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Abstract. Maintenance of causality information in distributed systems has 
previously been implemented in the communications infrastructure with the focus 
on providing reliability and availability for distributed services. While this approach 
has a number of advantages, moving causality information up into the view and 
control of the application programmer is useful, and in some cases, preferable. In 
an experiment at the University of Queensland, libraries to support application-level 
maintenance of causality information have been implemented. The libraries allow 
the collection and use of causality information under programmer control, supplying 
a basis for making causal dependency information available for application 
management and troubleshooting. The libraries are also unique in suppomng 
existing distributed systems based on the remote procedure call paradigm. This 
paper describes the underlying theory of causality, and the design and 
implementation of the libraries. An event reporting service example is used to 
motivate the approach, and a number of previously unresolved practical problems 
are addressed in the design process. 

1. Introduction 

Lamport states [8]: 

In a distributed system, it is sometimes impossible 
to say that one of two events occurred first. The 
relation ‘happened before’ is therefore only apartial 
order of events in the system. 

In contrast to this, events on a uniprocessor system 
(assuming no parallelism in the processor architecture) 
are totally ordered. This order can easily be determined, 
for example, by recording the processor time at each 
event. The ‘happened before’ relation (denoted ‘+’ in 
the remainder of the text) defined over a set of events in 
a distributed system determines the causal order of those 
events. Assuming a distributed system of several sequential 
processes, the + relationship is more formally defined as 
follows: 

(i) If El and E2 are events in the same process and 
Time(E1) < Time&), then E1 --f Ez. 

(ii)If E1 is an asynchronous send event and Ez is the 
corresponding receive event, then E1 + Ez. 

(iii) If the pair (El, Ez) occurs in the transitive closure of 
1 and 2, then El + Ez. 
Any pair of events not related by the causal order 

are logically concurrent and cannot affect each other. A 

t e-mail: andybcs.uq.oz.au 

convenient visualization of this relationship is a space-time 
diagram, as depicted in figure 1. 

Maintenance of causal ordering information has, in 
previous implementations (for example, Jsis [l] and 
Psync [IO]), been restricted to the communications 
infrastructure, with a focus on consistency and reliability. 
These systems ensure that messages between processes can 
only be delivered in a causal order, however, knowledge 
of causal dependencies is not passed on to the software 
developer. The use of multicast communication is also 
inherent in these protocols. While this approach provides 
transparency, correctness and efficiency for processes 
requiring causal ordering, knowledge and control of 
causality information by the application programmer (i.e. 
at the application programming level) can have distinct 
advantages. 

In an experiment at the University of Queensland, 
prototype libraries to support the maintenance and use of 
causality information at the application level have been 
implemented. The libraries have been designed to support 
an event reporting service, thus the focus is shifted from 
providing reliability and availability, as is done by most 
existing implementations, to providing causal dependency 
information. The libraries are unique in supporting 
causality information for existing remote procedure call 
@PC)-based distributed systems, using the ANSAware 
platform for the initial implementation. They are also 
not intrinsically tied to any communications protocol. 
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Figure 1. A space-time diagram augmented with clock 
vectors. 

This paper introduces the theory of causal ordering and 
timestamps, discusses the advantages of an application- 
level approach to maintenance of causal ordering 
information, and examines the design and implementation 
of libraries for maintaining this information. 

2. Previous work 

2.1. Causal timestamps 

Fidge [4] has described a system of causal timestamps 
based on partially ordered logical clocks. These clocks 
can be used to determine the causal order of events in a 
distributed system. The method involves each process in 
the system keeping an array of logical clocks, one for each 
process in the system. The abstract data smcture for storing 
this information is referred to through the remainder of this 
paper as a ‘clock vector’ [9]. 

Clock vectors, if recorded with events of interest, can 
be used to determine the -+ relationship between those 
events. The rules for maintenance and comparison of clock 
vectors are specified in [4], however, h e  following rules 
for maintenance of clock vectors are significant: 

(i) Each process must increment its own logical clock in 
its clock vector when it performs an event. 

(ii) An asynchronous message between processes must 
cany the current clock vector of the sending process. 
The receiving process(es) must merge the incoming 
clock vector with its own. 

(iii) Synchronous communication between processes must 
result in the synchronization of their clock vectors (an 
example of a synchronous communication is an Ada 
rendezvous). 

(iv) Dynamic creation of a process requires that a new 
logical clock be added to the clock vector. However, 
logical clocks cannot be removed from the clock 
vector-the termination of a process does not remove 
the need to store its logical clock. 

(v) If a process is spawned by an existing process, then 
the child must inherit the clock vector of its parent to 
record the causal relationship between parent and child. 

(vi) Logical clocks cannot be decremented. 

The value of each logical clock in a clock vector 
represents the time at which the current process last 
had contact, either directly or transitively, with each 
other process. Figure 1 shows a space-time diagram 
for a distributed computation augmented with appropriate 
clock vectors. Note that arrows in the diagram indicate 
communication between processes and filled dots indicate 
events. 

The following additional properties of clock vectors are 
useful in implementati.on and reasoning about the vectors: 

(i) Zero-valued logical clocks in the clock vector 
(indicating no contact with the associated process) can 
be omitted. In effect, this means no logical clock 
is required for a process unless there is a causal 
relationship with that process. 

(ii) ‘Events’ can be defined to include only events that are 
of interest to the processes in the system, provided the 

. rules for maintaining timestamps are not violated. For 
example, communication events need’ not necessarily 
lead to incrementing a logical clock. 

(iii) It has been proven that a vector of length N is minimal 
to record the vector time for a static set of N processes. 
A number of optimizations of the method described by 
Fidge are possible, but these require additional storage 
and processing, and are not effective in all situations. 
A more detailed discussion of this issue can be found 
in [13]. 

The recording of causal timestamps is useful in many 
applications, particularly for debugging, event monitoring 
and detection of global states in distributed systems. For 
example, if a service in a distributed system fails, a record 
of events with their associated causal timestamps can be 
used to determine all events that could possibly have led 
to the failure. In particular, it allows us to immediately 
discard those events that do not causally precede the failure. 
Causal timestamps also provide the basis for determining a 
‘consistent cut’ of a distributed computation. That is, the 
partitioning of the set of events into a ‘past’ and a ‘future’ 
set. Rules for determining a consistent cut are described in 
[41. 

Causal timestamps suffer from a number of practical 
problems that limit their use in many systems. The two 
major problems are summarized below: 
(i) In systems with many processes, the size of the vector 

can quickly become unworkable. 
(ii) In theory, the size of individual clocks is unbounded 

for long-lived systems. A protocol for zeroing or re- 
use of cIocks is necessary, for example, as described in 
[15]. However, such protocols generally lead to a loss 
of information about past events. 

22. Causal message ordering 

While causal timestamps allow us to determine the relative 
order of any pair of events, they cannot be used to 
determine if there are any intervening events. This means 
that messages can be delivered in an order that violates 
causality. Figure 2 shows such an ordering, where message 
MI is received after M4, despite the fact that the send 
event E ,  which generated M I  causally precedes E4 which 
generated M4. 
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time - 
Figure 2. A message delivery ordering that violates 
causality 

time - 
Figure 3. Message delivery with causal ordering applied 

Causal message ordering guarantees that the order of 
delivery of messages does not violate causality in systems 
of communicating processes. Typically, messages are 
delayed at the receiver until all causally preceding messages 
are delivered. Figure 3 shows how figure 2 might look if 
causal message ordering was enforced. 

A number of different mechanisms have been proposed 
and implemented to ensure causal message ordering: 

(i) Schiper et nl [ l l ]  propose an algorithm based on 
Fidge’s clock vectors. Each process maintains a 
clock vector and a buffer containing the clock vectors 
associated with the set of undelivered messages, as seen 
by the current process. The current clock vector and 
the buffer must accompany each outgoing message as 
a timestamp. The destination process cannot accept a 
message until its own clock vector exceeds the clock 
vector of the most recent message addressed to that 
destination process recorded in the incoming buffer. 
This algorithm increases the size of the timestamp 
from order N to order N2 where N is the number of 
processes. However, optimizations detailed in the paper 
make the likely size of a timestamp somewhat smaller. 

(ii) Raynal and Schiper [12] propose a modified implemen- 
tation of the previous method that records only commu- 
nication events. It has similar properties to the previous 
method, but is marginally simpler and more straight- 
forward to implement. It loses generality though, since 

processes can no longer record the causality of events 
other than communication events. 

(iii) Birman and Joseph [l] have taken a significantly 
different approach to implementing causal message 
ordering in the earlier version of the Isis toolkit. This 
algorithm requires that each communication carry a 
copy of all causally preceding messages that have 
not yet been acknowledged. If a process receives a 
message buffer containing several messages for the 
current destination, it simply processes them in the 
order that they appear in the buffer, which is guaranteed 
to be a causal order. Once again, this method does not 
allow the recording of events other than communication 
events. 
The algorithm was implemented in the Isis toolkit as 
part of a reliable communications transport protocol 
based on multicast and process groups. 

(iv) The current Isis algorithm [Z] is based on the algorithm 
of Raynal and Schiper described in item 2 above, with 
a number of optimizations applied. The optimizations 
lead to a timestamp size of order N ,  and are made 
possible by the‘use of multicasting and process groups 
in Isis. 
The major advantage of the current and previous Isis 
methods is that the handling of message and process 
failures are bundled with the ordering mechanism, 
providing a reliable transport protocol with well defined 
ordering semantics. The preceding approaches require 
modification or extension to cope with failures. 

(v) Peterson et nl [lo] have devised and implemented the 
Psync communications protocol that supports causal 
ordering within the context of a ‘conversation’ (which 
is similar to the Isis process group). The protocol 
is efficient, but depends on all processes in the 
conversation receiving a copy of all messages, and does 
not preserve causality for communications in different 
conversations. 

Causal message ordering is typically used to ensure 
the causal consistency of processes in distributed systems. 
This is particularly useful for multicast communication, and 
has been used in Isis as the basis for efficient replication 
algorithms. Causally ordered messages also provide a 
means to ensure the causal order of access to services. In 
everyday life, this is generally accepted as a ‘fair’ order. 
For example, if you told a friend you were on the way to 
the bakery to buy a cream bun, it would be rude for them 
to beat you there and take the last one. However, if you 
each decided independently to go to the bakery and buy a 
cream bun, there would be no conflict. 

Despite its usefulness, there are still problems in 
the application of causal message ordering to distibuted 
systems. Two of the major problems are: 

(i) As with causal timestamps, none of the methods 
described is scalable to large systems. The size 
of the required timestamps is of order N (for 
multicast-based mechanisms) or NZ for non-multicast 
mechanisms. In all cases, the methods become 
cumbersome as the number of participating processes 
grows, particularly when the communication patterns of 
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before E l ,  and subscribers interested in the events leading 
to E2 will not receive E l .  This problem can be avoided 
by using causal message ordering, which will delay the 
delivery of E2 until E l  arrives. The choice between causal 
timestamps and causal message ordering is a costhenefit 
trade-off, since causal message ordering involves significant 
additional overhead. 

The need for causal dependency information is not 
always present, and some distributed applications will not 
require timestamps based on clock vectors. For this reason, 
it is useful allow applications to apply these mechanisms 
selectively. 

3.2. Advantages of application-level support 

As mentioned in section 1, there %e some distinct 
advantages in maintaining causality information at the 
application level, rather than in the communications 
infrastructure: 

(i) As can been seen in the event service example, it is 
sometimes necessary to make causality information ac- 
cessible to the applications. Infrastructure implementa- 
tions typically do not allow the application programmer 
to directly access causality information-they simply 
ensure that messages are delivered in a causal order. In 
this situation, it is not possible to determine the causal 
dependencies between messages within an application. 

(ii) Applications using the infrastructure that do not require 
causal ordering cany additional, unnecessary overhead. 
An application-level implementation allows selective 
use of the mechanisms over a single infrastructure, 
although such use is subject to some restrictions to 
ensure consistency. These restrictions are discussed 
further in section 3.4. 

(iii) Existing implementations provide causal ordering, 
where causal timestamps, which have lower overhead, 
are sufficient in some situations. 

(iv) An application-level approach allows the programmer 
to decide which events are significant for causality, 
whereas infrastructure implementations can only record 
causality between communications events (i.e. message 
send and receive events). This means, for example, that 
a process can update its logical clock for a sequence of 
events, then report those events to an event service in 
a single message, rather than having distinct messages 
for each event. 

(v) Implementation at the application level allows causal 
timestamps and ordering to be easily implemented 
over multi-protocol networks and existing distributed 
computing environments, for example OSF DCE or 
ANSAware. In other words, the implementation can 
be protocol independent. 
The paper by Cheriton and Skeen [3] provides addi- 

tional discussion of problems associated with implement- 
ing causal ordering in the communications infrastructuret. 
There are also some disadvantages of controlling such in- 
formation at the application level: 

t The Cheriton paper argues that implementations that support causality 
in the communications i n f r a s r c m  are impractical. This author does not 
agree, seeing advantages in both approaches. 
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individual processes involve contact with many other 
processes. 

(ii) All methods require the participation of all processes 
in the system. There is no means of separating 
‘participating’ and ‘non-participating’ processes, which 
can be useful for legacy systems or in Open Distributed 
Processing (ODP) systems, where communicating 
systems are often fully autonomous [6]. Isis and 
the Psync protocol achieve participation implicitly 
by building causal message ordering into network 
protocols. 

3. High-level design issues 

The primary design goal of the causality libraries is provide 
for the maintenance and use of causality information in 
a flexible and protocol independent manner within user 
applications. This section addresses the high-level design 
issues associated with these libraries. An event reporting 
service is introduced as an example to motivate the need 
for the libraries and to help justify a number of design 
decisions. In this section, the advantages and disadvantages 
of controlling causality information at the application level 
are discussed, and the practical problems of providing 
causality information for existing dishibuted systems are 
addressed. 

3.1. An event reporting service example 

Event reporting services have been provided or are 
being provided in a number of distributed programming 
environments, for example the OMG COSS event 
service [14]. These services collect event notifications from 
distributed applications and pass the notifications on to 
interested ‘subscribers’. Qpically, the events of interest 
are exceptional conditions, for example, failure, security 
violations or performance degradation. 

One of the difficulties associated with collation and in- 
terpretation of events is determining dependencies between 
events. Event notifications are usually timestamped using 
the local clock of the originating process, but there are a 
number of problems with this approach 

Real-time timestamps can only give a total ordering of 
events, rather than the partial order of those events. 
The inherent skew between distributed real-time clocks 
can lead to a false (i.e. non-causal) ordering. 

The use of timestamps based on clock vectors can solve 
both of these problems, and would allow subscribers to 
an event service to ask, for example, ‘when a failure of 
type X is reported, give me the last 25 events that causally 
precede the failure’. In the presence of large numbers of 
concurrent events, this capability would be extremely useful 
for management and troubleshooting purposes. 

Causal timestamps, as described in section 2.1, can 
provide the capability discussed in the previous paragraph, 
with one restriction-it is not possible to determine if all 
causally preceding event reports ‘have been delivered to 
the event service. For example, if an event report E l  is 
delayed, a causally succeeding failure E2 can be reported 
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(i) If all processes require causal message ordering 
information, efficiency is improved by implementing 
the protocols in the communications infrastructure. 

(ii) An infrastructure implementation is (mostly) transpar- 
ent to the programmer and provides a programming 
model closer to that of traditional sequential programs, 
particularly in the Isis toolkit 121. 

(iii) Infrastructure implementations are typically integrated 
with a communications protocol designed for reliability 
and availability in distributed applications. If 
these attributes are important for an application, an 
infrastructure implementation will be more effective 
and efficient. 

In essence, the choice between application-level 
and infrastructure implementation is dependent on the 
requirements of applications. Where the focus is 
on providing flexible access to causality information, 
an application-level approach is superior. Where the 
focus is on providing reliability and availability in an 
efficient manner, an infrastructure implementation is more 
appropriate. However, an application-level implementation 
is essential to supply causality information for existing 
distributed systems that do not have protocol support. This 
author believes that this alone is sufficient argument for 
implementation of the librades described in this paper. 

3.3. Mapping messages to RPCs 

All of the algorithms discussed in section 2 define their 
algorithms in terms of messages, and the algorithms are 
affected by the synchronous or asynchronous nature of 
communications. To apply the algorithms to RPCs, it is 
therefore necessary to map an RPC into a sequence of 
messages. There ‘are two distinct possibilities: 

(i) An RPC can be modelled as a single synchronous 
communication. In the pure and abstract sense, this is 
the most appropriate model for an RPC-an RPC is a 
single communication event. In practice, this is seldom 
the case, because processing an RPC takes a finite 
and sometimes significant amount of time, and because 
clients and servers are often multi-threaded. This means 
other activities can take place during the processing of 
a particular RPC, and there is considerable potential for 
loss of information regarding causality because of these 
factors. There is also the problem of nested RPCs- 
how do you model a ‘nested‘ event? 

(ii) The second, and more general mapping of RPCs is to 
map the request and response to distinct asynchronous 
messages. This has the following advantages: 

The time taken to process the request is of no 
concern. 
Non-determinism within client and server processes 
(due to threads) is easily handled. (See section 3.6 
for a more complete discussion of this issue.) 
Timestamps can be included simply as IN/OUT pa- 
rameters to the RPC at the application programming 
level. 
Non-participating processes can be accommodated 
with a weakening of the mapping (see section3.5). 

The main disadvantage is that this mapping does not 
capture the logical relationship between the request 
and response of an RPC. However, since the causal 
relationship between the communications is recorded, 
this is a minor criticism. 

Based on the arguments above, our libraries are 
designed to support the asynchronous message mapping 
(although the synchronous mapping is not precluded). 
Given this choice of mapping for RPCs, the rules for 
maintaining causal timestamps and causal message ordering 
can be based duectly on the algorithms discussed in section 
2. 

3.4. Interaction with non-participating processes 

One of the difficulties associated with maintaining causality 
information is that communication between processes 
that occurs without using the infrastructure or libraries 
for maintaining causality can lead to unrecorded causal 
relationships. While this is undesirable, it occurs often in 
practice, since the size of timestamps required to record 
all causal relationships become impractical in large scale 
applications. In addition, it is sometimes necessary for 
processes that do not record causality, for example legacy 
applications, to interact with those that do. 

There are two possible approaches to dealing with these 
problems-the application p r o g r u e r  can decide that such 
interaction will not adversely influence the consistency of 
causality information, or a restricted form of interaction that 
maintains causal consistency can be used. The theory for 
this restricted form of interaction has not, to the author’s 
knowledge, been addressed in any existing literature, apart 
from Lamport’s acknowledgment of the problem itself as a 
cause of ‘anomalous behaviour’ [8]. Rules for supporting 
such interactions are outlined in the following sub-sections. 

Existing systems usually provide some means to restrict 
the scope of causality information being collected, leaving 
it to the application programmer to deal with the potential 
inconsistencies that might occur. The more recent version 
of the Isis toolkit [2] introduces causality domains, where 
communication across causality domains does not cany any 
causality information. Psync [IO] restricts the transfer of 
causality information to a single conversation. While this 
allows the programmer to minimize timestamp size, there 
are no rules or support for ensuring the causal consistency 
of interaction with ‘non-participating’ processes. 

One of the features of providing access to causality 
information at the application-level, is that the following 
rules for restricted interaction can be adhered to by 
application programmers to ensure causal consistency 
despite interaction with non-participating processes. The 
design of the causality libraries takes this into account, 
giving sufficient access to causality information to allow 
these rules to be implemented. 

3.4.1. Causal timestamps For causal timestamps, the 
following rules can be used to ensure that the clock vectors 
maintained by participating processes are not invalidated 
by communication with non-participating processes: 
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processes. The implications of this for non-participating 
processes are slightly different, however, and deserve 
further discussion. 

A non-participating process cannot generally ensure 
that messages from participating processes are received in 
causal order. However, assuming the algorithm of Schiper, 
el al [ll], a process can guarantee the causal order of 
received messages through restricted participation in the 
ordering mechanism. In the following description, we 
will call a process implementing restricted participation an 
‘observer’ process: 

(i) The observer process must maintain a (single) clock 
vector reflecting the maximum of the clock vectors 
associated with all messages received from participating 
processes. 

(ii) The fully-participating processes must record their 
interactions with the observer process (noting that in 
general, it is not necessary for participating processes 
to record their interactions with non-participating 
processes). 

(iii) To ensure message ordering, the observer process 
must delay messages that cany a record of a message 
destined for the observer in their timestamp buffer if 
that timestamp is greater than the current vector clock. 

(i) All processes for which causal timestamp information 
is maintained can receive asynchronous messages only 
from processes participating in the causal timestamping 
mechanism. 

(ii) A process maintaining causal timestamp information 
can participate in synchronous communication only 
with other processes participating in the causal 
timestamping mechanism. 

(iii) A process maintaining causal timestamp information 
cannot be spawned by a non-participating process. 

(iv) A process maintaining causal timestamp information 
can send asynchronous messages to non-participating 
processes, and these messages need not (but are 
permitted to) carry timestamp information. 

These rules are in addition to the rules for interaction 
with participating processes described by Fidge 141. The 
rules imply that processes maintaining causal timestamp 
information can send messages to any other process, 
but cannot receive messages from processes that do 
not maintain causality information. For example, a 
process observing a group of processes that maintain 
causal timestamps can collect event notifications from the 
observed processes and determine their causal relationships 
without maintaining its own causal timestamp information. 
Note, however, that the causal relationship between events 
in participating processes and non-participating processes 
cannot be determined. 

A further implication of these rules is that the logical 
clock associated with a non-participating process will 
always be zero in participating processes, and can therefore 
he omitted from timestamps. Informally, the rules are 
justified by asserting that a causal relationship between 
events A + B ,  where A and B occur in distinct processes, 
can only exist if: 

A sends an asynchronous message to B 
or, A and B participate in the same synchronous 
communications event 
or, process A spawns process B 
or, there exists a sequence of any of the above actions 
that leads from process A to process B .  

The only interactions that affect the causal timestamp 
information maintained by B are therefore: 

receiving a message 
participating in a synchronous communication 
being spawned. 

By constraining these particular interactions so that they 
only involve participating processes, we ensure that the 
causal timestamp information remains consistent for the 
participating processes. 

3.4.2. Causal message ordering If a timestamp 
based mechanism is chosen for implementing causal 
message ordering, the rules for communication with non- 
participating processes described in section 3.4.1 can 
be applied to causal message ordering. In essence, 
processes maintaining causal message ordering information 
can ensure that the information remains consistent provided 
they do not accept messages from non-participating 

3.5. Non-participating processes in RPC systems 

The handling of non-participating processes is a difficulty 
for RPC systems, regardless of the mapping to messages 
chosen. This is because RPCs are inherently a two-way 
interaction, and the rules for communication with non- 
participating process described in section 3.4 only allow 
outgoing messages to non-participating processes. The 
problem can be solved by weakening the mapping of RF’Cs 
to messages as follows: 

(i) RPC requests correspond to asynchronous messages. 
(ii) RPC responses that have return values influenced by 

the semantics of the server correspond to asynchronous 
messages. 

(iii) RPC responses that have no return values influenced 
by the semantics of the server can be ignored. 

In essence, these rules state that provided the response 
to an RPC carries no information about the result of 
the request, it can be ignored when determining causal 
relationships. Note that this mapping could be further 
weakened in an application-if the response from an RPC 
is ignored by the application, then the causal relationship 
resulting from the response message can be ignored. 

An implication of this rule is that communication 
failures can be signalled by a return value, whereas 
application failures or successes cannot. This leads to 
a causality relationship between the application and the 
infrastructure of the distrihuted system, an issue that is 
discussed in section 3.7. 

3.6. Threads within processes 

Most current distributed systems incorporate or support 
threads, which allow independent units of execution within 

79 



A Berry 

a process. For example, in an RPC client process, a thread 
invoking an RPC is usually blocked while the RPC is 
being processed, but the remaining threads in the process 
can continue to executet. In an RPC server process, 
multiple threads are used to provide concurrent processing 
of requests, provided appropriate resource locking is 
implemented. 

The use of threads introduces concurrency to processes. 
In theory, it should follow that each thread maintains its 
own separate causality information-causality records all 
potential concurrency. The implementation of the libraries 
described in this paper does not preclude maintaining 
causality on a per-thread basis, but it is expected that 
users of the library will only maintain causality on a per- 
process basis. A per-process timestamp is assumed for the 
following reasons: 

(i) Maintaining timestamps for each thread means that each 
thread must have a globally visible name, and must be 
addressable by that name. In most distributed systems, 
threads are anonymous, so this requirement cannot be 
satisfied. 

(ii) Maintaining timestamp information for individual 
threads can significantly increase the number of logical 
clocks that must be recorded in the timestamp vector, 
hence increase the size of the vector clock. 

(iii) Although there is concurrency between threads, there 
is a total ordering over the activities within the threads 
of a process (assuming a singleprocessor architechue). 
Provided updates to the timestamp of a threaded 
process are synchronized using a mutual exclusion 
lock, causality is not violated. Note that a similar 
argument has been used in [5] to justify maintaining 
only a single timestamp for each processor in a multi- 
processor system. 

3.7. Infrastructure interactions 

In most existing distributed systems, there are interactions 
with distributed infrastructure services inherent in the use 
of the system. For example, it is difficult or impossible to 
communicate with another process without first finding its 
address. In general, some form of name service is consulted 
to find the address. 

These interactions result in a causal relationship 
between the infrastructure service and the process, and 
hence between processes sharing the service. Since it 
is generally difficult to add support for causality to the 
infrastructure of existing systems (access to source code 
is often not possible), these causal relationships cannot be 
recorded and a complete partial ordering of events in the 
distributed system cannot be determined. 

However, from the perspective of an application 
programmer, the causal relationships resulting from 
interactions with the infrastructure do not generally affect 
the functional behaviour of the program. That is, 
interactions with the infrastructure are auxiliary to the 
purpose of an application-they simply support interactions 

t Note that blocking RFC systems without threads would have minimal 
need for causality information. since execution of RPCs is equivalent to 
execution of a local, sequential procedure call. 
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with other application processes. For this reason, it 
is reasonable for applications to ignore such interactions 
when maintaining causality information, hence the libraries 
provide no direct support for recording interactions with the 
infrastructure. 

3.8. Failure handling for RPC systems 

The handling of failure is particularly difficult for RPCs 
when causality information is being maintained. It 
depends particularly on the RF'C semantics provided by 
the implementation. Unless there is some guarantee of 
execution (e.g. at most once semantics), it is difficult to 
characterize the causality relationship between the client 
and server when an RPC fails. At this stage, the issue of 
RPC failure has not been dealt with any further. 

4. Low-level design and implementation 

The causality libraries were implemented for the AN- 
SAware distributed system which provides high-level RPC 
facilities in a UNx and TCPAP environment. ANSAware 
was chosen because of its availability and its relatively 
clean and simple interface definition language (IDL) and 
distributed programming language (DPL). The ANSAware 
DPL is integrated with the C programming language, so C 
has been used in the implementation of the libraries. The 
libraries are largely independent of ANSAware, although 
there are some minor dependencies introduced to minimize 
the initial effort. 

The current implementation is a 'proof-of-concept' 
version, intended to address the high-level design issues 
discussed in the section 3, and to allow us to gain 
experience in the use of causality information in distributed 
applications. Performance and implementation efficiency 
were not goals for thii version. 

The implementation is separated into two distinct 
libraries. A causal timestamps library provides a basic 
implementation of clock vectors based on the theory 
described in [4]. A causal ordering library provides and 
implementation of causal ordering based on the algorithm 
of Schiper et al [ll].  Each library defines a data structure 
for storing the appropriate causality information, and a 
set of functions for creating, maintaining, transmitting and 
deleting thii causality information. In effect, the two 
libraries each define an abstract data type. 

Transmission of causality information is achieved by 
including a timestamp based on the abstract data type 
in the parameters of an RPC. Selective use of the 
mechiuiisms is achieved by either including or excluding 
these timestamps in the definition of interfaces supported 
by a given ANSAware program. A representation of each 
abstract data type is defined in ANSAware IDL so that 
it can be marshalled, transmitted and unmarshalled by 
automatically generated ANSAware code. Support for other 
RF'C protocols can be achieved by modifying the libraries 
to generate appropriate representations of the abstract data 
types, or possibly by generating a platform independent 
representation that can be sent as binary data over any 
RF'C protocol. The functions on each abstract data type 
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If the library were to support multiple infrastructures 
(e.g. DCE and ANSAware) multiple versions of this 
function could be provided. 

v t l o c k :  A function to lock the clock vector to ensure 
thread safety. All operations on the clock vector should 
be protected by a mutual exclusion lock. 

vt-unlock: A function to release a lock on the clock 
vector. 

vt-before: A function to determine if the -+ relation 
exists between two timestamps. This function does not 
operate duectly on the clock vector, but two message 
timestamps. Typically, this function would be used by 
some event collection process to order events. 

The functions to lock and unlock the clock vector 
are made available to the application programmer, rather 
than being implicit in individual functions. This is to 
allow related operations on the timestamp to be grouped 
without concern for interruptions by thread scheduling. 
For example, a thread might be interrupted between 
incrementing and copying the timestamp, potentially 
leading to an invalid timestamp. 

A number of additional functions were implemented to 
assist in memory management of timestamps, and to create 
and delete the clock vector. These are not complex, so are 
not described in detail. 

are flexible enough to support the rules for interaction with 
non-participating processes. 

4.1. Identifying processes 

In order to correctly maintain causality information, all 
participating processes must be uniquely identified. To 
allow for some variation in the way processes are identified, 
the libraries simply use a variable length character string 
to store process identifiers. Some efficiency could be 
gained by using a less general structure, but it would 
place restrictions on the poisible representations of process 
identifiers and reduce the protocol independence of the 
libraries. It is expected that system specific process 
identifiers would be used by applications, for example, DCE 
object identifiers. 

4.2. Causal timestamp library 

This library provides an abstract data type for the 
maintenance and use of clock vectors based on the theory 
described in 141. 

4.2.1. Data structure In order to provide timestamps 
suitable for use with ANSAware RF'C, a timestamp data 
structure was defined using the ANSAware Interface 
Definition Language (IDL). The structure is a variable 
length array of process clocks, with each clock containing a 
process identifier string and a positive integer clock value. 
The clock value is a 32-bit representation of an integer. 
The clock vector library uses this timestamp structure 
duectly, adding only a mutual exclusion lock to complete 
the clock vector data structure. The mutual exclusion lock 
is necessary to deal with concurrency introduced by heads. 

The clock value associated with the current process is 
always the first clock in the may. This ensures it can be 
quickly and easily accessed, and is trivial to implement. 

4.2.2. Functions Six major functions were provided by 
the clock vector library, namely: 

v t i n c :  A function to increment the logical clock of the 
current process. This function increments the integer 
value associated with the current process in the clock 
vector. 

vtlnerge: A function to merge an incoming timestamp 
with the clock vector. This function applies the merge 
algorithm for vector clocks described in [41. At 
present, finding matching entries in the two clock 
vectors is achieved using a simple linear search of the 
incoming timestamp for each entry in the local clock 
vector. 

vt-ts: A function to create a timestamp suitable for use as 
an RPC parameter, copying the contents of the clock 
vector. It is necessary to copy the data structure to 
ensure the mutual exclusion between threads accessing 
the clock vector. Future versions might also modify the 
internal data structure to improve efficiency of merges, 
so this function is the place to deal with differences 
between internal representation and the RPC timestamp. 

4.2.3. Using the library In order to correctly maintain 
information about causality between events, a set of 
processes must use the library in the following manner: 
(i) Each process must have a unique process identifier, and 

this identifier must be supplied when creating the clock 
vector. 

(ii) All RF'C requests to processes maintaining a clock 
vector must cany a timestamp parameter. 

(iii) A process maintaining a clock vector must not accept 
requests or return values from other processes unless a 
timestamp is provided as a parameter. Interactions with 
infrastructure functions, for example the ANSAware 
trader, are exempt from this rule. 

(iv) When a timestamp is received by a process maintaining 
a clock vector, either as a parameter to a request or 
in the response to a request, the incoming timestamp 
must be merged with the clock vector of the process 
immediately. 

(v) When a significant event occurs in the process, the 
vector clock must be incremented. 

(vi) All operations on the clock vector must be protected 
by a lock. 

(vii) All logically grouped operations on the clock vector 
must be protected by a single lock. For example, if 
the receipt of an RPC on an interface is a significant 
event, then the incoming timestamp must be merged 
and the clock vector incremented as a single logical step 
protected by a lock. If a copy of the current timestamp 
is required for reporting this event, then making the 
copy should also be part of the single logical step. 

Figure 4 indicates how.the library might be used, adding 
appropriate function calls to the space-time diagram of 
figure 1: 

81 



A Berty 

vtinc * 
vtinc 

P - > 

Figure 4. Using the causal timestamps libraty 

Note that the calls to lock and unlock the vectors 
are omitted to keep the figure simple. To fully ensure 
thread safety, all of the function calls listed for each event 
should be protected by a (single) lock. However, in an 
RPC environment, it is difficult or impossible to separate 
the sending of the RPC from the response, and it is not 
acceptable to lock the clock vector for the duration of the 
RPC. In this case, the lock should be released immediately 
before sending the RPC. On the receiving end of an RPC, it 
is similarly difficult to lock the timestamp before receiving 
an RPC, so locking the clock vector immediately .upon 
receiving the RPC is sufficient. 

This weakening of locking semantics for RPCs means 
that the temporal order of communication events might not 
be reflected in the clock vector if two threads of a process 
are attempting to use the clock concurrently. However, the 
ordering implied by the clock vector will still be a correct 
causal order if no further processing within the current 
thread occurs between releasing or grabbing the lock and 
sending or receiving the RPC respectively. 

The use of this library for an event reporting service is 
achieved by having the event service implement (at least) 
the restricted participation required of an ‘observer process’ 
described in section 3.4.1. The timestamps associated with 
reported events can then be used to create a partial order 
(an acyclic graph) of events. At the occurrence of an 
event that must be reported, an appropriate subgraph can be 
transmitted to the interested subscriber, noting that delayed 
event reports cannot be detected. 

4.3. Causal message ordering library 

The causal message ordering library was designed to 
provide the following functionality: 
(i) Implement functions to manage a clock vector and 

timestamp buffer as described in [ll]. The functions 
use the data structures supported by the causal 
timestamp library. 

(ii) Provide a function to block the current thread until a 
message or RPC can be delivered without violating the 
causal order, based on the timestamp in the message or 
RPC. 
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(iii) Provide a mutual exclusion mechanism to ensure the 
thread safety of the clock vector and timestamp buffer. 

Failure handling is not implemented in this version of 
the library. Future versions will most likely provide some 
means of recovering the causal ordering information when. 
communication failures occur. 

The algorithm of Schiper et a1 described in [ 111 has 
been chosen to implement causal message ordering because: 

(i) The Isis algorithms and the Raynal and Schiper 
algorithm are unsatisfactory. because they only support 
message ordering, and not the recording of causal 
relationships between arbitrary events. 

(ii)The Psync algorithm was not chosen since it only 
allows the recording of causality in the context of a 
conversation. 

(iii) The Schiper algorithm requires only a relatively simple 
extension to the basic causal timestamp mechanism. 

4.3.1. Data structures In order to provide message 
ordering timestamps suitable for use with ANSAware 
RPC, a timestamp data sbxcture was defined using the 
ANSAware Interface Definition Language (IDL). This data 
structure is built on top of the timestamps defined for the 
causal ordering library, containing a clock vector for the 
current process and a set of timestamps representing the 
clock vectors of outstanding messages, as required by the 
algorithm of Schiper et al . The set of timestamps is 
represented as a variable length may  of timestamp data 
structures from the causal ordering library. 

The message ordering library uses a clock vector and 
a unordered, singly linked-list of timestamps as an internal 
representation. This internal representation is different from 
the timestamp to make the operations on the data structure 
more convenient-the linked list makes maintenance of 
the outstanding message list less troublesome than using 
the representation generated from the ANSAware IDL. 
The library also adds a mutual exclusion lock and a 
counting semaphore (event counter) allowing threads to 
block waiting for other messages to arrive. This data 
structure is referred to as the ordering clock in the remainder 
of the text. 

4.3.2. Functions The message ordering library imple 
ments only three major functions: 

ovtsend: A function to generate a timestamp suitable for 
use as an RPC parameter based on the current ordering 
clock, and increment the ordering clock. Note that the 
increment occurs after the copy, as required by the 
message ordering algorithm. This function takes the 
internal representation and copies it into the external 
form for marshalling and transmission by ANSAware. 

ovt-deliver: A function to block the current thread until 
a message with the supplied timestamp is deliverable, 
based on the rules of the message ordering algorithm. 
Blocking is achieved by waiting for the event counter of 
the ordering clock to be incremented. Once the message 
is deliverable, the incoming timestamp is merged with 
the current ordering clock and the event counter is 
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incremented. The merging of clocks occurs as specified 
by the Schiper algorithm, with functions from the causal 
timestamp library being used to merge elements of the 
outstanding message list. Note that the matching of 
clock entries is once again implemented using a simple 
linear search on an unordered list. 

ovt-before: A function to determine if the + relation 
exists between two ordering timestamps. This function 
does not operate directly on the ordering clock, but two 
message timestamps. Typically, this function would be 
used by some event collection process to order events. 

Mutual exclusion is implicit in these functions, since 
the functions are logically complete, that is, users of these 
functions should not have any need to perform two or more 
operations that need to be grouped under a single lock. 

4.3.3. Using the library In order to guarantee causal 
message ordering using the library, participating processes 
must abide by the following rules: 

(i) Each process must have a unique process identifier, 
and this identifier must be supplied when creating the 
ordering clock. The current implementation simply 
takes a string parameter as the process identifier. 

(ii) All RPC requests to processes maintaining an ordering 
clock must cany a timestamp parameter generated 
immediately prior to sending by the ovtsend function. 

(iii) A process maintaining an ordering clock must not 
accept requests or return values from other processes 
unless a timestamp is provided as a parameter. 
Interactions with infrastructure functions, for example 
the ANSAware trader, are exempt from this rule. 

(iv) When a timestamp is received, either as a parameter to 
a request or in the response to a request, the ovtdeliver 
function must be called before any processing of the 
request or response occurs. Due to the blocking nature 
of this function, processes implementing ordering 
clocks must be multi-threaded to avoid unbounded 
blocking. The number of tbreads available to a process 
must also be greater than the maximum expected 
number of messages awaiting delivery. 
Figure 5 indicates how the library might be used, adding 

appropriate function calls to the space-time diagram of 
figure 3: 

Notice the delay between the receipt and delivery of 
the message from PI to 9. This delay is forced by 
the ovt-deliver function (the labelling on the diagram 
indicates function retnm rather than function call) to ensure 
causal ordering. Note also that the locking problems 
associated with RPC mechanisms outlined for causal 
timestamps in section 4.2.3 also apply to this library, 
although locking is not visible for this library. 

In an event reporting service, this library could be 
used to delay incoming event reports until all causally 
preceding event reports have been delivered, ensuring the 
completeness of the event sub-graph that is sent to an 
interested process. It can be operated in the manner of 
an ‘observer’ as described in 3.4.2, using the ovtdeliver 
function to receive incoming RPCs, but without using the 
ovtsend function. 

ovt-se d ovts  nd * 
p3 ovtdeliver 

time - 
Figure 5. Using the causal ordering library 

The implications of ignoring failure in this initial 
implementation are that failure can lead to unbounded 
blocking. Future versions of the library are likely to include 
some mechanism to prevent this problem. 

4.4. Performance 

Although the focus in the initial implementation is 
on functionality and flexibility, it is useful to provide 
performance figures to indicate the likely overhead 
associated with maintaining and transmitting causality 
information. 

The test application was an Echo RPC, where a 
client sends an integer to a server and it is immediately 
echoed back to the client. Three different versions of the 
application were created 
(i) A simple version with no timestamps. 
(ii) A version using causal timestamps. 
(iii) A version using causal ordering. 

All version accept a parameter indicating the number 
of RPCs to perform. The two versions maintaining 
timestamps also accept a parameter giving the size (number 
of process entries) in the timestamp, then generate arbitrary 
timestamps of that size before sending any Rpcs. For the 
causal timestamps version, this resulted in timestamps of 
size N * clocksize, where N is the number of processes, 
and clocksize is the size of the entry for each process. For 
the causal ordering version, this resulted in timestamps of 
size ZN*clocksize. In theory, the size of acausal ordering 
timestamp can reach (N * clocksize)2, however this size 
is unlikely to be reached in a typical application involving 
N processes. The likely size of timestamps depends on the 
communication patterns of the participating processes, so 
the size chosen for performance tests is arbitrary. Process 
identifiers in timestamps were represented in sixteen byte 
strings-the length of DCE object UUIDs. 

There is no threading or concurrency involved in any 
version. This means, in particular, that there will be 
no delayed messages in the causal ordering version-the 
performance figures indicate the overhead associated with 
maintaining the information, rather than the likely delays 
associated with messages being delivered out of order. 
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Table 1. 

No Causal causal 
timestamps timestamps ordering 

Round Trip (ms) 3.8 4.9 5.4 
CPU (ins) 2.3 3.1 3.2 

The tests were carried out between a Sun Sparcstation 
2 (client) and a Sun IPC (server), each running SunOS 4.1 
and ANSAware 4.1 over a lightly loaded ethernet network. 
Two sets of performance figures are given: 

(i) Round trip time (RT) figures for an RPC, including 
all of the processing necessary to maintain and marshal1 
the causality information. 

(ii) CPU time per RPC at the client. 

For the versions using timestamps, a range of sizes was 
tested, beginning from the minimum size (2). The baseline 
results (i.e. for the no timestamp version and the minimum 
timestamp size for the timestamp versions) are presented in 
table 1, showing the increase in round-trip and CPU time 
associated with simple use of the timestamp libraries. 

The remaining figures are captured in the following 
graphs, which plot round-trip time and CPU time against 
timestamp size (number of process entries) for both causal 
timestamps and causal ordering. 

The performance figures admit a number of interesting 
observations: 

(i) Overhead associated with maintaining timestamps is 
significant, but not an order of magnitude larger, for 
small timestamps. 

(ii) As timestamp size increases, both round-trip time 
and CPU usage grow in an approximately exponential 
manner, with an almost linear range for the region 
from approximately size 10 to size 100 for causal 
timestamps, and similarly for size 5 to size 50 for causal 
ordering. 

(iii) Client CPU time is approximately half the round- 
trip time for larger sized timestamps. Assuming the 
server uses a similar amount of time to process the 
timestamps, this indicates that much of the rouud- 
trip time is spent dealing with timestamps and that 
efficiency improvements in the libraries are likely to 
be advantageous. 

5. Discussion 

5.1. Efficiency 

Since implementation efficiency was not a major concem 
in the initial design and implementation of the libraries, 
there is scope for improvement in a number of areas. The 
performance figures indicate that attention to detail in the 
libraries could provide significant rewards. Some particular 
areas for investigation are: 
(i) there are effectively three representations of a 

timestamp used in the system--an internal (library) 
representation, a C representation for marshalling, 
and the ANSAware wire representation. If the 
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C representation generated by the libraries was 
protocol and platfonn independent, the timestamp 
could be transmitted in binary form thus removing 
the transformation to ANSAware wire format and 
resolving the problems associated with supporting 

(ii) the efficiency of the libraries could potentially be 
improved for large timestamps by using an indexed 
or sorted data structure to store timestamp vectors and 
outstanding messages sets. This would avoid the need 
for multiple, linear searches of data structures when 
merging timestamps. 

multiple protocols. .. 

5.2. Functionality 

The functionality of the causal timestamp library is 
complete, It could perhaps be improved by removing the 
need for the programmer to explicitly lock the clock vector. 
This would involve providing a larger set of operations, 
including an increment and merge operation, and having 
each operation return the current value of the clock vector. 
The flexibility of the library would be marginally reduced 
by these changes. 

A useful supporting library would be a set of functions 
for maintaining and traversing a directed acyclic graph 
that stores timestamps, with each edge representing a 
causal relationship between events. This would remove 
the need for an event repotting service to imptement similar 
structures, and provide a basis for graphical output of event 
ordering information. 

The functionality of the causal ordering library is 
minimal, although simple to work with. Failure handling 
is am obvious need, and some additional functions to 
access components of the stcucture might be useful for 
determining dependencies in an application. If desired, 
thii implementation of causal message ordering could 
be incorporated into Rpc stubs, which implement the 
RF'C calling mechanism, thereby making causal message 
ordering transparent in an RPC environment. This 
application of the work could be implemented and tested 
with the ANSAware environment, since the source code is 
available. 

5.3. Unresolved research issues 

A number of areas of possible further research have been 
identified in this paper and during the implementation. The 
major issues are outlined below: 

(i) The current implementations of the librilries are not 
scalable to larger systems or long-lived applications, 
since the timestamps can grow infinitely large, both in 
the number of process entries, and the size of the clock 
for each process entry. Some research into methods that 
reduce the size of timestamps is currently being carried 
out and will be reported in a subsequent publication. 

(ii) Failure handling mechanisms for causal message 
ordering based on timestamps, particularly algorithms 
for rollback of updates to timestamp buffers, have 
not been described in detail or implemented. An 
application-level approach is required, but the failure 
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Figure 6. Round Trip Time for RPCs with Timestamps 

Figure 7. Client CPU Usage for RPCs with Timestamps 

handling algorithms implemented for Isis [21 might 
Drovide some midance. 

level causal timestamps and causal message ordering. 
L 

(iii) The rules for interaction between paaicipating and 
non-participating processes (with respect to causal 

5.4. to other work 
. ~- 

timestamps or causal message ordering) should be 
formally proven and documented. 

(iv) The causal relationships resulting from interaction with 
the infrastructure of a distributed system should be 
examined in the light of experience with application- 

This work is different from most existing implementation- 
oriented work involving causality information, in that it 
focuses on providing causal dependency information rather 
than providing reliability and availability. This is useful for 
application programmers, particularly in event monitoring 
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applications. Comparison with work on causally ordered 
communication as in Isis [Z, 11 and Psync [lo] has already 
been addressed in section 3.2. In [71, an application- 
oriented use of causality is described, but it is also focused 
on the need for reliability and availability. 

Much of the existing theory and algorithms associated 
with causality and causal ordering have been used in the 
design of the causality libraries. In particular, the work of 
Fidge 141 and Schiper et ai [I 1 J has provided the basis for 
the design and implementation. 

6. Conclusions 

This work has built upon the existing theory of causality and 
causal ordering to provide a general, protocol-independent 
implementation of causal timestamps and causal ordering 
that can support application programs in existing distributed 
programming environments. To the knowledge of the 
author, there is no other similar work. 

In the design process, a number of previously 
unresolved practical problems have been addressed, 

the effect of threads within processes on the 
maintenance of causality information; 
rules for safe interaction with processes that do not 
provide causality information. 

The resulting implementation is functional, providing 
sufficient functionality to support an event reporting service 
in the ANSAware distributed programming environment. 
The implementation is, however, relatively immature, 
with considerable potential for optimization, porting to 
other distributed programming environments, and further 
research. 
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