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Abstract. This paper presents the design and implementation of the GARF 
system, an object-oriented platform that helps programming fault-tolerant 
distributed applications in a modular way. The originality of GARF is to separate a 
distributed object into several objects. the complexity of distribution and 
fault-tolerance being encapsulated in reusable classes. The use of those classes 
by the GARF system is based on a run-time mechanism of invocation redirection, 
where most other systems use inheritance, a compile-time mechanism. Our 
runtime, which supports the GARF object model, is written in Smalltalk It is 
presented in detail, as well as the reusable classes that support fault-tolerance. 
Fault-tolerant objects are implemented using groups of replicated objects. Our 
Dependable Object Toolkit provides group management facilities at the object level. 
Object groups are built on top of the Isis toolkit, which provides group management 
facilities at the Unix Drocess level. Our mapping of object groups on process 
groups and our interiacing of Smalltalk and isisare detailed. 
and a first evaluation of our prototype are also presented. 

1. Introduction 

Programming fault-tolerant distributed applications is a 
difficult task, because one has to deal with complex 
issues, such as failure detection, replication management 
and group communicationsi. GARF is an object- 
oriented environment that simplifies the programming of 
fault-tolerant applications, by separating the distributed 
behaviours of objects from their functionalities [12]. The 
functionality of an object is defined by the part of its code 
programmed to work in a centralized sequential context. 
The behaviour of an object is defined by the part of its 
code that deals with issues to consider when the object is 
used in a distributed context. Fault-tolerance is such an 
issue. 

1.1. Overview of fault-tolerance in GARF 

The originality of the GARF approach is to separate each 
distributed object into two independent objects: a data ob- 
ject, in charge of the functional aspects, and a behavioural 
object, in charge of the behavioural ones. By doing this, 
GARF achieves the separation of ideal programming ab- 
stractions and efficient implementation; this separation is 
sometimes called separation of concerns [34]. This ap- 
proach implies that there are two distinct programming lev- 
els: programming at the functional level and programming 

Performance analysis 

at the behavioural level. It has the advantage of greatly 
improving modularity and reusability, since all the difficult 
aspects are dealt with, once and for all, in the behavioural 
object classes. With the GARF environment, one first pro- 
grams and tests data object classes in a conventional object- 
oriented language. Then, for each data object class, a be- 
havioural object class is chosen from a library and associ- 
ated to it. The data objects can then be used in a distributed 
context and have some well defined behaviour, which d e  
pends on their associated behavioural objects. When de- 
veloping applications with GARF, one only programs the 
data object classes, without bothering about any distributed 
issues. GARF offers a library of ready-to-use components, 
the behavioural objects, in charge of those issues. The 
behaviour library. offers a variety of classes, providing ad- 
equate support for fault-tolerance through replication, as 
well as support for other aspects of distributed program- 
ming, such as concurrency [ll]. Our model, based on two 
object levels, also comes with a programming methodol- 
ogy [221. 

Behavioural classes that support fault-tolerance at the 
object level are implemented using the Isis foolkit [3], 
which provides fault-tolerance at the Unix process 
level. The GARF environment uses Isis services 
through a well defined interface which is independent 
of Isis. This approach has the advantage of avoiding 

* Research funded by the Fonds National Suisse pour la Recherche 
Scientifique, under contract number 5003434344. 
t Replication of critical software components, mmbined with group 
communications are powerfu~ tWis to achieve fau~o~erance ,  using "0 

specialized hardware 171. 

algorithms for group management and group 
communications. It also allows the underlying group model 
to be changed very easily, replacing Isis with some other 
similar toolkit, such as Horus [28] or Trunsis [l]. 
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A behavioural object is only a concept and has no real 
existence. This concept embraces two kinds of real objects: 
encapsulators and mailers. In this paper we sometimes use 
the term behavioural object or simply behaviour to refer 
to encapsulators and mailers indiscriminately. Each data 
object has a dedicated encapsulator and both are located on 
the same site. A,copy of the data object’s mailer resides 
on every site where at least one potential client is located. 
An object is a potential client of a distributed object when 
it has the means to invoke it. There are only two ways for 
a client to get the mailer of a server: either by creating the 
server or by receiving its mailer as argument from another 
client. 

1.2. Overview of the paper 

This paper presents the architecture of the current GARF 
environment prototype and focuses on how fault-tolerant 
objects are implemented using our two object levels. It 
also shows how we implemented replicated objects on 
top of the Isis toolkit, in order to achieve fault-tolerance. 
Section 2 reviews the GARF computational model, i.e., 
how data objects and behavioural object, are created, bound 
together and how they cooperate. Section 2 ends with an 
overview of the current prototype’s architecture. Section 3 
presents how the computational model is implemented by 
the runtime of our prototype. Section 4 presents our 
underlying dependable object toolkit, its architecture based 
on Isis, ‘and how it is used to implement fault-tolerant 
behavioural objects. Section 5 discusses the performance 
of the GARF environment. Section 6 evaluates the main 
design choices that prevailed in the implementation of our 
first prototype of the GARF system. Section 7 describes 
related work in the distributed object community. Section 8 
summarizes what has been done in our prototype and 
presents the future extensions we plan for the GARF 
environment. 

2. Computational model and basic architecture 

The goals of this section are twofold. In section 2.1, we 
present the computational model of GARF and its two 
object levels. Object invocations and object creations are 
explained in detail and the main classes and methods needed 
when programming with GARF are presented. Section 2.2 
introduces the architecture of our first implementation of 
the GARF system and gives an overview of how this 
architecture supports fault-tolerance. 

2.1. Computational model 

With GARF, a distributed object is built from two distinct. 
objects: a dura object, which defines its functionality, 
and a behavioural object, which defines its behaviour; 
the behaviour of an object deals with all the distribution 
related issues. Once a data object class is implemented 
and tested in a centralized sequential environment, its code 
will remain unchanged for the rest of the development 
process. Distributing the instances of some data object class 
is achieved merely by associating a class of behavioural 
objects, taken from a library of reusable classes, to the data 
object class, that depends on the application semantics. As 
a result, whenever a data object is created, a behavioural 
object is automatically created and bound to it. 

A behavioural object intercepts all invocations sent or 
received by its associated data object transparently to its 
data object. Figure 1 shows the clientlserver invocation 
schemet as it is perceived by the data objects (dashed 
arrow) and the invocation scheme as it is really executed 
through behavioural objects (solid arrows). Each mow 
represents an invocation, i.e., a (request,reply) pair. 

t Object-oriented languages support the clientlsecver model in a oadlral 
way. We often refer to objects as cliena or servers, depending whether 
they sent or received a particular invocation. 

2.1.1. Object invocations When a distributed object 
participates in an invocation as client, only its encapsulator 
is involved; when a distributed object participates in an 
invocation as server, both its mailer and its encapsulator 
are involved. Only encapsulators can be invoked across 
the network and the comesponding mailers alone can do it. 
The mailer is cloned for each invocation, i.e., a mailer is 
only responsible for one invocation. 

Figure 2 presents the invocation path in the GAW 
computational model. An invocation of some method m on 
server s by client c is transformed by the GAW runtime 
into an invocation of method 0utRequest:to: on En(c), 
the client’s encapsulator; the latter receives the following 
arguments: the reified method #m and Ma(s), a clone of 
the mailer of server s$. The clone is dedicated to that 
particular invocation. , Encapsulator En(c) transmits the 
reified invocation #m to Ma(s), by calling sendRequest:. 
The mailer then calls inRequest: on En(s), the server’s 
encapsulator, in order to forward #m to the server’s 
site; this can be seen as some kind of remote procedure 
call. Eventually, En(s) invokes m on server s. Once 
method m has been pehrmed by s, the result comes 
back to c following the reverse path, i.e., it comes back 
through a chain of terminating invocations. All actions that 
are undertaken within sendRequest: and inRequest:, 
before forwarding m and after receiving its result, define 
the behaviour of s as server. All what outRequeskto: 
does defines the behaviour of c as client. 

2.1.2. Object creations Associating a behaviour to adata 
object comes down to creating a mailer and an encapsulator, 
and to binding them to the data object. This tells the GARF 
environment that henceforth all invocations sent or received 
by the data object should be reified and forwarded through 
the invocation path presented in figure 2. 

The association takes place at creation time. When 
a data object class is invoked for creation, using 
some creation method such as news, the invocation is 

t In this paper, we denote objects in regular rypeface and methods in bold 
typeface. In Smalltalk syntax (see figure Z), En(cJ outRequest: #m to: 
M(sJ means that object En(=) is invoked by method 0utRequest:to: 
with objects #m and M($J as arguments. To rei& on invocation means to 
transform it into an object; a reified invocation is denoted #m, m being 
the method name. 
5 lx the objectdented language considered here, classes are fist elnss 
objects, i.e., they can be invoked like any object. Object creations are then 
achieved merely by invoking classes using adequate (creation) methods. 

15 



6 Garbinato et a/ 

Client c servers 

-0 ______________-___ 0 
1- Functional level 

Behavioural level 

Behaviour of C Behaviour of S 

Figure 1. Functional and behavioural object levels. 

transformed by the GARF system into a call to method 
garfNew:, passing it the reified invocation #new. Method 
garfNew is known only at the behavioural level. Any 
implementation of garfNew: must create a data object, an 
encapsulator and a mailer, bind them together and return 
the mailer. The choice of the encapsulator and the mailer 
classes determines the behaviour of all instances of the 
data object class. By ovemding this method, programmers 
can specify, for a given class, what the behaviour of its 
instances will be. 

2.1.3. Transparency issues At the functional level, 
a client data object is not aware that it is invoking a 
server data object located on a remole site: this issue is 
entirely dealt with at the behavioural level. The remote 
invocation at the functional level is then transparent. At the 
behavioural level, only the server’s mailer knows where the 
server’s encapsulator is located the location of the serveis 
encapsulator is bansparent to the client’s encapsulator. The 
mailer can be seen as an intelligentproxy [2] of the server’s 
encapsulator for the client’s encapsulator. 

2.1.4. Methods of data objects, encapsulators and 
mailers The GARF computational model relies on a set 
of classes and methods which are presented in figure 3. 
Each class is the root of a distinct hierarchy and each 
method can be redefined by the subclasses. Programming 
with GARF typically involves subclassing Dataobject into 
several application related classes and reusing encapsulator 
and mailer classes, derived from Encapsulator and Mailer 
respectively. These classes are organized into two separate 
inheritance hierarchies that make up the GARF library of 
behaviours. Implementation of methods outRequeskto: 
and inRequest: for an encapsulator and sendRequest: 
for a mailer deteimines the distributed behaviour they 
support. Implementation of method garfNew for a 
data object class determines what behaviour, i.e., what 
encapsulator and mailer, will be bound to its instances. 

2.2. Basic architecture for fault-tolerance 

Our current prototype of GARF is an extension of the 
Smalltalk [13] environment? based on a set of additional 
t The environment used for the CAW project is Visualworks the 
commercial version by ParcPlace Systems, Inc. 
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classes we wrote; no extension to the Smalltalk language 
was necessary to support our computational model. Some 
of those additional classes use operating system level 
services and the Isis toolkit [3] in order to provide support 
for distribution and fault-tolerance at the object level. 
Figure 4 shows the basic architecture of our current 
prototype, with respect to fault-tolerance. Each software 
layer depends on the layers below to provide fault-tolerance 
to the layer above. The three first layers implement 
the computational model presented previously. The next 
section details layer 2, while section 4 details layer 4 and 
how it is used by layer 3. 

Fault-tolerant data objects rely on the GARF runtime, 
first to create their behavioural objects and second to 
redirect all incoming and outgoing invocations. The GARF 
runtime knows nothing about distribution or fault-tolerance. 
It merely redirects invocations and relies on the behavioural 
object library to provide fault-tolerant behaviours. Fault- 
tolerant behavioural objects are implemented on top of 
the Dependable Object Toolkit (DOT). DOT is a platform, 
developed within the GARF project, that provides support 
for replication management and group communications at 
the object level. It is built on top of the Isis toolkit, which 
provides the same facilities at the Unix process level. 

3. The GARF runtime 

The GARF runtime implements the computational model 
presented in section 2 by carrying out two tasks. First, 
whenever a data object is created, the GARF runtime 
creates in addition an encapsulator and a mailer and 
binds them to it. This comes down to transforming any 
creation invocation on a data object class into a call to the 
garfNew: method on that class. Second, any invocation 
sent to some data object s by some data object c is 
transformed into a call to the outRequest:to method of 
Enlc), the client’s encapsulator. Being very similar, both 
tasks are implemented in the same way: by redirecting 
invocations. The current GARF prototype is based on a 
run-time invocation redirection mechanism, rather than on 
a preprocessor. This implies that code at the functional 
level is not modified at all to implement the redirection. 
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CLASS INVOCATION METHODS 

Dataobject 
Encapsulator inRequest: anlnvocation 

Mailer sendRequesk: anlnvocation 
outRequest: anlnvocation to: aMailer 

Figure 2. Invocation scheme. 

CREATION METHODS 

garfNew: aCreationlnvocation 

1 

2 

3 

Data Objects 

GAFW Runtime 

Library Of Fault-tolerant Behaviours 

SMALLTALK 
Language 

Environment 
+ 

. __-- ---_ - - 
C 

Unix 
+ 5 

Figure 4. Architecture of the GARF environment. 

Isis Toolkit 

3.1. Invocation redirection 

In order to redirect invocations at runtime, these are 
intercepfed by the GARF runtime. This is done by 
substituting a special object for each data object and data 
object class; we call this special object a name. A name is 
neither a data object nor a behavioural object, and can be 
seen as a system object, since it uses syszem servicest to 
help implement the GARF runtime. When client c invokes 
server s, it really invokes the object Name(s). The latter 
intercepts the invocation, instead of reacting to it. 

The interception is based on an exception mechanism 
provided by Smalltalk. In this language, whenever an 
object is invoked using some unknown operation, method 
doesNotUnderstand: is called instead and the invocation 
that raised the exception is reified and passed to it. 
Default implementation of this method is inherited from 
class Object and automatically launches a source level 
debugger. By making names able to react only to method 

i By sysrem services, we mean the Smalltalk reflective facilities as well 
as operating system level services. Isis provides such system senices and 
is used to implement system objects supporting fauktolerance, as we shall 
see in section 4. 

doeshlotunderstand: and by redefining it, invocations 
can be redirected. Figure 5 presents how the exception 
mechanism is used in GARJ. In this figure, servers can be 
either a data object or a data object class. 

Name is an abstract class defined by GAR!? that 
provides support for invocation interception. It has no 
superclass, i.e., its superclass link is set to nil, which ensures 
that no method is inherited fiom class Object$. Instances 
of Name’s subclasses can then intercept invocations 
of all methods, apart from the only one they define: 
doesNotUnderstand:. ObjectName and ClassName, 
described below, are such subclasses. An ObjectName 
substitutes for a data object in order to intercept its 
incoming invocations, while a ClassName substitutes for 
a data object class in order to intercept object creations. 
They both inherit an instance variable namedobject 
from class Name. Instances of ClassName have their 
internal variable namedobject that references a class, 
while in instances.of ObjectName, variable namedObject 
references a mailer. 

The interception technique presented above has been 
used by the Smalltalk community to modify the syntax 

1 In Smalltalk, the only class to have a nil superclass is normally Object 
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C S 

D 0 Without GARF 
m 

c @ With GARF 
doeJNotUndoroland #m 0 / 

C Nome(s) 

Figure 5. Invocation interception at runtime. 

of the language, in order to extend it towards multiple 
inheritance 1171. It was also used to introduce some 
semantics changes [5,10,26]. There are several problems 
to solve when a class has nil as superclass. These problems 
have to do with how the Smalltalk environment (browser, 
debugger, etc) interacts with such a class [23]. 

3.2. Class ClassName 

Creation invocations are transformed into calls to method 
garfNew which is responsible for associating a behaviour 
to each data object when it is created. ClassName 
instances are responsible for that They substitute in the 
SmalltalkDictionaryt for the classes whose invocations 
they redirect. The Smalltalk environment always uses 
the SmalltalkDictionary to access classes, so whenever 
an object invokes a class, its ClassName is invoked 
instead. Since the latter is a subclass of Name, it does 
nob understand the invocation and its implementation of 
method doesNotUnderstand is called. 

Figure 6 presents the implementation of doesNotUn- 
derstand: by ClassName. If an instance of ClassName 
receives an invocation that is a creation, garfNew 
is invoked on the data object class (instance variable 
namedobject); else the intercepted invocation is merely 
forwarded. Method perform: takes a reified invocation 
as argument and performs it on the receiver object, 
i.e., namedobject perform: #m is equivalent to 
namedobject m. Figure 7(a) illustrates the redirection 
of a creation, while Figure 7(b) illustrates the redirection 
of an invocation that is not a creation. 

3.3. Class ObjectName 

Invocations of a data object by some client are transformed 
into invocations of the client’s encapsulator by method 
outRequesWo:, which starts the invocation scheme 
presented in figure 2. ObjectName instances are 
responsible for that. The ObjectName of a new data 
object o is created together with 0, whose invocations it 
redirects. Method garfNew: returns 0’s ObjectName to 

t The SmalltalkDictionary is a predefined global varhble containing the 
collection of all the classes known in the Smalltalk environment. The 
substitution is currently done by himd. but pm@ng utilities that will 
ease this t& are under development. 
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the client instead of directly returning 0. Since o might be 
located on a different site, its ObjectName can be seen as 
its proxy, just as a mailer was said to be the proxy of a 
remote encapsulator (see section 2). 

Figure 8 presents the implementation of doesNot- 
Understand by ObjectName. Smalltalk provides’ no 
predefined method for an object to know who invoked 
it. Method getclientof: defined by ObjectName is 
responsible for that. It receives the current stack frame 
(pseudo-variable thiscontext) as argument and follows the 
dynamic link until it stumbles on an object’s frame$; the 
latter is the client’s frame, from which it is easy to extract 
the client itself. The client, as data object, returns its 
encapsulator when invoked by method encaps. When 
invoked by method clone, the server’s mailer (instance 
variable nameclobject) returns a copy of itself. Once the 
client’s encapsulator and a clone of the server’s mailer have 
been obtained, the invocation of method outRequeskto 
is possible. Figure 9 presents the real path followed by 
the intercepted invocation #m, while figure 1 and figure 2 
illustrate conceptual paths. 

4. Support for fault-tolerance 

Replication of critical software components has proven 
to be an efficient way to mask crash failures in order 
to achieve fault-tolerance: a software component is more 
likely to tolerate failures when replicated. The replicas 
of a software component are usually managed using 
group communication, implemented through multicast 
primitives [7]. The concept of group is a powerful 
abstraction to manage replicas of some logical component, 
in order to keep it available despite failures (liveness 
property). A useful feature of a multicast is reliability: 
a reliable multicast is received either by all non-faulty 
members of the group or by none [32]. Multicast primitives 
must ensure that component failures do not compromise 
the consistency of the logical state managed by group 
members (safery property). By guaranteeing safety and 

$ There might be an axbitmy number of nested blocks’ frames on the 
stack before an object’s frame is reached, but it is possible to test whether 
a stack h e  has been created by a method call or by a nested block. 
This implementation is possible thanks to the reflective facilities provided 
by Smalltalk such as the ability to maoipulate the execution wnteXI as 
an abject. 
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doeshlotunderstand: anlnvocation 
I result I 

(anlnvocation iscreation) 
iffrue: [result := namedobject garfNew: anlnvocation] 
iffalse: [result := namedobject perform: anlnvocation]. 

^result 

Figure 6. Method doesNotUnderstand defined by ClassName. 

Figure 7. Invocation interception for classes. 

doeahlotunderstand: anlnvocation 
1 client clientEncaps KrverMailer 1 

client := self getcl ientof  thiscontext. 
clientEncaps := client encaps. 
serverMailer := namedobject clone. 
*clientEncaps outRequest: anlnvocation to: serverMailer. 

Figure 8. Method doesNotUnderstand: defined by ObjectName. 

Figure 9. Invocation interception for data objects. 

liveness, an application can be made fault-tolerant, i.e., 
able to make safe progress even if (some) components 
fail [29]. In GARF, software components are data objects; 
they are not programmed to deal with replication related 
issues. Neither does the GARF runtime, which only knows 
how to redirect invocations. Support for managing groups 
of objects, and for communicating transparently with their 
members, is provided by adequate mailer and encapsulator 

classes, from the GARF library. In this paper, we focus on 
active replication, but several other replication policies are 
available from the GARF library. Since the GARF library 
of behaviours does not provide encapsulators supporting 
persistence yet, we do not consider that aspect in this paper. 
This section presents the encapsulator and mailer classes 
needed to actively replicate data objects (section 4.1) and 
details the underlying replicated object platform (section 4.2 
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Figure 10. Invocations of an actively replicated data object. 

and section 4.3). This corresponds to layer 3 and layer 4 
respectively, as presented in figure 4. 

4.1. Active replication in GARF 

Active replication is a technique that requires each replica 
to receive the requests sent to the group, to treat them in 
the same order and to reply [27]. This guarantees that all 
replicas have the same observable statet. With GARF, an 
actively replicated data object has its behaviour built from 
an encapsulator of class ActiveReplica and a mailer of 
class Abcast. 

4.1.1. Invocation of a replicated object An Ac- 
tiveReplica encapsulator is located on each site where a 
replica of the server data object can be found. It holds a 
reference to the local replica of the server data object and is 
member of an object group. Data objects are never group 
members; their encapsulators are. On the client’s site, an 
Abcast mailer acts as a proxy of the group of encapsulators. 
When the client’s encapsulator invokes sendRequest: on 
the mailer, the latter multicasts method inkquest: to 
the group and each ActiveReplica executes it. Method 
inRequest: invokes the local replica of the server data 
object, using the reified invocation passed as argument (see 
table in figure 3), and returns the result to the mailer. 
The Abcast mailer gathers all the replies received from 
the ActiveReplica encapsulators, but only returns the first 
one to the client’s encapsulator. By redefining method 
sendRequest: in subclasses of Abcast, one could im- 
plement other criteria to choose which reply to return. 

Figure 10 presents two concurrent invocations of a 
server data.object s, replicated twice, by two distinct client 
data objects c and c‘. Mailers of class Abcast ensure 
that the multicasts they perform are totally ordered$. In 

t Only deterministic objects are considered here. 
t The Abcast class takes its name from the Isis obcosr(J primitive which 
implements a totally ordered mulficast to a group of processes. 
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this example, both replicas of s first receive the invocation 
from c (black arrows) and then the one from client c’ (grey 
mows).  

4.1.2. Creation of a replicated object A data object 
class specifies the fault-tolerant behaviour of its instances 
by redefining its garfNew: method (section 2.1). Figure 1 1  
shows how this is done for data objects that are 
actively replicated twice. First, garfNew creates a 
set (local variable aSetOfSites) containing the names 
of the sites where to locate the replicas; those sites 
are sewerl .epfl.ch and sewer2.epfl.ch$. This set is 
passed to method groupon:, which creates and returns 
an object representing a group of two ActiveReplica 
encapsulators, one located on sewerl .epfl.ch and the other 
on sewer2.epfl.ch. The group of encapsulators is then 
invoked using method bui1dAndBind:sending:. This 
method tells each ActiveReplica to build an instance of 
the data object class passed as first argument (pseudo- 
variable self II), using the reified creation invocation passed 
as second argument (parameter aCreationlnvocation). 
Eventually, an Abcast mailer is created, passing it the 
group of encapsulators (local variable aGroup). This 
mailer is returned to the caller of garfNew: and will act 
as a proxy of the ActiveReplica group. 

4.2. Dependable Object Toolkit based on Isis 

The Isis toolkit is based on the virtually synchronous model. 
In this model, an application is made of processes (software 
components) that are members of groups and invoked 

5 The names follow the format defined by the Domain Naminfi Service 
of Internet. In this example. they are wired in the garfNew: method, but 
they could be the result of some ladbalancing computation. 
11 Used within a method. this pseudo-variable represents the object that 
is currently executing that method, here a data object class executing 
garfNew:. Although named differently, the Same pseudo-vanable exists 
in all object-anented programming languages. e.g., in C++ it is called thi.?. 
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4.3. Architecture of DOT 

From DOT'S point of view, a site is a pair of processest. 
One process, GARF/st, holds the Smalltalk virtual machine 
where objects execute; Isis knows nothing of this process. 
The other process, DOT/c, is written in C and uses Isis 
services. These services rely on a call-back mechanism and 
on multiple threads controlled by the Isis scheduler. The 
latter is driven by a protocol that ensues virtual synchrony. 
Processes GARF/st and DOT/c communicate through Unix 
domain sockets. Insulating Isis calls in a separate Unix 
process enhances the modularity of DOT. The latter 
can be easily ported to another virtually synchronous 
toolkit, such as Transis or Horus, since it only implies 
rewriting DOTlc. We are currently porting GARF on the 
Phoenix platform [21], an Isis-like toolkit developed in our 
laboratory. 

Isis manages groups of processes, while DOT deals 
with groups of objects. Our mapping of DOT groups on Isis 
graups is straightforward. If a 'data object replica resides 
in the GARF/st process of some site and its encapsulator 
is a member ,of a DOT group g, the DOTlc process on 
that site is a member of an Isis group also named g. So a 
DOTlc process may be a member of several groups: it is a 
member of as many groups as there are data object replicas 
in the corresponding GAFWst process. Instances of class 
Group contain the group name g. When invoked by some 
multicast method (say abcast:), they pass g to the DOT/c 
process through a Unix domain socket. Process DOTlc then 
uses the equivalent Isis multicast primitive (nbcast() in that 
case). The Group Membership Problem [30] is entirely 
dealt with by Isis. 

4.3.1. Object group invocations Figure 13 shows how 
DOTlc processes interact when an invocation is multicasted 
to a group of two ActiveReplica encapsulators, using 
method abcast:. As aMailer invokes aGroup, the latter 
transforms the reified invocation1 passed as argument into 
a sequence of bytes. The Binary Object Streaming Service 
(BOSS), provided by the Smalltalk standard library of 
classes, does' the actual job. Object aGroup then sends 
the sequence of bytes and the group name g to DOTlc, 
where a dedicated thread reads them (arrow 1) and forks a 
new concurrent thread (arrow 2). The latter builds an Isis 
message from the sequence of bytes and calls the abcast() 
primitive, passing it the group name g and the message it 
just created. Such a call blocks the thread until replies are 
received back from the replicas on the server's sites. 

As a result of the.call to the Isis &cast() primitive, 
a new thread is forked on the server's sites (arrow 3). 
This thread extracts the sequence of bytes representing 
the reified invocation (inRequest:) from the received 
Isis message. The reified invocation is then the sent to 

t We use the term process when talking a h u t  Unir processes and the 
term thread when talking about lighlweight-processes. 
i With GARF, the reified invocation is always a call to inRequest: since 
only groups of encapsulators are used. However, DOT is decoupled from 
GARF and allows one to manage replicas of any class of objects. not only 
encapsulators. 
5 Only one server site is detailed in figure 13; the other one does exactly 
the Same (s is actively replicated). 
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garfNew: aCreationlnvocation 
I aSetOfSites aGroup aMailer I 

aSetOfSites := Set new. 
aSetOfSites add: 'serverl.epfl.ch'. 
aSetOfSites add: 'server2.epfl.ch'. 

aGroup := ActiveReplica groupon: aSetOfSites 
aGroup buildAndBind: self 

sending: aCreationlnvocation. 

aMailer := Abcast to: aGroup. 
^aMailer 

Figure 11. Building fault-tolerant behaviours with method 
garfNew:. 

through multicast primitives. Members of a group receive 
a sequence of views, each representing the current group 
membership. Whenever a process joins or leaves the group, 
a new view is defined. Messages are ordered with respect 
to the view changes. By providing tools to manage groups 
of replicated processes, Isis allows the application to make 
progress despite process failures (liveness). Isis offers three 
reliable multicast primitives, implementing total, causal 
and fifo orderings; those primitives are abcast(), cbcast() 
andfbcast() respectively [3]. The &cast() primitive ensures 
that all processes of a group receive messages in the same 
order, so that failures do not compromise the consistency 
of the logical state managed by group members (safety). 
In some cases, a weaker ordering is enough, allowing 
significant performance improvement. 

Developed for the GARF system, the Dependable 
Object Toolkit (DOT) is built on top of Isis and offers 
Isis-like services at the object level. Figure 12 presents 
the architecture of DOT based on Isis and how it is built 
using two Unix processes on each site. Details about how 
those two processes interact are presented in section 4.3. 
DOT provides a class Group that allows one to create 
groups of distributed objects and to reliably multicast 
invocations to them. Members of a distributed object group 
are replicas of a logical object. The creation method of 
class Group named newGroup0f:with:on: enables one 
to specify a class, a creation method known to that class, 
and a set of sites where the replicas have to be created. 
In figure 11, method groupon: of class ActiveReplica 
calls newGroup0f:with:on: on class Group to create 
a group of ActiveReplica encapsulators. As a result, 
instance aGroup representing the group of replicas is 
returned and can be invoked through multicast methods. 
Object aGroup can be invoked using one of three multicast 
methods, abcast:, cbcast: and fbcast:, that have the 
same ordering semantics as their Isis counterparts. All 
these methods take a reified invocation as argument which 
is received and executed by all members of the group. 
Instance aMailer of class Abcast holds a reference to 
aGroup and uses method abcast: to multicast to it. 
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Figure 12. Architecture of DOT based on Isis. 

Figure 13. Multicast on a replicated object. 

process GARF/st (arrow 4). There, invocation inRequest: 
is rebuilt from the sequence of bytes and performed on 
encapsulator anActiveReplica. The object resulting from 
this invocation is transformed into a new sequence of bytes, 
which is sent back to DOTlc. A dedicated thread reads 
these bytes ( m o w  5 )  and forks a new concurrent thread 
(arrow 6). The latter builds an Isis reply and calls the 
reply() primitive to send it back to the client’s site (arrow 7). 
When the replies from all the non-faulty processes have 
been received on the client’s site, Isis unblocks the thread 
that called the abcastfj primitive. That thread extracts the 
sequences of bytes representing the replies and sends them 
back to process GARMst ( m o w  X), where the reply objects 
are rebuilt from the sequences of bytes and returned to 
aGroup. The latter collects all the replies into a list and 
returns it to aMailer. 

Along the path followed by a multicast invocation, 
many concurrent threads are involved; some are forked to 
deal with only one invocation. All the threads presented 
in figure 13 are Isis threads executing in process DOT/c, 
but Smalltalk threads are also involved; they execute in 
process GARF/st and do not appear in the figure. This 
approach based on forking multiple threads is useful to 
avoid serializing concurrent invocations on independent 
replicated objects. 
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4.3.2. Object group creations The creation of a group 
of ActiveReplica encapsulators is very similar to what 
has been presented for multicast invocations. First, a 
unique group name is generated, say g. DOT creates an 
Isis message containing the creation method, the generated 
group name g and the list of the sites where the replicas 
are to be located. That message is multicasted to a special 
group containing all the DOTlc processes. The latter can 
then determine if they are concerned by the new group 
creation by looking at the list of sites they received. On 
each of the sites that are in the list, class ActiveReplica 
creates a new instance locally, using the received creation 
method, and the DOTlc process joins a new Isis group 
named g. 

5. Performance measurements 

The GARF system current prototype has not been optimized 
at all yet; it is a straightforward implementation of 
the design presented in this paper. The performance 
measurements presented in this section were carried out 
using three Sun SPARCstations interconnected through 
a 10 Mbit Ethernet. All workstations were equipped 
with 32 Mbytes RAM and were running Solaris 2.2. 
The measurements took place on a normal workday, so 
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response time of ‘normal’ Smalltalk objects, those times 
being negligible. Figure 14 shows the decomposition of the 
response time for our scenario, i.e., an abcast: invocation 
on a group of two ActiveReplica encapsulators. Each 
site corresponds to a workstation where processes GARFIst 
and DOTIc are running. The client is on client.epfl.ch 
(SPARCstation LX), while,the server replicas are located on 
serverl.epfl.ch (SPARCstation 10) and server2.epfl.ch 
(SPARCstation LX). On the client’s site, the response time 
of a call to the Isis abcas() primitive is 138 ms. That time 
includes the treatment by processes DOTIc and GARF/st 
on the server’s sites, as well as the Isis communication. 
The time spent for DOT on the client’s site is then 113 ms 
(251 ms-138 ms). On the server’s site, that time is 67 ms 
for sewerl.epfl.ch and 91 ms for sewer2.epfl.ch. Being 
on a local area network, it is reasonable to admit that Isis 
messages reach DOTk processes at the same time on both 
servers’ sites. We can then say that 204 ms (113 ms + 
91 ms) is the total time taken by DOT to perform method 
abcast: on the group of replicated servers. The reason 
we use 91 ms and not 67 ms for our calculation comes 
from the fact that instances of class Group wait for all 
replies when invoked by method abcast:. The deciding 
response time is therefore the one of the slower server. As 
a consequence, 81% of the total response time is used by 
DOT. while the Isis communication takes the remainder 
(47 ms). Compared to the time taken by the Isis primitive 
alone, DOT causes an overhead factor of approximately 5. 

Several simple optimizations could he done to improve 
performance. One such optimization would be to avoid 
waiting for all the replies at the Isis level, since at the 
GARF level the Abcast mailer only returns the first object 
from its list of replies anyway. In that case, the response 
time would be that of the faster server, not of the slower 
one. Using Isis cbcast() primitives, which is roughly twice 
as fast as &cast() primitives, is sometimes enough to insure 
safety; this is another simple optimization. Further in- 
depth performance analysis has to be carried out in order 
to better understand where optimization efforts should be 
concentrated. 

the three workstations had medium to high load all 
were running XWindows as well as several interactive 
applications (emacs, mosaic, etc). The test scenario was 
based on the example introduced in figure 13, i.e., some 
client object interacts with a server object that is actively 
replicated twice, using ActiveReplica encapsulators and 
Abcast mailers. The client invokes a read operation on the 
replicated server and receives an integer managed by the 
server as reply. The client as well as one of the server 
replica ran on two SPARCstations LX, while the other 
server replica executed on a SPARCstation 10. 

5.1. Performance of the GARF runtime 

Before analysing the performance of the Dependable Object 
Toolkit (DOT), let us take a look at the overhead due 
to the GARF model, compared to a mere Smalltalk 
invocation. When applying our scenario to ‘normal‘ 
Smalltalk objects (no behavioural objects associated to 
them, so no distribution and no replication), the response 
time for a read invocation is 9 ps  on a SPARCstation 10 
and 26 ps on a SPARCstation LX. Now let us make 
data objects out of these ‘normal‘ objects and bind them 
to behavioural objects that simply redirect invocationst. 
When intercepted by the GARF runtime and redirected 
to those. behavioural objects, the read invocation takes 
628 ps on a SPARCstation 10 and 1.8 ms on a 
SPARCstation LX; the GARF runtime causes an overhead 
factor of approximately 70. As we will see in next section 
however, that overhead is quite small compared to the 
response time measured when data objects are distributed 
and replicated. 

The reasons for such a high factor have to do with how 
the Smalltalk virtual machine executes and how it handles 
exceptions. During normal execution, the virmal machine 
is partially bypassed and object methods directly execute 
on the physical processor. When an exception is raised, 
the virtual machine reinterprets the method that caused the 
exception, which makes the execution much slower. This 
is what happens when method doesNotUnderstand: is 
called. Another slowdown factor is the call to method 
getClientOf: which manipulates the execution stack as 
a Smalltalk object (section 3.3): it requires the virtual 
machine to dynamically build object representations of real 
stack frames. One more slowdown factor is the cloning 
of mailers, which implies memory allocation and copy for 
each invocation: a simple optimization could be to manage 
a pool of preallocated mailers. 

5.2. Performance of DOT 

The time spent in the GARF runtime and in data objects 
is very small compared to the 251 ms a read invocation 
takes when objects are distributed and replicated (less 
than 1% of the total response time). In this section, we 
concentrate on the performance of DOT no more mention 
will be made of the GARF runtime’s overhead and of the 

7 Data objects are still local non-replicated objects in that case. With 
GAW, when no specific behaviour is defined for some data object class. 
this simple redirection behaviour applies by default to its instances. 

6. Evaluation of GARF‘s first implementation 

We evaluated the design of our first prototype by 
implementing a fault-tolerant d i s~buted  application using 
GARF: the Distributed Diary Manager (DDM). DDM, 
which runs on a set of workstations interconnected through 
a local area network, is aimed to manage a diary for each 
user and to allow him to plan meetings with other users. 
A user can visualize the meetings he is expected to attend 
as well as the list of all the other users. Interaction with 
DDM is done through a graphical user interface (made of 
windows, menus, buttons, etc) which was built thanks to the 
facilities of the Smalltalk programming environment. All 
the objects that hold DDM related data are implemented 
as data objects to which encapsulators and mailers have 
been associated. The complete description of DDMs 
implementation using GARF can be found in [22]. This 
section discusses the main design options that lead to our 
first prototype of the GARF environment, in the light of our 
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client.epfl.ch 
GARFB DOTIC 

server1 .epfl.ch serveG!.epfl.ch 
DOTIC GARFIX DOT/= GARFIsf 

Figure 14. Performance model. 

experience of programming DDM. The main options are the 
choices of Smalltalk (section 6.1) and,of Isis (section 6.2). 

6.1. The choice of Smalltalk 

In GARF, redirection of invocations is a central issue, 
since the clear separation of functional and behaviouial 
aspects relies on this mechanism. The GARF runtime 
performs invocation redirections while objects execute and 
can then be seen as an interpreter'in charge of redFecting 
part of the invocationst. A compiler approach, based on a 
preprocessor, would perform redirections at compile time. 
The choice of the interpreter approach was motivated by 
our will to build a first prototype as quickly as possible. 
Implementing a preprocessor would have implied more 
code to write and less flexibility when debugging. Since 
Smalltalk offers a large spectrum of reflective facilities [ 101, 
e.g. the doesNotUndertand mechanism, the interpreter 
approach has proven to be efficient in prototyping. It 
made the coding and debugging of OUT first implementation 
very fast, which confirms the commonly agreed assertion 
that Smalltalk is very well suited for prototypingt. Of 
course, basing GARF on the Smalltalk virtual machine has 
a negative impact on performance. However, we were 
quite surprised to see that although not optimized at all, 
GARF gives acceptable response times as far as user driven 
applications (such as DDM) are concerned. 

t The ,redirection only concerns invocations involving data objects 
(subclasses of the Dataobject class). As mentioned before though. 
no extensidn to the Smallralk language was necessary to support the 
redirection: the term interpreter is only used here to emphasize the fact 
that the redirection occnm at run-time. 
# Development in Smalltalk is known to be hster and to require less lines 
of code than development in C++ 1161. 
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6.2. The choice of Isis 

Building DOT on top of Isis presents several advantages. 
First, reliable multicast primitives with different ordering 
semantics are easily implemented, since all the virtually 
synchronous protocols' are managed by Isis. Then, the 
Isis implementation of the virtually synchronous model has 
been around for quite a while now and has gone through 
intensive testing by its users. The current version of 
Isis can be considered a relatively stable technology and 
DOT directly benefits from this stability. Finally, both 
distribution and replication of objects can be implemented 
together: a non-replicated distributed object is merely 
implemented using a group.with a single member. DOT'S 
two-processes architecture (section. 4.3) allows GARF to 
take advantage of the optimizations implemented by the Isis 
toolkit. If DOT had been implemented all in one process, 
it would have been necessary to rewrite the Isis scheduler, 
basing it on Smalltalk threads$, and to rewrite part of the 
virtually synchronous protocols. Such a design would have 
implied losing part of the optimizations of the Isis toolkit. 
It would also have made the development of DOT a great 
deal more complex! 

7. Related work 

With the increasing interest in distributed systems and 
in object-oriented design, many platforms that support 
programming with distributed objects have been developed 
in recent years. A common approach to achieve separation 
of concerns is to use inheritance: objects inherit adequate 
behaviours from a set of predefined classes. A r j u ~ a  [19], 
Avalon [8] and Electra [20] are examples of such systems. 

5 Two different lightweight-process schedulers cannot coexist within the 
same Unix process. 
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system, a client invokes a local Group Remote Invocation 
Proxy (GRIP) which in turn multicasts the invocation to 
a group of Ambassadors. Ambassadors represent the in- 
voking client on the sites where replicas of the server are 
located. ROMANCE is based on the group technology 
provided by a platform called xAMp. Psync [24], Emer- 
aWGaggles [4] and FOC/C++ [14] are three.other sys- 
tems similar to Electra. FOG/Ct+ is built on top of the 
experimental operating system SOS [33]. Psync and Emer- 
ald/Gaggle have the particula$y not to be based on a sys- 
tem level platform to support fault-tolerance through repli- 
cation. The protocols that guarantee safety and liveness 
of the applications a e  directly coded within the object- 
oriented platform. 

7.3. RDO/Smalltalk 

Like GARF, the RDO/Smalltalk is based on Smalltalk and 
Isis [lS]. RDO/Smalltalk uses an extension of Isis services 
called Isis News, which implements pub1isWsubscribe 
mechanisms for groups. of Unix processes. In ,this 
model, processes can subscribe andor publish to some 
subjecfl; publishing messages to a subject results in 
multicasting that message to all subscribers. The available 
ordering criteria correspond to those offered by Isis. In 
RDO/Smalltalk, objects execute in a Unix process that 
contains the Smalltalk virtual machine. That process 
communicates with another Unix process registered as 
publisher and/or subscriber of some Isis News subject. 
This two-processes architecture is very similar to the 
one adopted in GARF. Each group of object replicas 
corresponds to an Isis News subject. Replicated server 
objects are accessed transparently through proxy objects 
but created explicitly. Transparent invocations are achieved 
using the same mechanism as in the GARF runtime (based 
on method doeslilothderstand:). The proxy class is 
the main reusable component of RDO/Smalltalk. There is 
no clear separation of the fault-tolerant behaviours from 
the rest of the code. The system called The Information 
Bus [25] offers similar publishhbsaibe abstractions for 
non-replicated distributed objects. 

7.4. Fault-tolerance with Open-C++ 

The platform described~ in [9]  is the only object-oriented 
system that we know of, that clearly separates fault- 
tolerance in a distinct object level, using reflective facilities. 
Open-C++ 161 is an extension of the C++ language which 
adds a meta-level to traditional (base-level) programming 
in C++$ Objects of the meta-level are called meta-objects. 
They allow the pro,ga"er to redefine the way objects 
interact, in much the same manner that the GARF runtime 
does it. Open-C++ was not primarily designed to support 
fault-tolerance. However, its reflective meta-level made it 
very easy to add replication of objects. The implementation 

t This approach allows one IO log messages and to communicate with 
groups that have currently no members. 
t The C++ language is known IO lack reRective facilities. For example, 
C u  classes are only compiletime entities that no longer exist at run-time. 
It is therefore impossible IO act on how instances of Some class send or 
receive invocations. 

Another approach bases the separation of concerns on 
reflective facilities that rely on two object levels: a 
base-level and a meta-level. Muse [341. Open-C++ [61 
and of course GARF are such systems. In GARF, the 
base-level and the mea-level correspond to the functional 
and behavioural levels respectively. At the present time 
however, few systems provide support for fault-tolerance; 
only these can be compared 'with GARF. In this section, 
we do not intend to list all object-oriented platforms 
that provide support for fault-tolerance. We chose four 
significant systems and compared them with GARF; several 
other platforms are only mentioned as similar to one of 
those four systems. 

7.1. Arjuna 

In Arjuna, means are provided to ensure strong consistency 
on replicated persistent C++ objects [19]. Replication 
mechanisms are hidden by inheritance and are based on 
a preprocessor and on stub-object libraries. Predefined 
classes which user classes can inherit to get adequate 
behaviour, such as persistence and replication, are provided. 
Arjuna is based on the transactional model, while GARF 
is based on the virtual synchronous model. Since only 
one object level is available in Aquna, programmers have 
to access replication specific mechanisms directly in their 
code, e.g., to modify the group membership. In GARF, no 
use of any replication specific mechanism is made within 
data objects' code. Those aspects are entirely dealt with by 
the predefined behavioural objects associated through the 
garfNew: method. In that sense, Arjuna does not achieve 
separation of concerns as GAR!? does it. 

7.2. Electra 

Electru as well is an extension of the C-H programming 
language that offers support for the development of fault- 
tolerant objects [ZO]. It is based on the Hom toolkit, which 
relies on the Multicast Transport Service (MUTS) [28]. 
Electra provides very similar abstractions for building 
fault-tolerant objects to those supported by GARF. Those 
abstractions are implemented on top of multicast primitives 
to groups of active entities provided by the underlying 
operating system (lightweight-processes in Electra, Unix 
processes in GARF). With Electra, a client object need 
not know that it is invoking a replicated object: the 
group communication is made transparent by the use of 
so-called smart proxies. Several reusable classes of active 
objects (called services) are provided as well as thread- 
safe abstract data iypes, that are passive objects used by 
services. Unlike with GARF, fault-tolerant behaviours are 
not clearly separated from the rest of the code of an object. 
If one wants two instances of a same kind of objects (say 
a set) to have different behaviours (say one is actively 
replicated twice and the other is passively replicated three 
times), it is necessary to define two different classes through 
inheritance. Electra can be seen as a kind of object-orienrpd 
wrapper for the Horus toolkit. 

Several systems provide similar approaches to Elec- 
tra's. Among these systems, we can mention RO- 
MANCE [31] which is also an extension of C++. In this 
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described in 191 does not rely on a system level platform to 
support replication. The protocols that deal with this issue 
are directly coded within meta-objects. Unlike the GARF 
runtime, Open-C++ implements a compiler approach, based 
on a preprocessor. 

0. Conclusion 

GARF provides high level abstractions to help programmers 
building object-oriented distributed applications that are 
fault-tolerant. Its originality is to break kach distributed 
object into two separate objects, one of which manages 
all the difficult aspects that have to be dealt with when 
objects are replicated. The latter objects are instantiated 
from classes of ready-to-use components. These classes are 
available from the GARF library of behaviours. Modularity 
and reusability greatly benefit from this approach. As far 
as we know, only the GARF system and the fault-tolerant 
extension of Open-C++ [9] clearly separate fault-tolerance 
from the other aspects into two distinct object levels, but 
only GARF relies on the Isis platform. 

Our first prototype has been implemented in Smalltalk 
and uses the Isis toolkit to achieve fault-tolerance. 
It broadly exploits the flexibility of the Smalltalk 
programming environment to achieve transparency of the 
behavioural level. Although not optimized at all, ow 
first implementation yields acceptable performance for the 
Distributed Diary Manager application we developed using 
GARF. Our first prototype of GARF directly benefits from 
the many optimizations Isis implements in its virtually 
synchronous protocols. We are now planning to further 
analyse where optimization could take place. Future work 
will also consist in studying the advantages of rewriting 
GARF in C++, in order to move it on the Phoenix 
platform [21] currently developed in our laboratory. This 
platform will make it very easy to blend abstractions of the 
transaction model and of the virtnal synchrony model [IS]. 
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