI we shall use four environments X↑ =
{χ↑1, χ

↑
2, χ
↑
3, χ
↑
4} for the up orientation (↑) of the dipole moment, and four environments

X↓ = {χ↓1, χ
↓
2, χ
↓
3, χ
↓
4} for the down orientation (↓). These environments are shown

in Figure 2. Using these environments we can construct a similarity measure(41 )
using a similarity kernel(42 ). This type of similarity measure has been used to study
the crystallization of simple metals(42 ), of ice Ih(38 ), and of several polymorphs of
gallium(43 ). We restrict the following discussion to the ↑ variant of ice XI although
the same discussion applies to the ↓ variant. We define the kernel between the four
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Figure 2. Environments around oxygen atoms in ice XI. There are four environments X↑ = {χ↑
1, χ

↑
2, χ

↑
3, χ

↑
4}

for the up orientation (↑) of the dipole moment, and four environments X↓ = {χ↓
1, χ

↓
2, χ

↓
3, χ

↓
4} for the down

orientation (↓) of the dipole moment.

reference environments χ↑l ∈ X
↑ and a generic environment χ,

kχ↑
l
(χ) =

∫
ρχ↑

l
(r)ρχ(r) dr, (6)

where ρχ↑
l
(r) and ρχ(r) are the atomic densities corresponding to the environments

χ↑l and χ, respectively. We shall represent the density using sums of Gaussians with
spread σ, centered at the neighbors’ positions, and rewrite the kernel as:

kχ↑
l
(χ) =

1

n

∑
i∈χ↑

l

∑
j∈χ

exp

(
−|r

l
i − rj |2

4σ2

)
, (7)

where n is the number of neighbors in the environment χ↑l , and rli and rj are the

positions of the neighbors in environments χ↑l and χ, respectively. In Eq. (7) we have
included a normalization such that kχ↑

l
(χl) = 1. Now we have four similarity kernels

that allow us to identify whether a given environment is compatible with one of the
four proton environments in ice XI. A similarity measure between a given environment
and any of the four proton environments in the ↑ variant of ice XI is,

kX↑(χ) = max{kχ↑
1
(χ), kχ↑

2
(χ), kχ↑

3
(χ), kχ↑

4
(χ)}. (8)

In Figure 3 we show the distribution of kX↑(χ) and kX↓(χ) in ice Ih, ice XI ↑, and ice
XI ↓ at 300 K. Since ice Ih can have any environment compatible with the ice rules,
there is a variety of environments that give rise to three peaks in the distribution of
kX↑(χ) and kX↓(χ). This is expected since Ih might contain some of the environments
that exist in ice XI. The interpretation of the distribution in ice XI is straightforward.
In ice XI ↑ the kernel kX↑(χ) recognizes all environments as compatible with those of
ice XI ↑ and the kernel kX↓(χ) founds little or no similarity with the environments of
ice XI ↑. The converse is true for the distributions in ice XI ↓.
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Figure 3. Distribution of the similarity kernels kX↑ (χ) and kX↓ (χ) in ice Ih, ice XI ↑, and ice XI ↓ at 300
K.

These kernels characterize the environment around a single atom. However, for
a system with N water molecules there will be N oxygen-hydrogen environments
χ1, χ2, ..., χN . We consider the average value of the kernel,

k̄↑ =

N∑
i=1

kX↑(χi)

N
, (9)

and the number of environments consistent with the ↑ variant of ice XI,

n↑XI = {number of χi : kX↑(χi) > κ}, (10)

where κ is a threshold separating the values of kX↑(χi) consistent with ice Ih and those
consistent with ice XI.

These global order parameters are restricted to one of the variants of ice XI. We
can also define an order parameter akin to the one used in Landau’s theory of phase
transitions(44 ),

k̄ = k̄↑ − k̄↓ (11)

that satisfies k̄ ≈ 0 in ice Ih (the disordered phase), k̄ > 0 in the ↑ variant of ice XI,
and k̄ < 0 in the ↓ variant of ice XI. This order parameter is able to distinguish the two
variants of ice XI. However, both variants are equivalent by symmetry and therefore
thermodynamic properties, such as, e.g. the free energy, as a function of k̄ must be
even functions. It is convenient to include this symmetry in the order parameter using

|k̄| = |k̄↑ − k̄↓| (12)

that satisfies |k̄| ≈ 0 in ice Ih, and |k̄| > 0 in ice XI. We shall see that better resolution
of the local changes in structure can be achieved using

|nXI| = |n↑XI − n
↓
XI|. (13)
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It is easy to see that |nXI| ≈ 0 in ice Ih, and |nXI| ≈ N in ice XI. We will use a
continuous and differentiable version of nXI to construct a bias potential with the
VES framework (see reference (38 ) for details).

3. Results and discussion

We performed a 1 ns long unbiased molecular dynamics simulation of ice XI at 300
K. In Figure 4 we show the number of H3O-like defects in the system as a function
of simulation time. The number of H3O-like defects can be calculated using Eq. (5)
and replacing f(r) with a step function at 1.25 Å. We observed that the number of
H3O-like defects remained close to zero throughout the simulation, implying that the
ice rules were always satisfied and that no ionic defects were spontaneously created.

We then introduced a bias potential as a function of the collective variable NH3O

defined in Eq. (5). The bias potential was optimized to target the well-tempered dis-
tribution with bias factor 50. After 250 ps the bias was quasi-static, well-converged
and the system explored a number of H3O-like defects varying from zero to around
ten as shown in Figure 4. An inspection of the proton configuration at around 750 ps
after the bias potential was introduced, shows that the ordered proton configuration
of ice XI has changed to a disordered configuration (see snapshot in Figure 4). We
also observed that the defects created by the bias potential are not isolated H3O-like
entities but rather they involve larger numbers of oxygen atoms along hydrogen bond
loops or strings (see snapshot in Figure 4). From the simulation we can also compute
the free energy associated with the creation of different numbers of H3O-like defects.
The formation of a single H3O defect has a free energy cost of around 30 kJ/mol. This
free energy should not be confused with the formation free energy of a H3O+ - OH–

pair, since in this case the two ions must be well separated.
We now turn to study the mechanism by which changes in proton configuration

are achieved. To this end we analyzed the first proton jumps along a hydrogen-bond
loop observed during the biased simulation. This event is shown with snapshots of the
system’s configuration in Figure 5. Initially, the proton configuration is ordered and
corresponds to ice XI. After 7.5 ps there are fluctuations that promote the sharing of
a proton by two oxygen atoms, yet there is not a clear spatial separation of charge in
the system. The change in proton configuration is triggered at 14 ps by the formation
of an H7O +

3 cation and an OH– anion that leads to the first proton jump and charge
separation. Further proton jumps occur in the next few ps as the OH– propagates
along a hydrogen bond chain. After the initial proton jump, the H7O +

3 seems to
transform into a H5O +

2 (Zundel) cation. However, the initial formation of the H7O +
3

cation does not seem to be crucial since in other events we observed only the Zundel
ion. The snapshot at 18.25 ps shows evidence of collective behavior in the diffusion of
the OH– anion since at least three water molecules seem to be involved in a concerted
proton jump. At 19.5 ps no ion is observed along this hydrogen-bond loop, but a
new pair of Zundel and OH– has formed elsewhere in the simulation box. Further
events follow a similar mechanism. While most proton jumps are a consequence of the
diffusion of the OH– anion, the diffusion of the Zundel cation results in two proton
jumps. A total of 16 proton jumps occur in a time span of around 5.5 ps. We also
analyzed the displacement of the protons and found that after 1 ns around 60 % of
the protons have been displaced from their original positions.

The analysis above implies a higher mobility of the OH– ion than of the H3O+

ion in ice Ih. As a matter of fact, we can calculate the ratio of the diffusion coeffi-
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Figure 4. Number of H3O-like defects as a function of simulation time. After 1 ns of unbiased simulation,
a bias potential is introduced to enhance the formation of ionic defects. Trajectories of four multiple walkers

are concatenated for the biased portion of the results. The free energy as a function of the number of H3O-like

defects is also shown. The initial ice XI configuration is shown below and the proton ordered structure can be
seen. After 750 ps of biased simulation the configuration shows proton disorder compatible with ice Ih. Oxygen

atoms are shown in red and hydrogen atoms are shown in white. H3O defects are shown with red spheres.

cients from the limited number of jumps described above to be DOH– /DH3O+ ≈ 6.
This result would be in stark contrast with the situation in liquid water. There is
significant evidence that the diffusion of H3O+ in liquid water is almost two times
faster than the diffusion of OH– (45 , 46 ), i.e. DOH– /DH3O+ ≈ 0.5. This behavior in
liquid water has been attributed to a stabilized hypercoordinated solvation structure
around OH– (47 , 48 ). In ice Ih the formation of such a structure is not allowed as
a consequence of the crystalline structure of oxygen atoms. As far as we know, to
date there is no experimental evidence that DOH– > DH3O+ in ice. The availability

of data on the diffusion coefficient of OH– and H3O+ in ice is limited compared to
corresponding data for liquid water(49 ). The limited data is a result of experimen-
tal difficulties, and the fact that the charge transport in ice supposedly involves not
only the ionic defects OH– and H3O+, but also the Bjerrum L and D defects(49 ). As
a result of these issues, the estimations of the steady-state conductivity and of the
diffusion coefficients of ionic defects can vary over several orders of magnitude(49 ).
From the event that we have analyzed, we can also calculate approximately the jump
frequencies and diffusion coefficients of OH– and H3O+ that we report in Table 1.
Onsager and Dupuis(9 ) estimated the sum of the jump frequencies, but their result
relies on disputed measurements of the steady-state conductivity(49 ).

The phase transformation from ice XI to ice Ih entails a change in the total dipole
moment. However, flipping all protons along a hydrogen bond loop contained in the
simulation box, conserves the dipole moment of the system. In our simulations we
observe also winding loops, i.e. loops that end in a different periodic image of the
system. Flipping protons along winding loops does change the total dipole moment and
allows the system to undergo the ice XI/Ih transition. Even though real systems do not
have periodic boundary conditions, one can surmise a similar mechanism for changes

9



Figure 5. Sequence of configurations that illustrate the mechanism by which changes in proton configurations

are achieved. Oxygen and hydrogen atoms are shown in red and white, respectively. H3O and OH defects are
shown with red and blue spheres. Protons that have jumped with respect to their initial configurations are

shown in green.

in proton configuration in real systems provided that there are internal surfaces or
defects that can act as sources and sinks of ionic defects.

We can also use the order parameter k̄ defined in Eq. (11) to analyze the change
from the ordered proton configuration of ice XI to a disordered proton configuration.
In Figure 6 we show k̄ as a function of simulation time in a biased simulation starting
from ice XI and another one starting from ice Ih. The biased simulation that starts
from ice Ih has a k̄ ∼ 0 throughout the simulation in spite of the changes in proton
configuration. On the other hand, the biased simulation that starts from the ↑ variant
of ice XI has an initial value of around k̄ ∼ 0.65 but within 200 ps reaches k̄ ∼ 0 and
preserves that value throughout the rest of the simulation. An unbiased simulation
would show no changes in k̄ since no changes in proton configurations occur in this
case.

The analysis in Figure 6 shows also that promoting changes in the proton config-
uration by itself does not suffice to observe reversible transitions between ice Ih and
ice XI. For this reason, we introduced another bias potential using VES and |nXI| as
CV. In Figure 7 we show |nXI| as a function of time at 200, 250, and 300 K. The
bias potential allows the system to explore reversibly ordered and disordered proton
configurations. |nXI| ∼ 0 corresponds to ice Ih and |nXI| ∼ 96 corresponds to ice XI.
The number of transitions between the ordered and disordered proton configurations

Table 1. Jump frequency ν and diffusion coefficient D of ionic defects at 300 K (based on very limited
information of one OH– -H3O+ recombination event). The diffusion coefficient is calculated using the formula
D = νd2/6 with d = 2.76 Å the interoxygen distance.

ν (ps−1) D (10−8 m2/s)
OH– ∼ 2.5 ∼ 3.2
H3O+ ∼ 0.4 ∼ 0.5
OH– + H3O+ ∼ 2.9 ∼ 3.7
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Figure 6. Order parameter k̄ as a function of simulation time at 300 K. The biased simulation that starts
from the ↑ variant of ice XI evolves to a disorder proton structure compatible with ice Ih after around 200 ps.

k̄ in the biased simulation starting from ice Ih does not see appreciable changes in its value.

Figure 7. Order parameter |nXI| as a function of simulation time. Simulations at 200, 250, and 300 K are
shown. The trajectories of eight multiple walkers were concatenated to make the plots.

falls sharply as the temperature is lowered from 300 K to 200 K. We attribute the drop
in the number of transitions to the slower creation of ionic defects at low temperature.
For this reason we did not study lower temperatures. It is possible that changing the
definition of the switching functions used to define the collective variables could help to
further enhance the creation of ionic defects. An approach like parallel tempering(50 )
could also be used to study lower temperatures.

From the simulations described above we can calculate the free energy as a function
of k̄ and nXI using reweighting. These functions are plotted in Figure 8 and bear
similarity to Landau free energy profiles above the critical temperature. We have
enforced the even parity of the free energy required by symmetry. The minimum of
the free energy is located at nXI ∼ 0 and k̄ ∼ 0. Thus, ice Ih is the most stable phase at
the temperatures studied here. In the free energy as a function of k̄ there is a shallow
minimum at around |k̄| ∼ 0.7 that corresponds to ice XI. This minimum is shifted to
higher values of |k̄| as the temperature is lowered as a consequence of reduced thermal
fluctuations. On the other hand, in the free energy as a function of nXI the ice XI
minimum is precisely located at |nXI| = 96 at all temperatures. Furthermore, there is
a barrier that separates ice XI from other proton configurations that was not observed
when k̄ was used as order parameter. For this reason, we conclude that nXI provides
a greater resolution of the proton configurations in our simulation. The existence of a
barrier separating the two phases is also the hallmark of a first order phase transition,
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Figure 8. Free energy as a function of the order parameters k̄ and nXI.

and there is experimental evidence that the transformation is indeed of first order(12 ).
There are also systematic shallow minima that cannot be ascribed to the statistical
uncertainty. These minima are located at |nXI| ∼ 80 and |k̄| ∼ 0.6. A visual inspection
of the configurations shows that they correspond to ordered layers of protons that are
likely stabilized by the periodic boundary conditions used in the simulations.

We also calculated the difference in chemical potential µXI−µIh and enthalpy HXI−
HIh between ice XI and Ih using reweighting. The results are shown as a function of
temperature in Figure 9. Although our calculations were performed at relatively high
temperature, we can extrapolate the results at low temperatures by fitting a straight
line to µXI − µIh. Based on this extrapolation we obtain a transition temperature of
around 50 K for the machine learning model based on the SCAN functional employed
here. HXI−HIh seems fairly independent of the temperature and has an average value
of 180 J/mol. This difference in enthalpy is in good agreement with the experimental
result 168 J/mol from calorimetric measurements(51 ). We also calculated HXI −HIh

at 0 K by an energy minimization with respect to the atomic coordinates and the box
tensor, and obtained HXI − HIh = 230 J/mol. Using this value for the enthalpy and
a theoretical estimate for the residual entropy of 0.410 kB (6 ), a somewhat higher
transition temperature of 67.5 K is obtained. The agreement with the experimental
value of 72 K is particularly good for the latter estimate.

From the thermodynamic relation ∆S = (∆H −∆G)/T we can also calculate the
entropy. In Figure 9 we show the residual entropy S0 at the three temperatures studied
here. The residual entropy is independent of temperature within error bars, and the
mean value is S0 = 0.417(6) kB if only the simulations at 250 and 300 K are considered.
This value can be compared with the result of Pauling’s (5 ) mean-field calculation
S0 = 0.405 kB, Nagle’s(6 ) calculation S0 = 0.410 kB using a series expansion method
that takes into account some hydrogen-bond loops(7 ), and the experimental result(5 )
S0 = 0.41(3) kB. We note that Pauling’s result is a lower bound for S0 (9 ), while
Nagle’s result is an improvement over Pauling’s calculation yet neglects energy effects.
Our calculation includes energy effects but is affected by the finite size of the system.
Finite size effects tend to increase the residual entropy as shown by Herrero and
Ramirez(14 ) and Berg et al.(13 ), and for this reason our calculation is an upper
bound for S0 We stress that our result agrees with the experiment within the error
bars.
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Figure 9. Above) Difference in chemical potential µXI−µIh and enthalpy HXI−HIh between ice XI and Ih.

The lines were fit to the data at 200, 250, and 300 K. We have included the enthalpy at 0 K calculated from
structure optimizations of ice XI and Ih. Below) Difference in entropy between ice XI and Ih (residual entropy)

calculated from the simulations at difference temperatures. Estimations due to Pauling(5 ) and Nagle(6 ) are

also shown.

4. Conclusions

We presented a method to accelerate changes in proton configurations in molecular dy-
namics simulations based on introducing a bias potential that promotes the formation
of ionic defects. This approach provides an alternative to the Monte Carlo algorithm
often used to sample proton configurations(17–19 ). We analyzed the mechanism of
the changes in proton configuration. We found that the initial charge separation in
the system is a result of the formation of an H7O +

3 or H5O +
2 (Zundel) cation, and a

OH– anion. After the charge separation, most proton jumps along a hydrogen bond
loop are a result of the diffusion of the OH– anion. We also found evidence of collec-
tive behavior in the diffusion of the OH– anion with at least three water molecules
involved in a concerted proton jump. Finally, the two ionic defects recombine and all
the protons in the hydrogen bond loop remain flipped. Changes in the total dipole
moment are allowed as a consequence of the periodic boundary conditions that gives
rise to winding loops.

We also showed the usefulness of this approach by studying the ice XI/Ih transi-
tion. For this purpose, we constructed an ad hoc order parameter for ice XI based on
the local atomic environments around oxygen atoms. An appropriate quasi-static bias
potential as a function of this order parameter sufficed to drive reversible transitions
between ice XI and ice Ih. From these simulations we calculated the free energy differ-
ence between the two phases and the residual entropy of ice Ih. We obtained a residual
entropy of 0.417(6) kB that is in agreement with the experiment within the error bar
of our calculation. We argue that it represents an upper bound to the true residual
entropy since finite size effects reduce the residual entropy. As far as we know, this
is the first calculation of the residual entropy that fully takes into account the subtle
variation in energy between different proton configurations. The approximate transi-
tion temperature obtained here from an extrapolation of high temperature simulations
is around 50 K. Statistical errors affect this extrapolation as well as size effects, thus
it should be considered a rough estimate. This temperature is lower than the experi-
mental transition temperature, 72 K, and also lower than the simple estimate of 67.5
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K that can be obtain from static calculations of the enthalpy at 0 K for this model.
Our approach was made possible by the use of a machine learning potential based

on the SCAN exchange and correlation functional. This model is able to describe the
dissociation of water and therefore the proton transfer between oxygen atoms. We
found that this model reproduces well the higher stability of ice XI than of Ih at
0 K, and also the ice XI/Ih transition temperature is in reasonable agreement with
experiment. We note that these results depend on the choice of the level of theory
used for training the NNP, and that the potential energy surface (PES) described
by our model is not a perfect representation of the SCAN PES(52 ). Furthermore,
the potential employed here was not trained with configurations representative of the
proton transfer process yet a similar model has been shown to describe these events
reasonably well(53 ).

The performance of the method presented here to change the proton configuration
deteriorates at low temperatures. Extending the usefulness of this approach to lower
temperatures will be the subject of future work. Furthermore, the order parameter
for the ice XI/Ih introduced here can find multiple applications. For instance, it could
be used to mimic the effect of an electric field acting on the system. This would
allow to perform a computer experiment in which the rearrangement of the proton
configuration is driven by a simulated external electric field.
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