
Distributed Systems Engineering

Light-weight process groups in the Isis system
To cite this article: B B Glade et al 1993 Distrib. Syst. Engng. 1 29

View the article online for updates and enhancements.

You may also like
Totally ordered gigabit multicasting
X Chen, L E Moser and P M Melliar-Smith

-

Performance engineering of the Totem
group communication system
R K Budhia, L E Moser and P M Melliar-
Smith

-

Fault-tolerance and on-line maintainability
in a process control supervision system
C Baradel, Y Eychenne, L Junot et al.

-

This content was downloaded from IP address 3.145.143.239 on 27/04/2024 at 04:46

https://doi.org/10.1088/0967-1846/1/1/004
https://iopscience.iop.org/article/10.1088/0967-1846/4/4/005
https://iopscience.iop.org/article/10.1088/0967-1846/5/2/003
https://iopscience.iop.org/article/10.1088/0967-1846/5/2/003
https://iopscience.iop.org/article/10.1088/0967-1846/2/2/001
https://iopscience.iop.org/article/10.1088/0967-1846/2/2/001

Distrib. Syst. Engng 1 (1993) 23-36, Printed in the UK

I Light-weight process groups in the lsis I
I system*

Bradford B Glade, Kenneth P Birman, Robert C B Cooper and
Robbert van Renesse
Computer Science Department, Cornell University, USA?

Abstract. lsis is a toolkit for building applications consisting of cooperating
processes in a distributed system. Group management and group
communication are two basic building blocks provided by Isis. This approach has
proven successful, and Isis’ large user community is putting substantial demands
on these mechanisms. To accommodate these demands a complete redesign of
the system, called Horus, is being done to build a simpler and faster system that
scales well. of particular concern is the support and management of hundreds of
thousands or more process groups. This paper describes a component of Horus
known as light-weight process groups that addresses this scaling issue.

1. Introduction

Much of yesterday’s centralized mainframe computing
has evolved into large local area network environments.
This trend has made it difficult to achieve reliability in
computing systems. Failures within large LANs are
quite commonplace. Users treat a networked PC much
like a stand-alone machine, turning the machine off
and rebooting when an application program fails. This
behaviour can quickly lead to chaos for the remaining
computers that may depend on the machine for a source
of input or service. By the very nature of such networks
we then must consider fault-tolerance as critical to the
development of networked computing.

The Isis toolkit is a collection of algorithms and
tools that can be used to build fault-tolerant distributed
applications in an environment such as the above. A
description of Isis can be found in [q. In this paper we
describe a fundamental element of a new system called
Horus$ being built at Cornell. Horus has evolved from
Isis after much experience with building practical fault-
tolerant distributed systems.

This work was motivated by a trend in the use of
Isis process groups that has become apparent over the
last eight years. The process group paradigm is popular
with Isis applications programmers; almost every major
application u?itten using Isis makes extensive use of
process groups. In their original design, process groups
were intended as a coarse grain transport mechanism for
communicating with multiple processes. Process groups
were used to represent a replicated service. However,

*The authors were supported under DARPAMASA grant
NAG-2-593 and by grants from IBM, Hp, Siemens, GTE
and Hitachi.
t [glade I ken I rck I M) @cs.cornell.edu
$ In Egyptian mythology, Horus is the son of Isis.

the paradigm has proven popular for more fine grain
uses. Over the last few years applications witten using
Isis have used process groups to represent objecrs rather
than services. This trend has impacted the original
design in several ways and has lead us to focus our
attention on providing light-weight process groups.

The architecture of Horus was influenced by
microkernel design concepts, in which several light-
weight mechanisms are provided in user space. The
most obvious of these is the light-weight process or
thread abstraction [8, U]. Another well known, older
abstraction is memory allocation. These abstractions
not only allow easier resource management by sharing
most of a core environment, but also provide a portable
interface across different environments.

The hasic idea behind the light-weight process group
(LWG) abstraction is that many LWGs are mapped to a
single core group (or set of core groups) as implemented
by the kernel of Horus. Thus, these LWGs share the
same security environment (much like threads share
the same address space), and the same failure model,
while their messages are multiplexed over a single core
group transport. The benefit of this approach is that
membership changes to the core group automatically
affect large numbers of LWGs, amortizing the cost
of maintaining membership information over what the
application considers a large number of independent
groups. The Isis system lacked such a facility, forcing
many application programmers to develop equivalent
mechanisms.

We have built a prototype of LWGs on top of
Isis V3.0.6 and the initial results show significant
improvements in performance. In particular, the LWG
subsystem allows LWGs to share the same failure
detection protocol execution thereby resulting in faster
reaction to member failures and reduced network load.

0967-1846/93/010029+08507.50 @ 1993 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ud 29

B B Glade et al

Execution times for typical group operations are also
improved: the initial prototype has a speed-up factor of
nine for the group create operation (the resulting speed
is about 30 ms), and even higher speed-ups for group
joins and leaves.

'Ib motivate the problem, we present several
examples of how line grain process groups help solve
problems present in distributed applications. We then
briefly present the architecture of the Horus system with
particular attention to the light-weight group subsystem.
We follow this with a discussion of the key aspects
of light-weight process groups and present the basic
portions of an interface to our subsystem. We conclude
with some initial performance results and a discussion
of related work

2. Trends in the use of process groups

In this section we look at the use of Isis process groups
in three major applications written on top of the Isis
system. By looking at these and other applications we
gained insight into how to improve the performance
and functionality of process groups.

2.1. The Deceit file system
Our first example of a practical fault-tolerant distributed
application is the Deceit file system 1141. Deceit is
an NFS-compatible file system that replicates its files
across a collection of servers. The system provides
flexible support for fault-tolerance. A set of parameters
attached to each file controls its replication level and
update semantics. As the system is used, file replicas
migrate to form working sets on the servers that
are currently receiving requests. Deceit's file system
therefore exists as a whole across all of the servers
yet no one server need contain the whole file system.
A key aspect of Deceit is its ability to maintain one-
copy serialmbility in the event of server failures and
distributed requests and updates. 'Ib manage the
inherent complexity of achieving such a property, Deceit
uses an Isis process group to represent the replicas of
a file; each member of the group actively maintains
a replica of the fde. This set of servers changes
dynamically as replicas migrate and as servers crash
and recover.

Logically, an update to a file need only be multicast
to the collection of servers maintaining replicas of
that file using the Isis process group as the transport
mechanism. The initial design of this system was built in
the obvious way; a single process group was associated
with each file's set of replicas. It became quite apparent
however that this was not the correct approach for using
Isis process groups; the system suffered greatly from
performance problems. 'RIO many process groups were
created (one for each file in the file system) and the
algorithms that provide the ordering semantics of group
communication performed poorly as a consequence (we
will discuss this later).

A few observations about the collection of process
groups lead us to the design decisions that contribute
to the good performance of today's Deceit and to
the foundation of light-weight process groups. First,
good fault-tolerance was obtained with a relatively
small collection of file servers. Three to five servers
provide good availability, reliability, and performance.
Second, even though many (thousands of) process
groups were desired, the number of unique process
groups, in terms of their membership, was quite small.
By using a single process group for the collection of files
that had the same replica set, the number of process
groups was dramatically reduced with a corresponding
improvement in performance. In this new design, when
replicas migrate they need to change process groups,
orchestrating this change through a coordinator in the
group. Deceit was able to use the inexpensive CBCAST
protocol [7] while maintaining the consistency of the
file's replicas.

2.2. The Isis transaction tool

The Isis toolkit includes a tool for distributed
transactions [9]. A uansaction is represented by a
process group comprising all the servers which have
an interest in the outcome of the transaction (the
participants). The implementation of the tool in Isis is
very straightfonvard. Reliable group multicast is used to
implement the commit protocol, and group monitoring
facilities are used to detect the failure of transaction
participants and to trigger a transaction abort. 'Ib
ensure that the state of a transaction persists even
when all participants fail, Uansaction state is logged
to disk, and transaction outcomes are logged to the
transaction recovery manager, itself implemented by a
process group.

While the semantics of Isis process groups and
reliable multicast greatly simplified the implementation
of the transaction tool, performance was poor. The
transaction tool needed only anonymous groups, but Isis
required every group to have a name. The transaction
tool generates a !mown-to-be-unique name derived from
the transaction identifier. Isis incurs unnecessary costs
verifying the name's uniqueness by multicasting to the
Isis servers on the network when the group is created,
and searching for the name during subsequent join
operations. (This deficiency is b e d in Horus, which
directly supports anonymous groups and leaves naming
to an external service.)

More serious than group naming was the cost
of a group join. The critical path of a transaction
included one group join for every participant and a
single group deletion at transaction end. Ajoin involves
synchronizing all the current members of the group, and
possibly the authentication of the new member. One
common scenario in the use of the transaction tool is
for a client to issue a series of transactions to the same
set of servers. After each transaction the.group is torn
down only to be built again by the following transaction.
This creates unnecessary work when the group transport
could be saved.

30

tight-weight process groups in the lsis system

2.3. META

META [lo, 181 is a system for distributed management.
It provides a mechanism for instrumenting programs
with Sensors and actuators and allows creating
sophisticated reactive control systems in a distributed
network META makes use of Isis for its group
communication and fault-tolerance. Process groups in
META are used both to ,maintain aggregates and as a
convenient naming mechanism. Aggregates are used
to represent a collection of machines that satisfy mme
property (e.g., a set of machines with a light load).
This collection is maintained (determined) by a set
of replicas which detect changes in the aggregate set.
An Isis process group is used to manage this replica
set. Aggregates are a fundamental piece of META
and are intended for heavy use by META applications,
and consequently, META shows similar characteristics
to Deceit: a relatively small set of replicas can be
responsible for a large number of coincident process
groups. Like the initial design of Deceit, the failure of
a replica can trigger a flood of distributed agreement
protocol invocations.

3. Analysis of performance problems

In general we have found that good performance
can be obtained from group communication in Isis
provided that the programmer has solid knowledge of
the protocol semantics and knows the details of the
implementation well enough to make optimizations.
Each of the authors in the above systems are
sophisticated Isis programmers that took the semantics
of the Isis communication system and knowledge of
the internal protocols into account when designing
their software. In general one cannot expect typical
applications programmers to be (or want to be!) as
knowledgeable about Isis as these authors. This has
motivated us to consider light-weight process groups as
a necessary piece of the Horus system. LWGs should
allow applications programmers to use the process
group paradigm in a manner which fits the logical
structure of their application and which yields good
performance.

We now look at why the original process
group mechanism in Isis performed poorly for these
applications. The performance problems are mainly a
result of the process group algorithms being too closely
coupled with the interface provided to the applications
builder. Three major performance problems illustrate
this point

3.1. Failure detection
Isis provides a strong guarantee of consistency for group
membership changes. A group’s membership history
can be characterized by a total order on the join and
lea.ve/failure events of the group. Each group member
observes the membership in an order consistent with this
history. In addition, Isis provides a strong guarantee of

A B C D

TimC

A B C D

(a) WiIhout Failure Atomicity (a) With Failure Atomicity

Figure 1. (a) and (b) show four processes, A-D,
joined to a single process group, denoted by the
encompassing oval. C crashes around the same time
that A sends a message to the group. (a) shows multicast
communication that does not respect failure atomicity; B
and D receive the message in different views of the group.
The multicast in (b) respects failure atomicity

failure atomicity; messages are delivered in the same
view of the group’s membership at all correct and
functional destinations?. This allows the recipients to
make efficient local decisions about the global state of
the system without the need for extra communication.
[13] and 171 present the semantics of Isis process groups
and group communication.

Figure 1 shows an example of communication with
and without failure atomicity. Failure atomicity and
serialized membership greatly impact the performance
of process groups when failures occur. Consider
the fault-tolerant NFS file sewer described above if
it made a naive use of process groups (by creating
one process group per file). At some point during
the normal operation there might be a thousand or
more process groups representing the files actively
in use that are being maintained on three servers.
If one of these servers should fail, the Isis group
membership and atomicity protocols would trigger for
each of these one thousand groups, forcing failure
atomicity on the outstanding messages, delivering them
in consistent views across their recipients. Each of
these instantiations would force an expensive flush of
the group’s communication. Unfortunately this would
have the disasaous impact of flooding the network with
protocol messages, which can lead to congestion and
the ultimate ‘failure’ of other processes in the system,
causing a ‘domino’ effect.

3.2. Overlapping groups
Isis provides strong causality guarantees for group com-
munication. This guarantee applies to communication
that spans groups. This is an important property of
the Isis system because it allows for less constrictive
communication and allows groups to be used flexibly.

‘t In lhe case of partitions, this atomicity cannot be
guaranteed, but the partioned processes will form their own
consistent groups within which atomicity is respected.

31

B B Glade et al

A B C D A B C D

(b) (“)

Figure 2 (a) shows two process groups (represented by
ovals) and the messages sent by the system during when
communication switches from group A, 8, C to group 8,
C, D. The full arrows represent the application multicasts,
the broken arrows represent Iw-level acknowledgements,
and the dotted arrows represent messages containing
message stability information. (b) shows the message
traffic for the same pair of application multicasts, but
with the two groups merged into one. The arced arrows
represent delayed messages, in (a) by the sender, and in
(b) by the receivec

171 discusses the ramifications of this property on the
algorithms that must implement it. Currently the Isis
system achieves this propem using a conservative pro-
tocol. In order to send a message m to a group G,
G must be the only ‘active’ group. A group G‘ is ac-
tive for a process p if there is some message m‘ to
G’ that has been transmitted by p or delivered to p
and which p considers unstable. A process considers a
message stable if it learns that the message has been
received at all of its destinations. If there is more than
one group active for a process, it must block the trans-
mission of a message m until all other groups become
inactive (ie. until their messages become stable). This
delay may require waiting for acknowledgements from
all members of a previous multicast, and potentially
for stability information from other groups. In figure
Z(a), C must delay its multicast to B and D until
it learns that the causally preceding message from A
has been stably received. This delay is denoted by the
arc. An application that continuously alternates com-
munication between two groups by sending messages
asynchronously, will in fact see no advantage to the
asynchronous call, since each communication context
switch will essentially force synchrony on the previous
message sent.

3.3. Named groups

Previous implementations of Isis have incorporated
the naming service into the same server process that
manages the group membership protocols. This process,
historically known asprofos (for protocol sewer), resides
on every Isis site. (For scaling reasons Isis V3.0 allows
for remote connections that are less fault-tolerant and
do not run the protocol sewer directly but instead
connect to a ’mother’ Isis site.) The implementation of

32

the name senice ensures one-copy consistency of the
name space mappings among all of the protos processes.
This has a great impact on the cost of creating a named
group as indicated in the transaction tool discussion
above.

4. Overall design

The following observations about the common uses of
process groups guided us in our design to combat these
problems. We have found that many applications use

many process groups
heavily overlapping groups
both small groups and large groups.
unnamed groups.

With the number of groups far exceeding the
number of processes in the system, high overlap and
coincidence of groups is unavoidable. We observed
that by combining overlapping process groups so that
they share a single ‘core’ process group, we could
obtain several distinct advantages. A careful look at
the performance problems shown above revealed that
for the common case of identical overlapping groups,
the protocols being exercised were largely unnecessary.
Consider the group membership protocol in the case
of process failures: if a single core process group were
used instead of a thousand identical groups, only a single
flush would be necessary to ensure failure atomicity and
instantiate the new group view. Similarly, using only
a few core groups can r e d d transmission delays (for
obtaining stability) and thus increase truly asynchronous
message sends. Much of the state maintained by the
Isis transport system to maintain causality and other
ordering semantics can be shared by these light-weight
groups, reducing the resource requirements of the
system.

Thus there is much to be gained by separating the
protocols underlying the process group implementation
from the interface provided to the applications
programmer. As was the solution in the abwe
distributed systems examples, we manage a large
collection of light-weight process groups by mapping
them onto relatively small Sets of ‘core’ process groups.
These core groups are the groups provided by the VSync
(for virtually synchronous) kernel in figure 3.

Figure 3 shows the architecture of Horus. A goal
of Horus is to take advantage of the microkernel
architectures being offered by modern operating
systems. Our experience with the Isis system has
allowed us to reorganize the major components of the
system in a layered and modular fashion, suitable for
use in microkemels. The lowest layer of Horus called
MUTS (Multicast Transport Service) 116, 11, provides
a portable abstraction of the underlying operating
system to the higher layers. The operating system
specific code is isolated in configuration dependent
source files within MUTS. This foundation allows for
easy porting of the system to operating systems such

Light-weigM process groups in the lsis system

ISlS Compatibility Libraries, Tools, Etc.
LWG Subsystem
VSync Kernel

Address
Operating System Space

Figure 3. The Horus architecture.

as Mach [l], Chorus [4, 51, and Amoeba [ll]. A key
component of MUTS is the abstraction it provides of a
multicast transport service. MUTS isolates the higher
layers from the details of underlying transport protocols,
yet provides important feedback information to the
higher layers so that they may deal with communication
failures in a consistent, well defined manner, Above
MUTS, the VSync kernel provides ordering semantics
on multicasts, and provides the basic process group
abstraction with strong semantics on the ordering of
group events with respect to multicasts. These two
layers define the portion of the architecture that is
appropriate to put in the system space of an operating
system. While this is not necessary, it will likely yield
more efficient communication. The layers above this are
most appropriately placed in a user space library. This
is where the light-weight process group subsystem lives.
The subsystem provides an interface to applications
through this library and is used by the other tools within
the library itself. The library also contains tools for
managing replicated data and distributed computations.

5. Design issues

In this section we examine a number of the issues which
we faced during the design of the LWG subsystem.
We wanted a flexible, efficient, portable, and simple
interface to the subsystem. The interface had to allow
for tight control of the light-weight to core group
mapping for use as a research tool and by sophisticated
users, yet also allow the subsystem itself to manage this
mapping in an intelligent way for ordinary users of the
system. Efficiency was paramount; to be useful, the
system had to optimize the critical path. In the next
few sections we discuss the major issues in designing
the LWG subsystem.

5.1. Mapping LWGs to core groups

To address the goals of flexibility and simplicity we
introduced the notion of core group sets which can be
managed by the subsystem or the user. A core group set
is a collection of Isis process groups which are used as
the communication transports for light-weight groups.
Light-weight groups are allocated out of a core group
set and are always mapped to exactly one core group
in the set. Influenced by the Mach [l] philosophy of

Lighl-weight process Groups
A B C A C D B D E

Core Process Group

Figure 4. A mapping of three light-weight groups onto a
common core group.

separating policy from mechanism we provide default
routines to manipulate these sets together with hooks
in the interface where the user can have tight control
of the mapping between a light-weight group and its
core group. The default policy manages core groups
completely within the LWG subsystem. In this case the
subsystem creates, changes, and deletes core groups
in the set dynamically as the mapping needs of the
LWGs change over time and uses heuristics to define
the mapping.

Core group sets allow us to address several issues
at once. First, they provide flexibility. By providing
support for multiple sets, wrying levels of mapping
control may be used within the same application. This
allows different mapping policies to be enforced for
different types of objects. For example, one policy
might mandate that the membership of a light-weight
group exactly match the membership of its core group,
while another might allow LWG members to be a
subset of the members of the core group. These
policies will have different impacts on the performance
of the system. Second, by providing policies for self-
management together with a default core set, the system
provides much of the functionality of light-weight groups
with a simple interface. Third, by constraining LWGs
to map only to those core groups within their core
group set, we improve the efficiency of self-management
policies by reducing the search space for core groups.

In figure 4 we show a mapping of three different
light-weight groups onto a common core group. It is
important to note that the membership of the core
group need not match the membership of the light-
weight group exactly; it can be larger. However,
there are tradeofi with such mappings. If hardware
multicast is not available, the cost of sending a multicast
message may be greater due to the increased number

33

B B Glade et af

of recipients. In figure 2(b) we see that processes A
and D receive extra messages which the light-weight
group subsystem will need to filter out. However,
these extra messages must be weighed against the
acknowledgement and stability information messages
sent in figure 2(a). If hardware multicast is in use,
the extra members do not add to the cost of sending
a message, but the extra members themselves still pay
a cost for handling the receipt of the message. On
the other hand, supporthg 'subset mappings' yields a
number of advantages. First, the number of core groups
that are needed is reduced since they can encompass
more light-weight groups. This reduces the amount
of state that is needed to support causality, reduces
the number of communication context switches that
occur, and reduces the size of the space that must be
searched when creating a new mapping for a LWG.
Second, With fewer core groups, better use can be
made of hardware multicast addresses. This can be a
critical performance factor since hardware devices such
as Ethernet interfaces support a fairly limited number
of multicast addresses before they go into 'software'
mode. Third, the cost of adding a member already in
the core group to the LWG is cheaper since much of
the state of the member has already been set up by the
core group.

Over time core groups will have a number of
different LWGs mapped to them and at some point a
core group may have no LWGs that map to it. XI avoid
consuming too much memory, such core groups have
to be garbage collected periodically. This collection
could occur at the instant the set of mapped LWGs
bccomes empty, but leaving the core group around for
some grace period can be advantageous in the event
that a subsequent LWG mapping appears soon. In the
transaction tool this does well on the common scenario
where a client issues a series of transactions to the same
set of servers, when the grace period is longer than
the time between transactions. Thus we could exploit
temporal, as well as spatial, locality of transactions.

Under high load the LWG subsystem can be faced
with a potentially large search problem. Upon the
creation of a LWG With an initial set of members,
it must map this group to an existing core group, if
possible. Determining the best mapping can, without
using good search techniques, lead to a linear search
of the core group set, which in the worst case can be
quite expensive (for n processes, there are potentially
2" - 1 unique core groups). In practice such a large
number of core groups never exists since the presence
of subset mappings eliminates the need for many of
these groups. In any case, the default mapping policy
of the LWG subsystem manages this search by using
a hash index Scheme keyed on the membership of the
group. This enables the search to quickly narrow in on
a core group containing the right members. The policy
of this default is to map an LWG 1 to the smallest core
group G whose membership contains the processes in
1. A further constraint is that the number of extra
members in C must not exceed some threshhold k (a

34

parameter of the heuristic). If no such group is found,
a new group is created with the membership of 1. Our
performance measurements used this heuristic with k
set to MIN(S,[Ilc2) where III is the number of members
in 1, and show that even this simple approach works well.
We are currently experimenting with other heuristics.

5.2. Added functionality

Rewriting Isis gives us the opportunity to consider
providing different forms of group semantics. Isis
provides a broad range of ordering semantics for
its communication (MBCAST, FBCAST, CBCAST,
ABCAST and GBCAST) 191, yet only one set of
semantics is provided for the process group mechanism.
While it can rightfully be argued that too many choices
only leads to the confusion of the programmer, it
is nonetheless interesting to consider the use of this
subsystem as tool for research into a spectrum of process
group semantics. An example clearly establishes the
validity of this argument. We have observed that while
many applications benefit from the strong semantics of
Isis process groups, there are nonetheless a number
of applications for which these semantics are too
strong and which would benefit from the performance
improvements obtained by using weaker semantics.
Consider a collection of sensor processes responsible
for periodically sensing the temperature of a room and
reporting on these values to a collection of reader
processes. For fault-tolerance multiple sensors are
used, and the reader processes collect the sensor data
to determine an average for the room's temperature.
Here an Isis process group may be used as the group
communication transport. The sensor processes would,
on initialization, join the group and start broadcasting
data. Notice, however, that the sensors themselves use
the group for sending only; they do not need to obtain
state from other members and are not concerned about
the order in which they join the group. In this situation
Isis would completely order the joins when in fact this
is not needed.

5.3. Large numbers of process groups

Just as light-weight threads share their state within
the address space of their encompassing process, light-
weight groups share their causality context and group
data structures within their core group. The reduced
memory resource needs combined with the sharing
of the core group protocols for failure detection and
causality allow Horus to efficiently support many more
light-weight process groups than core groups.

6. Interface

"hble 1 shows the interface to the light-weight group
subsystem. This interface provides asynchronous results
to enable the application to take advantage of pipelining
to improve its efficiency and yet retain a simple model
of execution.

tight-weight process groups in the lsis system

Function Argwnens Result Description

I lwgrreare I initid members I Iwg I Createlight-weight group. I
lwgndd members - Add members to a group.

IwgJmove members - Remove members.

iwgdesrroy

I lwpdiscurdxeulies I sendid I - 1 No more replies wanted. I

- Desmy group.

7. Initial performance results

lwgsend lwg. msg

As a prwf of concept, we built a prototype of the
light-weight group subsystem on top of Isis V3.0.6.
Doing so allowed us to proceed with our research
testing in parallel with the building of the Horus system,
which is being built bottom up. The lowest layers of
Horus are almost now complete and the building of
the light-weight group subsystem on top of Horus is
just beginning. Building the prototype on top of Isis
V3.0.6 allows us to make measurements of the impact of
the LWG subsystem on the performance of the system.
Happily, the prototype showed significant improvements
in performance and the results supported our initial
suspicions.

Initial measurements of the performance of our
light-weight process group subsystem are encouraging.
The following measurements were taken on Sun 4c/60
Sparc 1+ workstations running Sun OS 4.1.1 using Isis
V3.0.6.

Our measurements of the mst of obtaining message
stability confirmed our initial expectations. Switching
communication from one core group to another
core group costs the application approximately one
synchronous multicast. For applications that change
contexts kequently with respect to message sends, this
overhead can be significant For example, a process that
repeatedly switches between coincident core groups rum
roughly twice as long as the equivalent program sending
to only one core group. Asynchronously CBCASTing
400 byte messages to four members (three remote,
one local) costs 18.0 ms per multicast in the strictly
alternating case, and only 10.4 ms in the single group
streaming case. For two members (one remote, one
local), the cost of altemating CBCASl3 is 10 ms, for
streaming it is 3.2 ms. The tuning of the transport
layer plays an important factor in the cost of obtaining
stability. For efficiency the transport layer will attempt
to determine if the sending application is in a streaming
or ‘interactive’ mode. In the former, the transport layer
will delay acknowledgements in order to send as few
ack messages as possible, in the latter case the transport

sendid Post message to a group.

layer is aggressive about sending acks, so that the mst
of the context switch is as small as possible.
RI measure the effect of light-weight groups on

reducing the costs of a join, we compared creating bursts
of 100 LWGs against core groups. The prototype LWG
subsystem makes use of a group view manager which
replaces the role of ‘protos’ for managing views and
group names. We ran these tests with the creating
process both local and remote to the view manager. In
the local case, a LWG create took 45 ms compared to
60 ms. In the remote case, a LWG create took 29 ms
compared to 200 ms for the core group. Contention for
the processor may partially explain why the LWG create
with the local view manager is more expensive than the
remote case, but this is still curious. These results are
preliminary and only serve as proof of concept. The
LWG subsystem on Horus will not use a group view
manager and will use a separate name service for named
groups.

We measured the time of a light-weight group leave
event for both the local and remote view manager cases.
Under both situations the cost of a light-weight group
leave was 9 ms. The cost of a core group leave for the
remote case was 197 ms, and for the local leave it was
80 ms.

Iwgxeceive

8. Related work

The Transis system [2, 31 provides process sets at the
session layer of their system. These ‘are closely related
to the multiplexing layer of Horus. Their job is to
map a process abstraction of membership onto a site
abstraction of membership. Ttansis has a single Tansis’
process on each processor which coordinates the current
configuration set (CCS), the set of currently active
processors. In contrast with Jsis and Horus, ’Pansis
has a single CCS within a broadcast domain (typically a
LAN). All of the processors within this CCS receive all
messages sent within any process set in that CCS. Transis
uses local broadcasts to reduce the impact of this, but
this can have an adverse affect on active processors
that are not interested in participating in the broadcast
domain.

35

1% msg, recvid Wait for next message.

l w g x p l y recvid, reply msg - Send a reply.

B B Glade et fd

The ESPRIT Delta-4 project (121 also provides a
similar light-weight notion of process groups. They
provide a sub-grouping mechanism in their extended
atomic multicast protocol service (XAMp). This yields
support for multiple selective address lists which share
the context of a gnle group. In many respects these
are similar to process lists in lsis [9]. Both of these
mechanisms however require the user to determine the
mapping between the address list and the group. Once
defined this association is permanent. The address lists
are purely local to the creating process, indeed the
members may not even be aware of their membership
in a list. These are significant differences between
the light-weight group mechanism reported here and

The Delta4 project has also recognized the
importance of providing different qualities of service
within their group communication seMce. This
recognition lead in part to the evolution of the Delta-4
AMP service to xAMp. Our obsemtion of this need
has been similar in the Isis system.

process lists.

9. Conclusion

It is interesting to draw analogies with the evolution
of some other common system paradigms. Memory
allocation is an excellent example. Before the advent
of standard library routines like malloc, programmers
were forced to implement their own memory allocator
routines which usually had the effect of reducing
the portability of their software, since their memory
allocators were often OS and machine specific. %day,
malloc is widely available, and the mechanisms by
which memory is allocated are hardly a concern
to most programmers. Much like malloc, light-
weight process groups abstract away the details of the
implementation, yet provide added functionality and
improved performance.

Similarly, threads have become an attractive
mechanism for improving the performance of processes.
Threads reduce the heavy-weight context switching of
processes by sharing an address space among the threads
of control. The sharing of resources seems to be a
common theme to providing light-weight mechanisms.
We are encouraged by the initial results of our prototype
and are actively incorporating these ideas into Horus.

Currently, we are experimenting with prototype and
are building the light-weight process subsystem and
user-level libraries on top of the VSync kernel in Horus.
We hope to have a release of this system available by
the end of 1993.

Acknowledgments

The authors of this paper gratefully acknowledge the
contributions of Sue Honig, Keith Marzullo, Aleta
Ricciardi, Alex Siegel, Patrick Stephenson, and Mark
Wood to Isis and its applications. We also greatly
appreciate the helpful comments of Cliff Krumvieda
and Mike Reiter on an earlier draft of this paper.

References

[I] Accetta M, Baron R, Golub U, Rashid Q Evanian A
and Young M 1986 Mach: a new kernel foundation
for UNIX development h c . USENIX Summer '86
ConJ pp %I12

[2] Amir Y, Dolev D, Kramer S and Malki D 1992 'Itansis:
a "munication subsystem for high availability
Roc. 22nd lnt. Symp. on Fault-Tolemnt Computing
PP 7b-a

[3] Amir Y, Dolev D, Kramer S and Malki D 1992
Membership algorithms in broadcast domains
Echnical Report CS92-10 The Hebrew University of
Jerusalem

[4] Armand F, Gien M, Herrmann F and Rozier M 1989
Revolution 89 or 'Distributing UNIX brings it tack
to its original virtues I2chnical rep or^ CSITR-89-361
Chorus Systhes, 6, avenue Gustave Eiffel, F-78182,
Saint-Quentin-En-Yvelines, France

[S] Armand F, Herrmann F, Lipkis J and Rozier M 1989
Multi-threaded processes in Chorus/MIX Technical
Report CSITR-89-37.3 Chorus Syst&mes, 6, avenue
Gustave Eiffel, F-78182, Saint-Quentin-En-Yvelines,
France

reliable distributed computing Commun. ACM to
appear

[6] Birman K P 199.3 The process group approach to

171 Birman K. Schicer A and Steohenson P 1991 . _
Lightweight fausal and atomic group multicast TTMS.
Comput. Svsl. 9 272-314

[SI Cheriton D k Malcolm M A, Melon L S and
Sager G R 1979 Thoth, a portable real-time
operating system Commun Ass. Compul. Machiney
22 105-1s

The Isis Group 1991 The Isis LXsfributed Toolkit Venion
3.0 User Reference Manual Department of Computer
Science, Cornell University

1991 b l s for distributed application management
Computer 24 no 8 42-S1

[111 Mullender S J and Tanenbum A S 1986 The design
of a capability-based operating system Comput. J. 29
?x%300

Powell D (ed) 1991 Della-4: A Generic Architecture for
Dependable Dirrributed Compuring (Berlin: Springer)

Ricciardi A M and Birman K P 1991 Using
process groups to implement failure detection
in asynchronous environments h c . l&h Ann.
ACM Symp. on finciples of Distributed Computing
pp 341-53

[141 Siegel A 1992 Performance in flexible distributed file
systems PhD Thesis Cornell University

[151 Rvanian A Jr, Rashid R F, Golub D B, Black D L,
Cooper E and Young M W 1987 Mach threads and
the Unix kernel: the battle for control Technical
Report CMU-CS-87-149 Carnegie-Mellon University

B and Stephenson P I992 Reliable multicast
between microkernels Proc. USENIX Wohhup
on Micro-KemeLr and Oher Kernel Architerlures

[9]

[101 Marzullo K, Cooper R, Wood M and Birman K

[121

[1.31

[161 van Renesse R, Birman K, Cooper R, Glade

pp 2 6 w 3
[171 van Renesse R, Cwper R, Glade B and Stephenson P

1992 A RISC approach to process groups h c . 5th
ACM SIGOPS Workshop IRISA INRIA

Wood M 1991 Fault-tolerant management of
distributed applications using the reactive system
architecture PhD niesis Cornell University; 1992
&oc. 22nd Inl. Symp. on Fault-Tolerant Computing92
(Boston, MA: IEEE)

1181

36

