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Abstract

The aim of this work is to assess the modeling performance of two bivariate models

for time series of counts, within the context of a forest fires analysis in two coun-

ties of Portugal. The first model is a periodic bivariate integer-valued autoregressive

(PBINAR), easily interpreted due to the PINAR description of each component. The

alternative model is a bivariate dynamic factor (BDF) that has a flexible structure,

with the dynamics described through the mean value of each component that is a func-

tion of latent factors. The results reveal that BDF model exhibits a better ability to
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capture the dependence structure.

Keywords: bivariate count processes, INAR processes, dynamic factor models, thinning

operation, simulation-based estimation methods.
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1 Introduction

While in the last three decades the development of univariate count time series models has

been a research topic of active interest (Al-Osh and Alzaid, 1987, 1993; McKenzie, 2003;

Ferland et al., 2006; Fokianos, 2012; Davis and Liu, 2016), the research activity in modeling

multivariate time series of counts is now beginning to grow (Jung et al., 2011; Pedeli and

Karlis, 2011; Scotto et al., 2015; Davis et al., 2016). The existing models for multivariate

time series of counts can be classified into two main groups, namely the parameter-driven

(PD) class in which serial correlation is introduced via some latent dynamic process (Mac-

Donald and Zucchini, 1997; Kedem and Fokianos, 2002), and the observation-driven (OD)

class that uses the information collected from previous observations to induce time correla-

tion (Fokianos et al., 2009; Ferland et al., 2006; Khan et al., 2016). Models belonging to the

OD class include the integer-valued autoregressive moving average (INARMA) models based

on thinning operators (e.g., Scotto et al., 2015; Weiß, 2018), and the integer-valued general-

ized autoregressive conditional heteroscedastic (INGARCH) models (e.g., Tjøstheim, 2012).

In the class of INGARCH models, the conditional distribution of observed counts given past

outcomes or latent process is usually assumed to come from some well-known discrete distri-

butions, such as Poisson, negative binomial (NB), generalized Poisson (GP), double Poisson

(DP) and ConwayMaxwellPoisson (COM-Poisson) distributions (Ferland et al., 2006; Zhu,

2011a,b; Fokianos et al., 2009; Zhu, 2012). The class of univariate PD extends the gener-

alized linear models (GLM) by incorporating into the conditional mean function a latent

process which evolves independently of the past observed counts. The autocorrelation as

well as over-dispersion are introduced in the model via such process (see Fokianos (2012)

and references therein).

Turning now to bivariate and multivariate count time series, Pedeli and Karlis (2011)

introduced the BINAR(1) model in which the cross-correlation is induced through the in-

novation process by assuming either a bivariate Poisson distribution or a bivariate negative

binomial distribution. The periodic version of Pedeli and Karlis’ model, referred to as PBI-

NAR, was first proposed by Monteiro et al. (2015). A full BINAR model with bivariate
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Poisson innovations was introduced and studied by Pedeli and Karlis (2013). Furthermore,

multivariate INGARCH-type models have also been proposed in the literature. Heinen and

Rengifo (2007) introduced the so-called multivariate autoregressive conditional double Pois-

son in which it is assumed that, conditionally on past observations, the means follow an

autoregressive vector using copulas to introduce contemporaneous correlation. Liu (2012)

proposed a bivariate Poisson integer-valued GARCH (BINGARCH) model which has the ca-

pability of modeling the serial dependence between two time series of counts. More recently,

Bracher and Held (2017) introduced a class of periodic INGARCH-type models.

Within the PD class, Jorgensen et al. (1999) proposed a state-space multivariate Poisson

model while Wedel et al. (2003) developed a general class of models with analytic factors, for

the analysis of truncated multivariate count data. An autoregressive structure for conditional

means was proposed by Held et al. (2005) and applied to the multivariate infectious disease

surveillance data. Jung et al. (2011) proposed a model with latent factor for multivariate

count time series which generalizes previous works (Jorgensen et al., 1999; Wedel et al., 2003)

and applied it to the number of trades in 5-min intervals for five New York Stock Exchange

(NYSE) stocks from two industrial sectors. Serhiyenko et al. (2015) developed zero-inflated

Poisson models for multivariate time series of counts. Finally, Ravishanker et al. (2015)

studied finite mixtures of multivariate Poisson time series.

The rest of the paper is organized as follows: Section 2 provides models description and

the parameter estimation approach used in each model. Section 3 presents the comparative

analysis in the context of monthly number of fires modeling with the discussion of the models

adequacy. Finally, some concluding remarks are given in Section 4.

2 Models specification

In this section, the PBINAR model and the periodic BDF model, both with period S, are

introduced and explained in detail. The PBINAR model exhibits a structure of easy in-

terpretation, allowing cross-correlation only through the bivariate innovation process. Fur-
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thermore, it is an over-parameterized model containing 5× S parameters. The BDF model

presented can be viewed as an alternative model, having the advantage of containing far less

parameters.

2.1 PBINAR(1) model

The periodic bivariate integer-valued autoregressive of order one, say (Yt), proposed by

Monteiro et al. (2015) is an extension of the bivariate model introduced by Pedeli and

Karlis (2011), assuming periodic time-varying parameters and periodic bivariate sequences

of innovations, where Yt admits the representation

Yt = At ◦ Yt−1 +Zt ≡

 φ1,t 0

0 φ2,t

 ◦
 Y1,t−1

Y2,t−1

+

 Z1,t

Z2,t

 , t ∈ ZZ (1)

with φj,t = αj,i, for t = i + kT (i = 1, . . . , T ), j = 1, 2, and k ∈ IN0. Usually, the process

(Yt) is observed during N years in periods of S seasons. Thus, in order to facilitate models’

interpretation, we will denote throughout Yt ≡ Ys,n for t = 1, 2, . . . , T , n = 1, 2, . . . , N and

s = 1, 2, . . . , S, where n is the year associated with time t and s is the respective season.

Note that, when t corresponds to the first season of the year n then the previous time, which

corresponds to the season S of the year n− 1, will be denoted as season 0 of the year n, i.e.,

Y0,n ≡ YS,n−1. Therefore, the model in (1) can be rewritten as

Ys,n = As,n ◦ Ys−1,n +Zs,n =

 αs,1 0

0 αs,2

 ◦
 Ys−1,n;1

Ys−1,n;2

+

 Zs,n;1

Zs,n;2

 , (2)

where s = 1, . . . , S, emphasizing the periodic nature of the model. Within this framework,

the (binomial) thinning operator “◦” is defined as

αs,j ◦ Ys−1,n;j
d
=

Ys−1,n;j∑
m=1

Um;s,j,

where (Um;s,j) is a periodic sequence of independent Bernoulli random variables with success

probability P (Um;s,j = 1) = αs,j ∈ (0; 1). Attending to the properties of the binomial
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thinning operator, each component of the model can be written as

Ys,n;j = αs,j ◦ Ys−1,n;j + Zs,n;j. j = 1, 2. (3)

Moreover, it is assumed that Zs,n = (Zs,n;1, Zi,n;2) is a periodic sequence of independent

random vectors with mean E[Zs,n] = λs := [λs,1 λs,2]
′

and covariance matrix Σs with

σ2
j,s = υs,jλs,j, for υs,j > 0, and σ12,s =: ϕs. Furthermore, Zs,n;j is independent of Ys−1,n;j and

of αs,j ◦ Ys−1,n;j. The distributions under consideration for the innovations bivariate process

are the bivariate Poisson, Zs,n ∼ BPoi(λs,1, λs,2, ϕs) with υs,j = 1, and the bivariate negative

binomial Zs,n ∼ BNegBin(λs,1, λs,2, βs) with υs,j = 1 + βsλs,j. Further properties of this

model can be found in Monteiro et al. (2015).

The most common approach to estimate models’ parameters is the conditional maximum

likelihood (CML). Consider N complete years (y1,1,y2,1, . . . ,yS,N) and θ the vector of un-

known parameters. Without loss of generality, it is assumed that Y0 = y0. Note that the

transition probabilities takes the form

ps(b|a) := P (Ys,n = b|Ys−1,n = a)

=

M1∑
m1=0

M2∑
m2=0

P (α1,s ◦ Ys−1,n;1 = m1, α2,s ◦ Ys−1,n;2 = m2|Ys−1,n = a)×

×P (Zs,n;1 = b1 −m1, Zs,n;2 = b2 −m2),

where b := [b1 b2]
′, a := [a1 a2]

′, Mj := min(aj, bj), j = 1, 2. Hence, the CML-estimator θ̂

of θ is obtained by maximizing the conditional log-likelihood function

`(θ) := ln(L(θ)) =
N∑
n=1

S∑
s=1

ln(ps(ys,n|ys−1,n)). (4)

For periodic bivariate Poisson innovations the expression ps(b|a) becomes

ps(b|a) =

M1∑
m1=0

M2∑
m2=0

L∑
l=0

ϕls
l!
e−(λs,1+λs,2−ϕs)

2∏
j=1

(
Cajmj

α
mj

s,j (1− αs,j)aj−mj × (λs,j − ϕs)bj−mj−l

(bj −mj − l)!

)

with λi,j > 0, j = 1, 2, ϕs ∈ [0,min(λ1,s, λ2,s)], and L := min(b1 −m1, b2 −m2).
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In the case of periodic bivariate negative binomial innovations case, ps(b|a) is given by

ps(b|a) =

(
β−1
s

ηs

)β−1
s M1∑

m1=0

M2∑
m2=0

2∏
j=1

[
Γ(β−1

s + a1 −m1 + a2 −m2)

Γ(β−1
s )Γ(aj −mj + 1)

Cajmj
α
mj

s,j (1− αs,j)aj−mj

(
λs,j
ηs

)bj−mj
]
,

with λs,j, βs > 0, j = 1, 2, ηs = λs,1 + λs,2 + β−1s .

2.2 Bivariate dynamic factor model

In this section, the bivariate version of the dynamic factor (BDF) model of Jung et al. (2011)

with the inclusion of a periodic component is presented. Consider a bivariate vector of counts

Yt = (Yt,1, Yt,2) observed at time t (t = 1, . . . , T ), where the dynamics is introduced at the

level of the latent factors. Accordingly, counts are assumed to be conditionally independently

distributed with an appropriate discrete distribution, with means λt,j considered as latent

random variables. Furthermore, it will be assumed that the logarithm of the mean vector

λt = (λt,1, λt,2) admits the form

ln(λt) = µ+ Stβ + ΓXt, (5)

where µ is an intercept to which the seasonal contribution is added (through Stβ) where

β = (β1, . . . , β12), and St is a 2×12 design matrix with St,1 = St,2, and Xt is a 3-dimensional

vector of latent random factors which are assumed to be independent from each other, and

Γ is the (2×3) loading factors matrix. The choice of the ln(·) function is justified by the fact

that it guarantees the positiveness of the mean vector without imposing further restrictions

on the parameters included in the linear function.

Turning now to the the bivariate context, it will be assumed that Xt = (Zt,Wt,1,Wt,2),

where Zt represents a common latent factor which incorporates temporal correlation and

cross-correlation and two specific factors (Wt,1,Wt,2) related with each component which also

incorporate temporal correlation. Furthermore, the matrix of loading factors is assumed to

be of the form

Γ =

 γ1 1 0

γ2 0 1

 .
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Serial and cross-correlation in the counts are introduced through the structure of the factors

components. Following Jung et al. (2011), it will be considered that the components ofXt fol-

low independent Gaussian AR(1) processes, that isXt = ΦXt−1+εt with Φ = diag(φ, ρ1, ρ2)

and εt follows a multivariate Gaussian distribution with zero-mean vector and covariance-

matrix Σε = diag(σ2
ε , σ

2
1, σ

2
2). In order to ensure the stationarity of the factors, it is assumed

that |φ| < 1, |ρj| < 1, for j = 1, 2.

The BDF model is also a state-space model also known as partial observed Markov pro-

cesses (POMP), being Yt = (Yt,1, Yt,2) the observation process and Xt = (Zt,Wt,1,Wt,2) the

state vector at time t. For this type of non-linear and non-Gaussian state-space models, the

analytical study of the likelihood function is, in general, intractable since it is necessary to use

high-dimension integration. Note that for the current model, by setting Y1:T = (Y1, . . . ,YT )

and X0:T = (X0, . . . ,XT ),

fX0:T ,Y1:T
(x0:T ,y1:N ;θ) = fX0(x0;θ)

T∏
t=1

fXt|Xt−1(xt|xt−1;θ)fYt|Xt(yt|xt;θ), (6)

where θ = (µ,β,Γ,Φ,Σε), Xt|Xt−1 ∼ N (ΦXt−1,Σ), X0 ∼ N (0,Σ0) and

Σ0 = diag

(
σ2
ε

1− φ2
,

σ2
1

1− ρ21
,

σ2
2

1− ρ22

)
,

being the marginal probability function of Y1:T obtained by multiple integration as

fY1:T
(y1:T ;θ) =

∫
fX0:T ,Y1:T

(x0:T ,y1:N ;θ)dx0:T .

Note that, for fYt|Xt(yt|xt;θ) in (6) we can either consider the Poisson distribution or a

more flexible distribution such as the negative binomial distribution, i.e.,

fYt|Xt(yt|xt;θ) =



2∏
j=1

e−λt,j
λ
yt,j
t,j

yt,j!
, Poisson

2∏
j=1

Γ
(
yt,j + 1

υ2j

)
Γ
(

1
υ2j

)
Γ(yt,j + 1)

(
1

1 + υ2jλt,j

) 1

υ2
j

(
λt,j

λt,j + 1
υ2j

)yt,j

, Neg. Bin.

.
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The difficulty in obtaining a closed-form expression for the likelihood lead to several develop-

ments of simulation-based methods in order to perform likelihood-based inferences (Liesen-

feld and Richard, 2003; Richard and Zhang, 2007; Scharth and Kohn, 2016). Such algorithm

is based on the Sequential Monte Carlo (SMC) algorithm (Andrieu et al., 2010) also known

as particle filter. This procedure consists in extending the model of interest by allowing its

(time-invariant) parameters to become artificially random, following a random walk in time

(θt). From an initial θ0 and successively diminishing the parameters artificial random per-

turbations the algorithm generates a sequence of updated parameter estimates θ1, θ2, . . . ,

converging to the maximum likelihood estimates, under some regularity conditions on the

likelihood surface and on the algorithmic parameters (for further details see Ionides et al.,

2011, 2006). Iterated filtering are implemented in this work using the software package

POMP (Partially Observed Markov Processes) described in King et al. (2016, 2017)) and

available at the R statistical computing environment (R Development Core Team, 2008). In

order to apply the algorithm, it is necessary to define the number of iterations, the initial

magnitude of the parameter perturbations and the correspondent decrease rate from one it-

eration to the next one, and the number of particles to use in the embedded SMC algorithm.

In practice, the convergence of the IF algorithm is assessed via convergence diagnostic plots,

since the conditions on the likelihood surface are rather technical (Bretó, 2014).

3 PBINAR and BDF models: a comparative study for

the analysis of bivariate time series of fire activity

In this section, monthly records of number of forest fires in O. Bairro and Vagos counties

(Aveiro’s district), collected from 1985 to 2014, are analyzed through PBINAR and BDF

models. The bivariate time series were obtained from the Instituto de Conservação da

Natureza e das Florestas (ICNF, 1016). Figure 1 displays both time series. Note that both

series exhibit a periodic structure in the sample autocorrelation function and in the sample

cross-correlation (see Figure 2).
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(Figures 1 and 2 about here)

The PBINAR (1) model of period 12 is initially fitted to the pair of bivariate time series by

considering (i) a periodic bivariate Poisson (BPois.) distribution for the innovation process,

and (ii) a bivariate periodic negative binomial (BNBin) as defined in (6). Table 1 resumes

the analysis of Pearson residuals for both models. In both cases the sample means of Pearson

residuals are close to zero although in the PBINAR model the sample variance differs quite

significantly from one. Furthermore, the Ljung-Box test rejects the absence of autocorre-

lation at different lags. Hence, such model does not accurately captures the dependence

structure exhibited by both time series.

In fitting the BDF model with innovations being either Poisson or negative binomially

distributed, the IF algorithm was primary applied to two hundred initial candidates of the

parameters from which were selected three initial parameter vectors that presented the high-

est values of the likelihood estimates. This search was computational time-consuming, using

parallelization of the cores of a i7–4500U intel core computer with 8 GB of RAM. For these

chosen three initial parameter vector values, the IF algorithm was applied with the following

algorithmic parameters: 300 iterations, an exponential decay of perturbations of α = 0.70

and 20000 particles. Furthermore, 70,000 particles are used to obtain the point estimates

of the log-likelihood `(·), which result from taking the average of ten likelihood evaluations

from which we calculate the Monte Carlo standard error. Parameters standard errors are

obtained via profile likelihoods (see Ionides et al. (2017)).

The convergence of the maximum likelihood estimates is assessed through convergence

diagnostic plots (see Figure 3 and Figure 4 for the Poisson case in the appendix). Such

plots suggest an appropriate choice of the algorithmic parameters. Moreover, having into

account the first search and also Figure 3 the IF method better identifies the parameters

associated to the latent factors than the parameters in the µ and β vectors, since plausible

likelihoods are found with widely differing parameter values. Furthermore, Pearson residuals

shows that both sample means and sample variances are close to zero and one, respectively.

Additionally, the Pearson residuals did not presented significant autocorrelation (see Table
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1).

(Table 1 about here)

In order to assess the adequacy of the distributional assumption, the probability integral

transform (PIT) histogram for a discrete cumulative predictive distribution proposed by

Czado et al. (2009) is computed (Figure 5). In PIT histograms approximate 95 % confidence

intervals, obtained from a standard χ2 goodness-of-fit test (being the null hypothesis that

the J = 10 bins of the histogram are drawn from a uniform distribution) were incorporated

as in Jung et al. (2015). Figure 5 also shows cumulative predictive distribution against the

uniform distribution.

(Figure 5 about here)

Note that, for the Poisson distribution the p-values of the χ2 goodness-of-fit test do not

reject, at any conventional significance level, the null hypotheses of uniform PIT histograms

for both components of the series. On the contrary, these hypotheses are rejected for the

negative binomial distribution, leading to conclude that Poisson distributional assumption

is more suitable than the negative binomial distribution. From visual inspection of the PIT

histograms it can be seen that for the Poisson case, with the exception of the last bin, the

bins lie inside of the confidence lines, while in the negative binomial case, only a few bins are

within such range due to the U-shape of the PIT histograms. Furthermore, the deviations

from the identity function on the plots of the discrete cumulative predictive distribution

against u ∈ [0; 1] become obvious in the case of the negative binomial.

Having into account that in most real case situations the negative binomial distribution

outperforms the Poisson distribution, the parametric resampling procedure proposed by Tsay

(1992) was applied to better understand why the results in this situation point in the opposite

direction. To this end, 5000 realizations of each model (Poisson and negative binomial)

were simulated being the true (unknown) parameters replaced by their corresponding point

estimates obtained by the IF algorithm, in order to assess the overall reproducibility of the

fitted models and also to check the autocorrelation and the cross-correlation of the processes.
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For each time t, the 10% and 90% quantiles of the 5000 realizations were computed to

confront with the actual data (see Figure 6). Although data generally lie inside the bounds of

the acceptance envelope for both models, the Poisson model exhibits 90% quantile boundaries

considerably lower than those for the negative binomial model, which helps to justify the

previous results. The resampling procedure was also applied to the autocorrelation and

cross-correlation function and both models generally capture the structure of these functions

with a slight advantage of the Poisson model.

Taking into account that Poisson distributional assumption provides a better fit, in Table

2 are presented the parameters’ point estimates and also the log-likelihood estimate (complete

model). Note that, point estimates associated with the specific factor of O. Bairro are not

significantly different from zero, pointing to a simplification of the model by dropping the

factor Wt,1 in O.Bairro component.

(Table 2 about here)

For the simplified model, the analysis of the convergence of the IF algorithm, the Pearson

residuals analysis as well as the Poisson distribution adequacy analysis was also conducted.

Parameter point estimates and the estimate of the log-likelihood are presented in Table 2.

The log-likelihood estimate is close to the obtained in the complete model with the advantage

of incorporating lesser parameters.

4 Conclusions

In this paper, a comparative study between two different types of bivariate time series mod-

els suitable for modeling periodic time series of counts has been presented. The PBINAR

model is the periodic counterpart of the observation-driven BINAR model of Pedeli and

Karlis (2011) in which the cross-correlation is only introduced trough the peridic bivariate

innovation process. In terms of estimation, it can be applied standard estimation methods as

the conditional maximum likelihood with the application of standard numerical optimization

packages. Although has, on the one hand, a large number of parameters to be estimated
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which makes difficult its generalization to higher order vectors and, on the other hand, the

inability, for the considered case, to capture all the existing correlation in the bivariate data

under study. The alternative BDF model presents a more flexible structure that incorporates

temporal and cross-correlation through the latent factors. This model, being a non-linear

and non-Gaussian state space model, poses some challenges in terms of parameter estima-

tion, that are overcome using simulation-based methods that include the IF method used

in this work. This model seems to have captured the dynamics of the underlying process of

the bivariate count data under analysis and has the advantage of being easier to extend to

vectors of higher orders and also is more parsimonious in terms of the number of parameters

in the model. For the monthly number of fires in the counties of O.Bairro and Vagos, the

bivariate factor model with Poisson distribution revealed to be adequate since it was able to

capture the main features of the bivariate count data. Having into account that the district

of Aveiro has 19 counties, we can build a BDF model that describes the phenomenon under

study for the entire district using common counties characteristics.

The IF method reveals that the BDF model might have some parameter identifiability is-

sues associated to µ and β vectors since there are several different values of these parameters

with close values of log-likelihood estimates. Before using BDF model in a forecasting step

or extending it to higher dimensions it is important to clarify the existence of this identifia-

bility problem. The comparison with other estimation methods such as efficient importance

sampling described in Richard and Zhang (2007) or a Bayesian approach, will allow to clarify

this issue. Alternatively, it can also be included additional assumptions, scientifically rea-

sonable, so that the vectors µ and β can be better identified or, alternatively, the inclusion

of covariates containing periodic features, such as monthly temperature and humidity. This

will be a topic for future research.

As a final note we would like to stress that, although in this work the PINAR and the

BDF were considered for comparison purposes, such comparison is certainly not limited to

these specific families of models, and can be enlarged for other competitors. An instance of
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that is the bivariate integer-valued GARCH model proposed by Cui and Zhu (2018), with

the necessary adaptations to the periodic case, can be an alternative since it has a flexible

cross-correlation structure allowing for the presence of negative correlations.
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Table 1: Pearson Residual summary for models under consideration

Ljung-Box Test (p-value)

Model Distr. County Mean Var. Q1 Q5 Q10 Q15

PBINAR BPois. O. Bairro -0.018 2.844 0.024 0.003 0.003 0.004

Vagos -0.020 3.298 0.01 0.0015 0.006 0.02

BNBin O. Bairro -0.001 1.608 0.039 0.0068 0.004 0.015

Vagos -0.004 1.982 0.044 0.004 0.014 0.062

DF Poisson O. Bairro 0.023 1.128 0.607 0.850 0.926 0.990

Vagos 0.009 1.368 0.628 0.042 0.153 0.445

NBin. O. Bairro 0.002 1.02 0.654 0.831 0.890 0.983

Vagos -0.011 1.21 0.525 0.045 0.148 0.449
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Table 2: Parameter estimates and log-likelihood (`) estimates and standard errors (in parenthesis)

for bivariate DF model with Poisson distribution.

Complete Model Simple Model

µj γj ρj σj µj γj ρj σj
O.Bairro -0.874 1 0.627 0.069 -1.003 1 – –

(0.130) – (0.333) (0.179) (0.133) – – –

Vagos -0.827 0.845 0.508 0.439 -0.955 0.869 0.500 0.458
(0.131) (0.090) (0.075) (0.047) (0.135) (0.085) (0.071) (0.041)

β1 β2 β3 β4 β1 β2 β3 β4
-1.961 -0.451 0.497 0.280 -1.659 -0.350 0.529 0.314
(0.152) (0.135) (0.131) (0.129) (0.153) (0.137) (0.133) (0.124)

Seasonal β5 β6 β7 β8 β5 β6 β7 β8
Param. 0.615 1.676 2.278 2.528 0.657 1.692 2.373 2.717

(0.124) (0.124) (0.123) (0.118) (0.117) (0.129) (0.129) (0.122)

β9 β10 β11 β12 β9 β10 β11 β12
2.051 0.960 -0.677 -2.090 2.221 1.169 -0.645 -1.978

(0.120) (0.104) (0.114) (0.154) (0.100) (0.102) (0.123) (0.150)

Common φ σε log lik φ σε log lik

Factor 0.704 0.805 -1132.640 0.718 0.827 -1132.082
Param. (0.036) (0.049) (0.055) (0.033) (0.048) (0.048)
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Figure 1: Monthly number of fires in O. Bairro and Vagos counties
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Figure 2: Sample autocorrelation (ACF) and cross-correlation (CCF) of Monthly number of

fires in O. Bairro and Vagos Counties
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Figure 3: Trajectories of the algorithm updates showing θ̂1, θ̂2, · · · , θ̂300 convergence to the maxi-

mum likelihood estimate (horizontal line) starting from three different starting points θ0
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Figure 4: Sliced likelihoods for the corresponding parameters, in which the likelihood surface is

explored along one of the parameters, keeping the other parameters fixed at the point which IF

converges to. Each filled circle shows the likelihood estimate obtained with 70,000 particles.
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O.Bairro Vagos

PIT Histogram PIT Histogram

Poisson

χ2 test: p-value=0.384 χ2 test: p-value=0.417

PIT Histogram PIT Histogram

NBin.

χ2 test: p-value=2.71× 10−5 χ2 test: p-value=3.44× 10−9

Figure 5: PIT-based diagnostics after fitting DF models (top figures); Cumulative predictive

distributions against the uniform distribution (bottom figures); p-values of the goodness of

fit chi-squared tests
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Poisson NBin

Figure 6: Parametric resampling diagnostics with 80% acceptance bounds for Poisson DF

model and for negative binmomial DF model.
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