Distributed Systems Engineering

An application-level implementation of causal
timestamps and causal ordering

To cite this article: A Berry 1995 Distrib. Syst. Engng. 2 74

View the article online for updates and enhancements.

You may also like

- Application of transfer entropy to causality
detection and synchronization experiments
in tokamaks
A. Murari, E. Peluso, M. Gelfusa et al.

- A new perspective for assessing hydro-
meteorological drought relationships at
large scale based on causality analysis
Zhaogiang Zhou, Yibo Ding, Yiyang Zhao
etal.

- Causal and causally separable processes
Ognyan Oreshkov and Christina Giarmatzi

This content was downloaded from IP address 18.191.33.207 on 14/05/2024 at 00:50

https://doi.org/10.1088/0967-1846/2/2/002
https://iopscience.iop.org/article/10.1088/0029-5515/56/2/026006
https://iopscience.iop.org/article/10.1088/0029-5515/56/2/026006
https://iopscience.iop.org/article/10.1088/0029-5515/56/2/026006
https://iopscience.iop.org/article/10.1088/1748-9326/acfe1e
https://iopscience.iop.org/article/10.1088/1748-9326/acfe1e
https://iopscience.iop.org/article/10.1088/1748-9326/acfe1e
https://iopscience.iop.org/article/10.1088/1367-2630/18/9/093020

Distrib. Syst. Engng 2 (1995) 74-86. Printed in the UK

An application-level implementation
of causal timestamps and causal

ordering

Andrew Berryt

Department of Computer Science, University of Queensland, St Lucia, Queensland

4072, Australia

Received 3 June 1994, in final form 8 May 1295

Abstract. Maintenance of causality information in distributed systems has
previously been implemented in the communications infrastructure with the focus
on providing reliability and availability for distributed services. While this approach
has a number of advantages, moving causality information up into the view and
control of the application programmer is useful, and in some cases, preferable. In
an experiment af the University of Queensland, libraries to support application-level
maintenance of causality information have been implemented. The libraries allow
the coliection and use of causality information under programmer control, supplying
a basis for making causal dependency information available for application
management and troubleshooting. The libraries are also unique in supporting
existing distributed systems based on the remote procedure call paradigm. This
paper describes the underlying theoty of causality, and the design and
implementation of the libraries. An event reporting service example is used to
motivate the approach, and a numnber of previously unresolved practical problems

are addressed in the design process.

1. Introduction

Lamport states [8]:

In a distributed system, it is sometimes impossible
to say that one of two events occurred first. The
relation ‘happened before’ is therefore only a partial
order of events in the system.

In contrast to this, events on a uniprocessor system
(assuming no parallelism in the processor architecture)
are totally ordered. This order can easily be determined,
for example, by recording the processor time at each
event. The ‘happened before’ relation (denoted “—’ in
the remainder of the text) defined over a set of events in
a distributed system determines the causal order of those
events. Assuming a distributed system of several sequential
processes, the — relationship is more formally defined as
follows:

(i) If E, and E; are events in the same process and
Time(E;) < Time(E,), then E; — Ea.

(i) If Ey is an asynchronous send event and E, is the
corresponding receive event, then E; — Es.

(iii) I the pair (E;, E2) occurs in the transitive closure of
1 and 2, then Ey — Es.

Any pair of events not related by the causal order
are logically concurrent and cannot affect each other. A

1 e-mail: andybes.uq.0z.au

convenient visualization of this relationship is a space-time
diagram, as depicted in figure 1.

Maintenance of causal ordering information has, in
previous implementations (for example, Isis [1] and
Psync [10]), been restricted to the communications
infrastructure, with a focus on consistency and reliability.
These systems ensure that messages between processes can
only be delivered in a causal order, however, knowledge
of causal dependencies is not passed on to the software
developer. The use of multicast communication is also
inherent in these protocols. While this approach provides
transparency, correctness and efficiency for processes
requiring causal ordering, knowledge and control of
causality information by the application programmer (ie.
at the application programming level) can have distinct
advantages.

In an experiment at the University of Queensland,
prototype libraries to support the maintenance and use of
causality information at the application level have been
implemented. The libraries have been designed to support
an event reporting service, thus the focus is shifted from
providing reliability and availability, as is done by most
existing implementations, to providing causal dependency
information. The libraries are unique in supporting
causality information for existing remote procedure call
(RPC)-based distributed systemns, using the ANSAware
platform for the initial implementation. They are also
not intrinsically tied to any communications protocol.

0967-1846/95/020074+13319.50 © 1995 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd

This paper introduces the theory of causal ordering and
timestamps, discusses the advantages of an application-
level approach to maintenance of causal ordering
information, and examines the design and implementation
of libraries for maintaining this information.

2. Previous work

2.1. Causal timestamps

Fidge [4] has described a system of causal timestamps
based on partially ordered logical clocks. These clocks
can be used to determine the causal order of events in a
distributed system. The method involves each process in
the system keeping an array of logical clocks, one for each
process in the system. The abstract data structure for storing
this information is referred to through the remainder of this
paper as a ‘clock vector’ [9].

Clock vectors, if recorded with events of interest, can
be used to determine the — relationship between those
events. The rules for maintenance and comparison of clock
vectors are specified in [4], however, the following rules
for maintenance of clock vectors are significant:

(i) Each process must increment its own logical clock in
its clock vector when it performs an event.

(ii) An asynchronous message between processes must
carry the current clock vector of the sending process.
The receiving process{es) must merge the incoming
clock vector with its own.

(iif) Synchronous communication between processes must
result in the synchronization of their clock vectors (an
example of a synchronous communication is an Ada
rendezvous).

(iv) Dynamic creation of a process requires that a new
logical clock be added to the clock vector. However,
logical clocks cannot be removed from the clock
vector—the termination of a process does not remove
the need to store its logical clock.

(v) If a process is spawned by an existing process, then
the child must inherit the clock vector of its parent to
record the causal relationship between parent and child.

(vi) Logical clocks cannot be decremented.

The value of each logical clock in a clock vector
represents the time at which the current process last
had contact, either directly or transitively, with each
other process. Figure 1 shows a space-time diagram
for a distributed computation avgmented with appropriate
clock vectors. Note that arrows in the diagram indicate
communication between processes and filled dots indicate
events.

The following additional properties of clock vectors are
useful in implementation and reasoning about the vectors:

(i) Zero-valued logical clocks in the clock vector
(indicating no contact with the associated process) can
be omitted. In effect, this means no logical clock
is required for a process unless there is a causal
relationship with that process.

Causal timestamps and ¢ausal ordering

E(1,00) E{2,00)
P, —— =
E3(0,I,1) E4(2,2,0)
P2 = =
P3 — o
Ej(O,I,I) E5(0,1,2)

time ——»

Figure 1. A space-time diagram augmented with clock
vectors.

(ii) “Events’ can be defined to include only events that are
of interest to the processes in the system, provided the
rules for maintaining timestamps are not violated. For
example, communication events need not necessarily
lead to incrementing a logical clock.

(iii) It has been proven that a vector of length N is minimal
to record the vector time for a static set of N processes.
A number of optimizations of the method described by
Fidge are possible, but these require additional storage
and processing, and are not effective in all situations.
A more detailed discussion of this issue can be found
in [13].

The recording of causal timestamps is useful in many
applications, particularly for debugging, event monitoring
and detection of global states in distributed systems. For
example, if a service in a distributed system fails, a record
of events with their associated causal timestamps can be
used to determine all events that could possibly have led
to the failure. In particular, it allows us to immediately
discard those events that do not causally precede the failure.
Causal timestamps also provide the basis for determining a
‘consistent cut’ of a distributed computation. That is, the
partitioning of the set of events into a “past’ and a ‘future’
set. Rules for determining a consistent cut are described in
[41.

Causal timestamps suffer from a number of practical
problems that limit their use in many systems. The two
major problems are summarized below:

(i) In systems with many processes, the size of the vector
can quickly become unworkable.

(ii) In theory, the size of individual clocks is unbounded
for long-lived systems. A protocol for zeroing or re-
use of clocks is necessary, for example, as described in
[15]. However, such protocols generally lead to a loss
of information about past events.

2.2, Causal message ordering

While causal timestamps allow us to determine the relative
order of any pair of events, they cannot be used to
determine if there are any intervening events. This means
that messages can be delivered in an order that violates
causality. Figure 2 shows such an ordering, where message
M, is received after My, despite the fact that the send
event By which generated M; causally precedes E4 which
generated M.

75

EJ
P, =3
P2 =~
M,
P, =

Figure 2. A message delivery ordering that violates
causality

Figure 3. Message delivery with causal ordering applied

Cansal message ordering guarantees that the order of
delivery of messages does not violate causality in systems
of communicating processes. Typically, messages are
delayed at the receiver until all causally preceding messages
are delivered. Figure 3 shows how figure 2 might look if
causal message ordering was enforced.

A number of different mechanisms have been proposed
and implemented to ensure causal message ordering:

(1) Schiper et al [11] propose an algorithm based on
Fidge's clock vectors. Each process maintains a
clock vector and a buffer containing the clock vectors
associated with the set of undelivered messages, as seen
by the current process. The current clock vector and
the buffer must accompany each outgoing message as
a timestamp. The destination process cannot accept a
message until its own clock vector exceeds the clock
vector of the most recent message addressed to that
destination process recorded in the incoming buffer.
This algorithm increases the size of the timestamp
from order N to order N> where N is the number of
processes. However, optimizations detailed in the paper
make the likely size of a timestamp somewhat smaller.

(if) Raynal and Schiper [12] propose a modified implemen-
tation of the previous method that records only commu-
nication events, It has similar properties to the previous
method, but is marginally simpler and more straight-
forward to implement. It ioses generality though, since

76

processes can no Ionger record the causality of events
other than communication events.

(iii) Biman and Joseph [1] have taken a significantly
different approach to implementing cansal message
ordering in the earlier version of the Isis toolkit. This
algorithm requires that each communication carry a
copy of all cawsally preceding messages that have
not yet been acknowledged. If a process receives a
message buffer containing several messages for the
current destination, it simply processes them in the
order that they appear in the buffer, which is guaranteed
to be a causal order. Once again, this method does not
allow the recording of events other than communication
events.

The algorithm was implemented in the Isis toolkit as
part of a reliable communications transport protocol
based on multicast and process groups.

(iv) The current Isis algorithm [2] is based on the algorithm

of Raynal and Schiper described in item 2 above, with
a number of optimizations applied. The optimizations
lead to a timestamp size of order N, and are made
possible by the*use of multicasting and process groups
in Isis.
The major advantage of the current and previous Isis
methods is that the handling of message and process
failures are bundled with the ordering mechanism,
providing a reliable transport protocol with well defined
ordering semantics. The preceding approaches require
modification or extension to cope with failures,

(v) Peterson et al [10] have devised and implemented the
Psync communications protocol that supports causal
ordering within the context of a ‘conversation’ (which
is similar to the Isis process group). The protocol
is efficient, but depends on all processes in the
conversation receiving a copy of all messages, and does
not preserve causality for communications in different
conversations.

Causal message ordering is typically used to ensure
the causal consistency of processes in distributed systems.
This is particularly useful for multicast communication, and
has been used in Isis as the basis for efficient replication
algorithms. Causally ordered messages also provide a
means to ensure the causal order of access to services. In
everyday life, this is generally accepted as a ‘fair’ order.
For example, if you told a friend you were on the way to
the bakery to buy a cream bun, it would be rude for them
to beat you there and take the last one. However, if you
each decided independently to go to the bakery and buy a
cream bun, there would be no conflict.

Despite its usefulness, there are still problems in
the application of causal message ordering to distributed
systems. Two of the major problems are:

(1} As with causal timestamps, none of the methods
described is scalable to large systerns., The size
of the required timestamps is of order N (for
multicast-based mechanisms) or N? for non-multicast
mechanisms. In all cases, the methods become
cumbersome as the number of participating processes
grows, particularly when the communication patterns of

individval processes involve contact with many other
ProCesses.

(ii) All methods require the participation of all processes
in the system. There is no means of separating
‘participating’ and ‘non-participating’ processes, which
can be useful for legacy systems or in Open Distributed
Processing (ODP) systems, where communicating
systems are often fully autonomous [6]. Isis and
the Psync protocol achieve participation implicitly
by building causal message ordering into network
protocols.

3. High-level design issues

The primary design goal of the causality libraries is provide
for the maintenance and use of causality information in
a flexible and protocol independent manner within user
applications. This section addresses the high-level design
issues associated with these libraries. An event reporting
service is introduced as an example to motivate the need
for the libraries and to help justify a number of design
decisions. In this section, the advantages and disadvantages
of controlling causality information at the application level
are discussed, and the practical problems of providing
causality information for existing distributed systems are
addressed.

3.1. An event reporting service example

Event reporting services have been provided or are
being provided in a number of distributed programming
environments, for example the OMG COSS event
service [14]. These services collect event notifications from
distributed applications and pass the notifications on to
interested ‘subscribers’. Typically, the events of interest
are exceptional conditions, for example, failure, security
violations or performance degradation.

One of the difficulties associated with collation and in-
terpretation of events is determining dependencies between
events. Event notifications are usually timestamped using
the local clock of the originating process, but there are a
number of problems with this approach:

e Real-time timestamps can only give a total ordering of
events, rather than the partial order of those events.

o The inherent skew between distributed real-time clocks
can lead to a false (i.e. non-causal) ordering.

The use of timestamps based on clock vectors can solve
both of these problems, and would allow subscribers to
an event service to ask, for example, ‘when a failure of
type X is reported, give me the last 25 events that causally
precede the failure’. In the presence of large numbers of
concurrent events, this capability would be extremely useful
for management and troubleshooting purposes. ‘

Causal timestamps, as described in section 2.1, can
provide the capability discussed in the previous paragraph,
with one restriction—it is not possible to determine if all
causally preceding event reports have been delivered to
the event service. For example, if an event report El is
delayed, a causally succeeding failure E2 can be reported

Causal timestamps and causal ordering

before E1, and subscribers interested in the events leading
to E2 will not receive E1. This problem can be avoided
by using causal message ordering, which will delay the
delivery of E2 until E1 arrives. The choice between causal
timestamps and causal message ordering is a cost/benefit
trade-off, since causal message ordering involves significant
additional overhead.

The need for causal dependency information is not
always present, and some distributed applications will not
require timestamps based on clock vectors. For this reason,
it is useful allow applications to apply these mechanisis
selectively.

3.2. Advantages of application-level support

As mentioned in section 1, there are some distinct
advantages in maintaining cauvsality information at the
application level, rather than in the communications
infrastructure:

(i) As can been seen in the event service example, it is
sometimes necessary to make causality information ac-
cessible to the applications. Infrastructure implementa-
tions typically do not allow the application programmer
to directly access causality information—they simply
ensure that messages are delivered in a causal order. In
this sifuation, it is not possible to determine the causal
dependencies between messages within an application.

(i) Applications using the infrastructure that do not require
causal ordering carry additional, unnecessary overhead.
An application-level implementation allows selective
use of the mechanisms over a single infrastructure,
although such use is subject to some restrictions to
ensure consistency. These restrictions are discussed
further in section 3.4.

(111) Existing implementations provide causal ordering,
where causal timestamps, which have lower overhead,
are sufficient in some situations.

{(iv} An application-level approach allows the programmer
to decide which events are significant for causality,
whereas infrastructure implementations can only record
causality between communications events (i.e. message
send and receive events), This means, for example, that
a process can update its logical clock for a sequence of
events, then report those events to an event service in
a single message, rather than having distinct messages
for each event.

(v) Implementation at the application level allows causal
timestamps and ordering to be easily implemented
over multi-protocol networks and existing distributed
computing environments, for example OSF DCE or
ANSAware. In other words, the implementation can
be protocol independent.

The paper by Cheriton and Skeen [3] provides addi-
tional discussion of problems associated with implement-
ing causal ordering in the communications infrastructuref.
There are also some disadvantages of controlling such in-
formation at the application level:

T The Cheriton paper argues that implementations that support caunsality
in the communications infrastructure are impractical. This aathor does not
agree, seeing advantages in both approaches.

77

A Berry

(1) If all processes require causal message ordering
information, efficiency is improved by implementing
the protocols in the communications infrastructure.

(i} An infrastructure implementation is (mostly) transpar-
ent to the programmer and provides a programming
model closer to that of traditional sequential programs,
particularly in the Isis toolkit [2].

(iii) Infrastructure implementations are typically integrated
with a communications protocol designed for reliability
and availability in distributed applications. I
these attributes are important for an application, an
infrastructure implementation will be more effective
and efficient.

In essence, the choice between application-level
and infrastructure implementation is dependent on the
requirements of applications. = Where the focus is
on providing flexible access to causality information,
an application-level approach is superior. Where the
focus is on providing reliability and availability in an
efficient manner, an infrastructure implementation is more
appropriate. However, an application-level implementation
is essential to supply causality information for existing
distributed systems that do not have protocol support. This
author believes that this alone is sufficient argument for
implementation of the libraries described in this paper.

3.3. Mapping messages to RPCs

All of the algorithms discussed in section 2 define their
algorithms in terms of messages, and the algorithms are
affected by the synchronous or asynchronous nature of
communications. To apply the algorithms to RPCs, it is
therefore necessary to map an RPC into a sequence of
messages. There are two distinct possibilities:

(i) An RPC can be modelled as a single synchrongus
communication. In the pure and abstract sense, this is
the most appropriate model for an RPC—an RPC is a
single communication event. In practice, this is seldom
the case, because processing an RPC takes a finite
and sometimes significant amount of time, and because
clients and servers are often multi-threaded. This means
other activities can take place during the processing of
a particular RPC, and there is considerable potential for
loss of information regarding causality because of these
factors. There is also the problem of nested RPCs—
how do you model a ‘nested” event?

(i) The second, and more general mapping of RPCs is to
map the request and response to distinct asynchronous
messages. This has the following advantages:

e The time taken to process the reguest is of no
concern.

e Non-determinism within client and server processes
(due to threads) is easily handled. (See section 3.6
for a more complete discussion of this issue.}

e Timestamps can be included simply as IN/OUT pa-
rameters to the RPC at the application programming
level.

¢ Non-participating processes can be accommodated
with a weakening of the mapping (see section3.5).

78

The main disadvantage is that this mapping does not

capture the logical relationship between the request

and response of an RPC. However, since the causal
relationship between the communications is recorded,
this is a minor criticism.

Based on the arguments above, our libraries are
designed to support the asynchronous message mapping
{(although the synchronous mapping is not precluded).
Given this choice of mapping for RPCs, the rules for
maintaining causal timestamps and causal message ordering

can be based directly on the algorithms discussed in section
2.

3.4. Interaction with non-participating processes

One of the difficulties associated with maintaining causality
information is that communication between processes
that occurs without using the infrastructure or libraries
for maintaining cavsality can lead to unzecorded causal
relationships. While this is undesirable, it occurs often in
practice, since the size of timestamps required to record
all causal relationships become impractical in large scale
applications. In addition, it is sometimes necessary for
processes that do not record causality, for example legacy
applications, to interact with those that do.

There are two possible approaches to dealing with these
problems—the application programmer can decide that such
interaction will not adversely influence the consistency of
causality information, or a restricted form of interaction that
maintains cansal consistency can be used. The theory for
this restricted form of interaction has not, to the author’s
knowledge, been addressed in any existing literature, apart
from Lamport’s acknowledgment of the problem itself as a
cause of ‘anomalous behaviour’ [8]. Rules for supporting
such interactions are outlined in the following sub-sections.

Existing systems usually provide some means to restrict
the scope of causality information being collected, leaving
it to the application programmer to deal with the potential
inconsistencies that might occur. The more recent version
of the Isis toolkit {2] introduces causality domains, where
communication across causality domains does not carry any
causality information. Psync [10] restricts the transfer of
causality information to a single conversation. While this
allows the programmer to minimize timestamp size, there
are no rules or support for ensuring the causal consistency
of interaction with ‘non-participating’ processes.

One of the features of providing access to causality
information at the application-level, is that the following
rules for restricted interaction can be adhered to by
application programmers to ensure causal consistency
despite interaction with non-participating processes. The
design of the causality libraries takes this into account,
giving sufficient access to causality information to allow
these rules to be implemented.

3.4.1. Causal timestamps For causal timestamps, the
following rules can be used to ensure that the clock vectors
maintained by participating processes are not invalidated
by communication with non-participating processes:

(i) All processes for which causal timestamp information
is maintained can receive asynchronous messages only
from processes participating in the causal timestamping
mechanism.

(ii) A process maintaining causal timestamp information
can participate in synchronous communication only
with other processes participating in the causal
timestamping mechanism.

(iif) A process maintaining causal timestamp information
cannot be spawned by a non-participating process.
(iv) A process maintaining causal timestamp information
can send asynchronous messages to non-participating
processes, and these messages need not (but are

permitted to) carry timestamp information.

These rules are in addition to the rules for interaction
with participating processes described by Fidge [4]. The
rules imply that processes maintaining causal timestamp
information can send messages to any other process,
but cannot receive messages from processes that do
not maintain causality information. For example, a
process observing a group of processes that maintain
causal timestamps can collect event notifications from the
observed processes and determine their causal relationships
without maintaining its own causal timestamp information.
Note, however, that the causal relationship between events
in participating processes and non-participating processes
cannot be determined.

A further implication of these rules is that the logical
clock associated with a non-participating process will
always be zero in participating processes, and can therefore
be omitted from timestamps. Informally, the rules are
justified by asserting that a causal relationship between
events A — B, where A and B occur in distinct processes,
can only exist if:

e A sends an asynchronous message to B
or, 4 and B participate in the same synchronous
communications event

e 0T, process A spawns process B

e or, there exists a sequence of any of the above actions
that leads from process A to process B.

The only interactions that affect the causal timestamp
information maintained by B are therefore:

e receiving a message
e participating in a synchronous communication
e being spawned.

By constraining these particular interactions so that they
only involve participating processes, we ensure that the
causal timestamp information remains consistent for the
participating processes.

3.4.2, Causal message ordering If a timestamp
based mechanism is chosen for implementing causal
message ordering, the rules for communication with non-
participating processes described in section 3.4.1 can
be applied to causal message ordering. In essence,
processes maintaining causal message ordering information
can ensure that the information remains consistent provided
they do not accept messages from non-participating

Causal timestamps and causal ordering

processes. The implications of this for non-participating
processes are slightly different, however, and deserve
further discussion.

A non-participating process cannot generally ensure
that messages from participating processes are received in
causal order. However, assuming the algorithm of Schiper.
et al [11], a process can guaraniee the causal order of
received messages through restricted participation in the
ordering mechanism. In the following description, we
will call a process implementing restricted participation an
‘observer’ process:

(i) The observer process must maintain a (single) clock
vector reflecting the maximum of the clock vectors
associated with all messages received from participating
processes.

(ii) The fully-participating processes must record their
interactions with the observer process (noting that in
general, it is not necessary for participating processes
to record their interactions with non-participating
processes).

(iii) To ensure message ordering, the observer process
must delay messages that carry a record of a message
destined for the observer in their timestamp buiffer if
that timestamp is greater than the current vector clock.

3.5. Non-participating processes in RPC systems

The handling of non-participating processes is a difficulty
for RPC systems, regardless of the mapping to messages
chosen. This is because RPCs are inherently a two-way
interaction, and the rules for communication with non-
participating process described in section 3.4 only allow
outgoing messages to non-participating processes. The
problem can be solved by weakening the mapping of RPCs
to messages as follows:

(i) RPC requests correspond to asynchronous messages.

(ii) RPC responses that have return values influenced by
the semantics of the server correspond to asynchronous
messages.

(iii) RPC responses that have no return values influenced
by the semantics of the server can be ignored.

In essence, these rules state that provided the response
to an RPC carries no information about the result of
the request, it can be ignored when determining causal
relationships. Note that this mapping could be further
weakened in an application—if the response from an RPC
is ignored by the application, then the causal relationship
resulting from the response message can be ignored.

An implication of this rule is that communication
failures can be signalled by a return value, whereas
application failures or successes cannot. This leads to
a causality relationship between the application and the
infrastructure of the distributed system, an issue that is
discussed in section 3.7.

. 3.6. Threads within processes

Most current distributed systems incorporate or support
threads, which allow independent units of execution within

79

A Berry

a process. For example, in an RPC client process, a thread
invoking an RPC is usually blocked while the RPC is
being processed, but the remaining threads in the process
can continue to executef. In an RPC server process,
multiple threads are used to provide concurrent processing
of requests, provided appropriate resource locking is
implemented.

The use of threads introduces concurrency to processes.
In theory, it should follow that each thread maintains its
own separate causality information—causality records all
potential concurrency. The implementation of the libraries
described in this paper does not preclude maintaining
causality on a per-thread basis, but it is expected that
users of the library will only maintain causality on a per-
process basis. A per-process timestamp is assumed for the
following reasons:

() Maintaining timestamps for each thread means that each
thread must have a globally visible name, and must be
addressable by that name. In most distributed systems,
threads are anonymous, so this requirement cannot be
satisfied.

{i1) Maintaining timestamp information for individual
threads can significantly increase the number of logical
clocks that must be recorded in the timestamp vector,
hence increase the size of the vector clock.

(iii} Although there is concurrency between threads, there
is a total ordering over the activities within the threads
of a process (assuming a single-processor architecture).
Provided updates to the timestamp of a threaded
process are synchronized using a muteal exclusion
lock, causality is not violated. Note that a similar
argument has been used in [3] to justify maintaining
only a single timestamp for each processor in a multi-
processor system.

3.7. Infrastructure interactions

In most existing distributed systems, there are interactions
with distributed infrastructure services inherent in the use
of the system. For example, it is difficult or impossible to
communicate with another process without first finding its
address. In general, some form of name service is consulted
to find the address.

These interactions result in a causal relationship
between the infrastructure service and the process, and
hence between processes sharing the service. Since it
is generally difficult to add support for causality to the
infrastructure of existing sysiems (access io source code
is often not possible), these causal relationships cannot be
recorded and a complete partial ordering of events in the
distcibuted system cannot be determined.

However, from the perspective of an application
programmer, the causal relationships resulting from
interactions with the infrastructure do not generally affect
the functional behaviour of the program. That is,
interactions with the infrastucture are auxiliary to the
purpose of an application—they simply support interactions

 Note that blocking RPC systems without threads would have minimal
need for causality information, since execution of RPCs is equivalent to
execution of a local, sequential procedure call,

80

with other application processes. For this reasom, it
is reasonable for applications to ignore such interactions
when maintaining causality information, hence the lbraries
provide no direct support for recording interactions with the
infrastructure.

3.8. Failure handling for RPC systems

The bandling of failure is particularly difficult for RPCs
when causality information is being maintained. Tt
depends particularly on the RPC semantics provided by
the implementation. Unless there is some guarantee of
execution {e.g. at most once semantics), it is difficult to
characterize the causality relationship between the client
and server when an RPC fails. At this stage, the issue of
RPC failure has not been dealt with any further.

4. Low-level design and implementation

The cauvsality libraries were implemented for the AN-
SAware distributed system which provides high-level RPC
facilities in a Unix and TCP/IP environment. ANSAware
was chosen becanse of its availability and its relatively
clean and simple interface definition language (IDL) and
distributed programming langunage (ODPL}. The ANSAware
DPL is integrated with the C programming language, so C
has been used in the implementation of the libraries, The
libraries are largely independent of ANSAware, although
there are some minor dependencies introduced to minimize
the initial effort.

The current implementation is a ‘proof-of-concept’
version, intended to address the high-level design issues
discussed in the section 3, and to allow us to gain
experience in the use of causality information in distributed
applications. Performance and implementation efficiency
were not goals for this version.

The implementation is separated into two distinct
libraries. A causal timestamps library provides a basic
implementation of clock vectors based on the theory
described in [4]. A cansal ordering library provides and
implementation of causal ordering based on the algorithm
of Schiper et al [11]. Each library defines a data structure
for storing the appropriate causality information, and a
set of functions for creating, maintaining, transmitting and
deleting this causality information. In effect, the two
libraries each define an abstract data type.

Transmission of causality information is achieved by
including a timestamp based on the abstract data type
in the parameters of an RPC. Selective use of the
mechanisms is achieved by either including or excluding
these timestamps in the definition of interfaces supported
by a given ANSAware program. A representation of each
abstract data type is definred in ANSAware IDL so that
it can be marshalled, transmitted and unmarshalled by
automatically generated ANSAware code. Support for other
RPC protocols can be achieved by modifying the libraries
to generate appropriate representations of the abstract data
types, or possibly by generating a platform independent
representation that can be sent as binary data over any
RPC protocol. The functions on each abstract data type

are flexible enough to support the rules for interaction with
nog-participating processes.

4.1. Identifying processes

In order to correctly maintain causality information, all
participating processes must be uniquely identified. To
allow for some variation in the way processes are identified,
the libraries simply use a variable length character string
to store process identifiers. Some efficiency could be
gained by using a less general structure, but it would
place restrictions on the possible representations of process
identifiers and reduce the protocol independence of the
libraries. It is expected that system specific process
identifiers would be used by applications, for example, DCE
object identifiers.

4.2. Causal timestamp Hbrary

This library provides an abstract data type for the
maintenance and use of clock vectors based on the theory
described in [4].

4.2.1. Data structure In order to provide timestamps
suitable for use with ANSAware RPC, a timestamp data
structire was defined using the ANSAware Interface
Definition Language (IDL). The structure is a variable
length array of process clocks, with each clock containing a
process identifier string and a positive integer clock value.
The clock value is a 32-bit representation of an integer.
The clock vector library uses this timestamp structure
directly, adding only a mutual exclusion lock to complete
the clock vector data structure. The mutual exclusion lock
is necessary to deal with concurrency introduced by threads.
The clock value associated with the current process is
always the first clock in the array. This ensures it can be
quickly and easily accessed, and is trivial to implement.

4.2.2. Functions Six major functions were provided by
the clock vector library, namely: -

vt_inc: A function to increment the logical clock of the
current process. This function increments the integer
value associated with the current process in the clock
vector.

vtmerge: A function to merge an incoming timestamp
with the clock vector. This function applies the merge
algorithm for vector clocks described in [4]. At
present, finding matching entries in the two clock
vectors is achieved using a simple linear search of the
incoming timestamp for each entry in the local clock
vector.

vt_ts: A function to create a timestamp suitable for use as
an RPC parameter, copying the contents of the clock
vector. It is necessary to copy the data structure to
ensure the mutual exclusion between threads accessing
the clock vector. Future versions might also modify the
internal data structure to improve efficiency of merges,
so this function is the place to deal with differences
between internal representation and the RPC timestamp.

Causal timestamps and causal ordering

If the Library were to support multiple infrastructures
(e.g. DCE and ANSAware) multiple versions of this
function could be provided.

vt_lock: A function to lock the clock vector to ensure
thread safety. All operations on the clock vector should
be protected by a mutual exclusion lock.

vtunlock: A function to release a lock on the clock
vector.

vt_before: A function to determine if the — relation
exists between two timestamps. This function does not
operate directly on the clock vector, but two message
timestamps. Typically, this function would be used by
some event collection process to order events.

The functions to Jock and unlock the clock vector
are made available to the application programmer, rather
than being implicit in individual functions. This is to
allow related operations on the timestamp to be grouped
without concern for imterruptions by thread scheduling.
For example, a thread might be interrupted between
incrementing and copying the timestamp, potentially
leading to an invalid timestamp.

A number of additional functions were implemented to
assist in memory management of timestamps, and to create
and delete the clock vector. These are not complex, so are
not described in detail.

4.2.3. Using the library In order to correctly maintain
information about causality between events, a set of
processes must use the library in the following manner:

(i) Each process must have a unique process identifier, and
this identifier must be supplied when creating the clock
vector.

(ii) All RPC requests to processes maintaining a clock
vector must carry a timestamp parameter.

(iii} A process maintaining a clock vector must not accept
requests or retuen values from other processes unless a
timestamp is provided as a parameter. Interactions with
infrastructure functions, for example the ANSAware
trader, are exempt from this rule.

(iv) When a timestamp is received by a process maintaining
a clock vector, either as a parameter to a request or
in the response to a request, the incoming timestamp
must be merged with the clock vector of the process
immediately.

(v) When a significant event occurs in the process, the
vector clock must be incremented.

(vi) All operations on the clock vector must be protected
by a lock.

(vii) All logically grouped operations on the clock vector
must be protected by a single lock. For example, if
the receipt of an RPC on an interface is a significant
event, then the incoming timestamp must be merged
and the clock vector incremented as a single logical step
protected by a lock. If a copy of the current timestamp
is required for reporting this event, then making the
copy should also be part of the single logical step.

Figure 4 indicates how.the library might be used, adding
appropriate function calls to the space-time diagram of
figure 1:

81

A Berry

vt_inc
. Vi
vi_inc sen
P -
}
PZ
vtine
P3 -
vtinc
vits
sync
viomerge dme

Figure 4. Using the causal timestamps library

Note that the calls to lock and unlock the vectors
are omitted to keep the figure simple. To fully ensure
thread safety, all of the function calls listed for each event
should be protected by a (single) lock. However, in an
RPC environment, it is difficult or impossible to separate
the sending of the RPC from the response, and it is not
acceptable to lock the clock vector for the duration of the
RPC. In this case, the lock should be released immediately
before sending the RPC. On the receiving end of an RPC, it
is similatly difficult to lock the timestamp before receiving

an RPC, so locking the clock vector immediately upon

receiving the RPC is sufficient.

This weakening of locking semantics for RPCs means
that the temporal order of communication events might not
be reflected in the clock vector if two threads of a process
are attempting to use the clock concurrently. However, the
ordering implied by the clock vector will still be a correct
caugal order i no further processing within the current
thread occurs between releasing or grabbing the lock and
sending or receiving the RPC respectively.

The use of this library for an event reporting service is
achieved by having the event service implement (at least)
the restricted participation required of an ‘observer process’
described in section 3.4.1. The timestamps associated with
1eporied events can then be used to create a partial order
(an acyclic graph) of events. At the occurrence of an
event that must be reported, an appropriate subgraph can be
transmitted to the interested subscriber, noting that delayed
event reports cannot be detected.

4.3. Causal message ordering library

The causal message ordering library was designed to
provide the following functionality:

(i) Implement functions to m.';nage a clock vector and
timestamp buffer as described in [11]. The functions
use the data structures supported by the causal
timestamp library.

(ii) Provide a function to block the current thread until a
message or RPC can be delivered without violating the
causal order, based on the timestamp in the message or
RPC.

82

(iii) Provide a mutual exclusion mechanism tc¢ ensure the
thread safety of the clock vector and timestamp buffer.

Failure handling is not implemented in this version of
the library. Future versions will most likely provide some
means of recovering the causal ordering information when.
communication failures occur.

The algorithm of Schiper et al described in [11] has
been chosen to implement causal message ordering because:

(i) The Isis algorithms and the Raynal and Schiper
algorithm are unsatisfactory. because they only support
message ordering, and not the recording of causal
relationships between arbitrary events.

(ii) The Psync algorithin was not chosen since it only
allows the recording of causality in the context of a
conversation.

(iii) The Schiper algorithm requires only a relatively simple
extension to the basic causal timestamp mechanism.

4.3.1. Data structures In order to provide message
ordering timestamps suitable for use with ANSAware
RPC, a timestamp data structure was defined using the
ANSAware Interface Definition Language (IDL). This data
structure is built on top of the timestamps defined for the
causal ordering library, containing a clock vector for the
current process and a set of timestamps representing the

" clock vectors of outstanding messages, as required by the

algorithm of Schiper ef al . The set of timestamps is
represented as a variable length array of timestamp data
structures from the causal ordering library.

The message ordering library uses a clock vector and
a unordered, singly linked-list of timestamps as an internal
representation. This internal representation is different from
the timestamp to make the operations on the data structure
more convenient—the linked list makes maintenance of
the outstanding message list less troublesome than using
the representation generated from the ANSAware IDL.
The library also adds a mutual exclusion lock and a
counting semaphore {event counter) allowing threads to
block waiting for other messages to arrive. This data
structure is referred to as the ordering clock in the remainder
of the text.

4.3.2. Functions The message ordering library imple-
ments only three major functions:

ovt_send: A function to generate a timestamp suitable for
use as an RPC parameter based on the current ordering
clock, and increment the ordering clock. Note that the
increment occurs after the copy, as required by the
message ordering algorithm. This function takes the
internal representation and copies it into the external
form for marshalling and transmission by ANSAware.

ovt_deliver: A function to block the current thread until
a message with the supplied timestamp is deliverable,
based on the rules of the message ordering algorithm.
Blocking is achieved by waiting for the event counter of
the ordering clock to be incremented. Once the message
is deliverable, the incoming timestamp is merged with
the current ordering clock and the event counter is

incremented. The merging of clocks occurs as specified
by the Schiper algorithm, with functions from the causal
timestamp library being used to merge elements of the
outstanding message list. Note that the matching of
clock entries is once again implemented using a simple
linear search on an unordered list.

ovt.before: A function to determine if the — relation
exists between two ordering timestamps. This function
does not operate directly on the ordering clock, but two
message timestamps. Typically, this function would be
used by some event collection process to order events.

Mutual exclusion is implicit in these functions, since
the functions are logically complete, that is, users of these
functions should not have any need to perform two or more
operations that need to be grouped under a single lock.

4.3.3, Using the library In order to guarantee causal
message ordering using the library, participating processes
must abide by the following rules:

(1) Each process must have a unique process identifier,
and this identifier must be supplied when creating the
ordering clock. The current implementation simply
takes a string parameter as the process identifier.

(i) All RPC requests to processes maintaining an ordering
clock must carry a timestamp parameter generated
immediately prior to sending by the ovt_send function.

(iii) A process maintaining an ordering clock must not
accept requests or return values from other processes
unless a timestamp is provided as a parameter.
Interactions with infrastructure functions, for example
the ANSAware trader, are exempt from this rule.

(iv} When a timestamp is received, either as a parameter to
a request or in the response to a request, the ovt deliver
function must be called before any processing of the
request or response occurs. Due to the blocking nature
of this function, processes implementing ordering
clocks must be multi-threaded to avoid unbounded
blocking. The number of threads available to a process
must also be greater than the maximum expected
number of messages awaiting delivery.

Figure 5 indicates how the library might be used, adding
appropriate function calls to the space-time diagram of
figure 3:

Notice the delay between the receipt and delivery of
the message from P, to P;. This delay is forced by
the ovt_deliver function (the labelling on the diagram
indicates function return rather than function call) to ensure
causal ordering. Note also that the locking problems
associated with RPC mechanisms outlined for causal
timestamps in section 4.2.3 also apply to this library,
although locking is not visible for this library.

In an event reporting service, this library could be
used to delay incoming event reports until all causally
preceding event reports have been delivered, ensuring the
completeness of the event sub-graph that is sent to an
interested process. It can be operated in the manner of
an ‘observer’ as described in 3.4.2, using the ovt.deliver
function to receive incoming RPCs, but without using the
ovt_send function.

Causal timestamps and causal ordering

ovt-sec:Ind ovt_sgnd

Sen SE

P, =

TecV. .
ovfgehv T
P, —
ovi_sen :
send
TECV. .
ovt_deliver

P, =
recV~__. 7 ovideliver

time ——

Figure 5. Using the causal ordering kibrary

The implications of ignoring failure in this initial
implementation are that failuore can lead to unbounded
blocking. Future versions of the library are likely to include
some mechanism to prevent this problem.

4.4. Performance

Although the focus in the initial implementation is
on functionality and flexibility, it is wseful to provide
performance figures to indicate the likely overhead
associated with maintaining and transmitting causality
information.

The test application was an Echo RPC, where a
client sends an integer to a server and it is immediately
echoed back to the client. Three different versions of the
application were created:

(i} A simple version with no timestamps.
(ii) A version using causal timestamps. R
(iii) A version using causal ordering.

All version accept a parameter indicating the number
of RPCs to perform. The two versions maintaining
timestamps also accept a parameter giving the size (number
of process entries) in the timestamp, then generate arbitrary
timestamps of that size before sending agy RPCs. For the
causal timestamps version, this resulted in timestamps of
size N * clocksize, where N is the number of processes,
and clocksize is the size of the entry for each process. For
the causal ordering version, this resulted in timestamps of
size 2N xclocksize. In theory, the size of a causal ordering
timestamp can reach (N x clocksize)?, however this size
is unlikely to be reached in a typical application involving
N processes. The likely size of timestamps depends on the
comumunication patterns of the participating processes, so
the size chosen for performance tests is arbitrary. Process
identifiers in timestamps were represented in sixteen byte
strings—the length of DCE object UUIDs.

There is no threading or concurrency involved in any
version. This means, in particular, that there will be
no delayed messages in the causal ordering version—the
performance figures indicate the overhead associated with
maintaining the information, rather than the likely delays
associated with messages being delivered out of order.

83

A Berry

Table 1.
No Causal Causal
timestamps timestamps ordering
Round Trip (ms) 3.8 4.9 54
CPU {ms) 2.3 3.1 3.2

The tests were carried out between a Sun Sparcstation
2 (client) and a Sun IPC (server), each running SunOS 4.1
and ANSAware 4.1 over a lightly loaded ethernet network.
Two sets of performance figures are given:

(1) Round trip time (RTT} figures for an RPC, including
all of the processing necessary to maintain and marshall
the causality information.

(ii) CPU time per RPC at the client.

For the versions using timestarmps, a range of sizes was
tested, beginning from the minimum size (2). The baseline
results (i.e. for the no timestamp version and the minimam
timestamp size for the timestamp versions) are presented in
table 1, showing the increase in round-trip and CPU time
associated with simple use of the timestamp libraries.

The remaining figures are captured in the following
graphs, which plot round-trip time and CPU time against
timestamp size (number of process entries} for both causal
timestamps and causal ordering.

The performance figures admit a number of interesting
observations:

(i) Overhead associated with maintaining timestamps is
significant, but not an order of magnitude larger, for
small timestamps.

(ii) As timestamp size increases, both round-trip time
and CPU usage grow in an approximately exponential
manner, with an almost linear range for the region
from approximately size 10 to size 100 for causal
timestamps, and similarly for size 5 to size 50 for causal
ordering.

(iiiy Client CPU time is approximately half the round-
trip time for larger sized timestamps. Assuming the
server uses a similar amount of time to process the
timestamps, this indicates that much of the round-
trip time is spent dealing with timestamps and that
efficiency improvements in the libraries are likely to
be advantageous.

5. Discussion

5.1. Efficiency

Since implementation efficiency was not a major concern
in the initial design and implementation of the libraries,
there is scope for improvement in a number of areas. The
performance figures indicate that attention to detail in the
libraries could provide significant rewards. Some particular
areas for investigation are:

(i) there are effectively three representations of a
timestamp used in the system-—an internal (library)
representation, a C representation for marshalling,
and the ANSAware wite representation. If the

C representation generated by the libraries was
protocel and platform independent, the timestamp
could be transmitted in binary form thus removing
the transformation to ANSAware wire format and
resolving the problems associated with supporting
muitiple protocols. .-

(ii) the efficiency of the libraries could potentially be
improved for large timestamps by using an indexed
or sorted data structure to store timestamp vectors and
outstanding messages sets. This would avoid the need
for multiple, linear searches of data structures when
merging timestamps.

5.2. Functionality

The functionality of the causal timestamp library is
complete, It could perhaps be improved by removing the
need for the programmer to explicitly lock the clock vector.
This would invelve providing a larger set of operations,
including an increment and merge operation, and having
each operation return the current value of the clock vector.
The flexibility of the library would be marginally reduced
by these changes.

A useful supporting library would be a set of functions
for maintaining and traversing a directed acyclic graph
that stores timestamps, with each edge representing a
causal relationship between events. This would remove
the need for an event reporting service to implement similar
structures, and provide a basis for graphical output of event
ordering information.

The functionality of the causal ordering library is
minimal, although simple to work with. Failure handling
is an obvious need, and some additional functions to
access components of the structure might be useful for
determining dependencies in an application, If desired,
this implementation of causal message ordering could
be incorporated into RPC stubs, which implement the
RPC calling mechanism, thereby making causal message
ordering transparent in an RPC environment. This
application of the work could be implemented and tested
with the ANSAware environment, since the source code is
available.

5.3. Unresolved vesearch issues

A number of areas of possible further research have been
identified in this paper and during the implementation. The
major issues are outlined below:

(i) The current implementations of the librdries are not
scalable to larger systems or long-lived applications,
since the timestamps can grow infinitely large, both in
the number of process entries, and the size of the clock
for each process entry. Some research into methods that
reduce the size of timestamps is currently being carried
out and will be reported in a subsequent publication.

(t1) Failure handling mechanisms for causal message
ordering based on timestamps, particularly algorithms
for rollback of updates to timestamp buffers, have
not been described in detail or implemented. An
application-level approach is required, but the failure

Causal timestamps and causal ordering

1200 =

100 |- Cauyal Ordering

Time ()
g
T

Rouid Trp Thme ==

Caueal Tinestamps -

200 b=

s Caal Gndering

Time {ms)

CPU Unage =—

Figure 7. Client CPU Usage for RPCs with Timestamps

handling algorithms implemented for Isis [2] might
provide some guidance.

(iii) The rules for interaction between participating and
non-participating processes (with respect to causal
timestamps or causal message ordering) should be
formaily proven and documented.

(iv) The causal relationships resulting from interaction with
the infrastructure of a distributed system should be
examined in the light of experience with application-

level causal timestamps and causal message ordering.

5.4. Relationship to other work

This work is different from most existing implementation-
oriented work involving causality information, in that it
focuses on providing causal dependency information rather
than providing reliability and availability. This 15 useful for
application programmers, particularly in event monitoring

85

A Berty

applications. Comparison with work on causally ordered
communication as in Isis [2, 1] and Psync [10] has already
been addressed in section 3.2. In ([7], an application-
oriented use of causality is described, but it is also focused
on the need for reliability and availability.

Much of the existing theory and algorithms associated
with causality and causal ordering have been used in the
design of the causality libraries. In particular, the work of
Fidge [4] and Schiper et af [11] has provided the basis for
the design and implementation.

6. Conclusions

This work has built upon the existing theory of causality and
cansal ordering to provide a general, protocol-independent
implementation of causal timestamps and causal ordering
that can support application programs in existing distributed
programming environments. To the knowledge of the
author, there is no other similar work.

In the design process, a number of previously
unresolved practical problems have been addressed,
particularly:

e the effect of threads within processes on the
maintenance of causality information;

e rufes for safe interaction with processes that do not
provide causality information.

The resulting implementation is functional, providing
sufficient functionality to support an event reporting service
in the ANSAware distributed programming environment.
The implementation is, however, relatively immature,
with considerable potential for optimization, porting to
other distributed programming environments, and further
research.

Acknowledgments

I would like to thank Colin Fidge for his guidance during
the project and for reviewing this paper. I would also like
to thartk Andrew Lister for his helpful comments. Thanks
are also due to my employer, DSTC Pty Ltd, for use of
a workstation and the ANSAware distributed programming
environment,

86

References

[1] Birman K and Joseph T 1987 Reliable communications in
the presence of failures ACM Trans. Computer Syst. 5(1)
47-76

[2] Birman K, Schiper A and Stephenson P 1991 Lightweight
causal and atomic group multicast ACM Trans.
Computer Syst. 9(3) 272-314

[3] Cheriton D R and Skeen D 1993 Understanding the
limitations of causally and totally ordered
communications Operating Syst, Rev, 27(5) 44-57

(4} Fidge C 1991 Logical time in distributed computing
systems [EEE Computer August 28-33

[5] Haban D and Weigel W 1988 Global events and global
breakpoints in distributed systems Hawaii International
Conference on Systems Sciences (Los Alamitos, CA:
IEEE) pp 166-182

[6] ISOAEC ITC1/SC21/WGT 1993 Draft recommendation
%.901: basic reference model of open distributed
processing—part 1: overview and guide to use Working
Document ISO/IEC JTC1/SC21/WG7 755 (International
Standards QOrganisation)

71 Ladin R, Liskov B, Shrira L and Ghemawhat § 1992
Providing high availability using lazy replication ACM
Trans. Computer Syst. 10(4) 360-391

[8] Lamport L 1978 Ttime, clocks, and the ordering of events
in a distributed system Commun. ACM 21(7) 558-565

[9] Mattern F 1989 Virtual time and global states of distributed
systems Parallel and Distributed Algorithms ed M
Cosnard and P Quinton (Amsterdam: North-Holland) pp
215226 '

[10] Peterson L, Buchhelz N C and Schlichting R D 1989
Preserving and using context information in interprocess
communication ACM Trans. Computer Syst. 7(3)
217-246

{11] Schiper A, Eggli § and Sandoz A 1989 A new algorithm to
implement causal ordering Distributed Algorithuns
{Lecture Notes in Computer Science) 392 ed J C

. Bermond and M Raynal (Berlin: Springer) pp 219-232

[12] Schiper A and Raynal M The causal ordering abstraction
and 2 simple way to implement it Technical report 501
Institut de Recherche en Informatique et Systemes
Aleatoires, Campus Universitaire de Beauliew, 35042 -
Rennes Cedex, France

[13] Schwarz R and Mattern F 1992 Detecting causal
relationships in distributed computations: in search of
the Holy Grail SFB 124-15/92 (University of
Kaiserslautern}

[14] SiegelJ (ed)} 1994 Comman Object Services Specification
vol 1 (Object Management Group) ch 4 pp 31-64

[15] Singh A K 1992 Bounded timestamps in process networks
Preprint (Department of Computer Science, University
of California at Santa Barbara)

