
Distributed Systems Engineering

Cooperation without (reliable) communication:
Interfaces for mobile applications
To cite this article: A Dix 1995 Distrib. Syst. Engng. 2 171

 

View the article online for updates and enhancements.

You may also like
CaberNet (computing architectures for
basic European research): the ESPRIT
basic research-funded network of
excellence in distributed computing
systems architectures
N Cook

-

DIVE: a scaleable network architecture for
distributed virtual environments
Emmanuel Frécon and Mårten Stenius

-

Performance engineering of the Totem
group communication system
R K Budhia, L E Moser and P M Melliar-
Smith

-

This content was downloaded from IP address 13.59.61.119 on 06/05/2024 at 03:53

https://doi.org/10.1088/0967-1846/2/3/005
https://iopscience.iop.org/article/10.1088/0967-1846/1/3/005
https://iopscience.iop.org/article/10.1088/0967-1846/1/3/005
https://iopscience.iop.org/article/10.1088/0967-1846/1/3/005
https://iopscience.iop.org/article/10.1088/0967-1846/1/3/005
https://iopscience.iop.org/article/10.1088/0967-1846/1/3/005
https://iopscience.iop.org/article/10.1088/0967-1846/5/3/002
https://iopscience.iop.org/article/10.1088/0967-1846/5/3/002
https://iopscience.iop.org/article/10.1088/0967-1846/5/2/003
https://iopscience.iop.org/article/10.1088/0967-1846/5/2/003


Distrib. Syst. Engng 2 (1995) 171-181. Printed in the UK 

1 Cooperation without (reliable) 
I communication: interfaces for mobile 

applications 

Alan Dixj 

School of Computing and Mathematics, University of Huddersfield, Queensgate, 
Huddersfield, HD1 3 D H  UK 

Abstract. The design of effective collaborative applications on mobile platforms 
has many problems. Wireless networks are fast enough that one aspires to true 
interactive applications, but too slow for much real-time feedback. This is 
exacerbated by the variability due to interference and broken connections. Mobile 
computing using wireless communications fhus sits in a grey area between 
different styles of interaction. This paper examines these problems using concepts 
developed to understand general user interaction and computer-supported 
cooperative work. In particular, it will focus on the conflict between feedback for 
each user, awareness and feedthrough of the effect of each users actions to 
others, and the consistency of shared information during periods of disconnection. 

1. Introduction 

Both mobile communications and portable computers are 
now commonplace. The ubiquitous mobile phone has made 
it technically feasible, albeit not necessarily desirable, to 
be permanently available to your colleagues whatever your 
location. However, in contrast, the typical mobile computer 
stands in glorious isolation. Except for periodic direct or 
modem connections, the mobile worker is electronically 
alone. But this too is rapidly changing and the use of 
analogue or digital wireless telephones for data connectivity 
is becoming more reliable and less difficult. Sending 
and receiving faxes, file transfer and email are relatively 
painless. 

Away from the mobile arena, the movement in many 
desktop applications is towards greater connectivity for 
both data access and intra-personal communications. The 
personal computer moved through a similar stage of  
isolation where the emphasis was on individual access 
to individual data, and transfer between computers was 
explicit and often painful. This is now considered totally 
unacceptable and access to corporate and workgroup data is 
the norm. This is perhaps most obvious in the commercial 
enthusiasm over client-server computing (in the popular 
sense). In addition, the importance of intra-personal 
communication and cooperation has been emphasized 
within the CSCW (computer-supported cooperative work) 
research community and the efficient use of groupware is 
seen by many as crucial for commercial success. 

Users will understandably demand the same level of 
service from their mobile computers. However, one cannot 

t Email address: alan@zeus.hud.ac.uk 

simply assume that applications designed to run over local 
or even wide area networks will transfer to the wireless 
domain. Compared with fixed networks, wireless channels 
typically have lower capacity, are prone to noise, temporary 
loss of connection and explicit disconnection to save phone 
bills! The goal of many distributed systems platforms is 
to insulate the application and hence the end-user from 
the detailed behaviour of the underlying channels. But 
the nature of wireless channels means that the user will 
inevitably be aware of delays and other problems. A style 
of interface which is designed assuming LAN connectivity 
may still ‘work‘ in the sense that it does not crash or corrupt 
data, but may be utterly unusable. 

This paper will discuss some concepts from the study 
of single-user and cooperative interfaces which can be 
used to make sense of the esoteric behaviour of mobile 
interfaces. One of the key problems we will find is that 
mobile communications are in a ‘no man’s land’ between 
totally different styles of interaction. Designing effective 
interactive systems demands both careful user interface 
design and appropriate technical solutions. 

We will begin by looking at issues for the individual 
user. In particular we will look at feedback and the 
availability of information. We will see how using 
the concept of pace we can analyse the tasks the user 
is expected to perform and compare these with the 
feedback which is possible given the placement of data 
and functionality. This will also lead on to a discussion 
of the user’s role. in dynamically determining which data is 
replicated locally and which accessed centrally. 

The second part of the paper shifts the focus to 
the cooperative issues, awareness of one another and 
feedthrough of the effects of one another’s actions on shared 

0967-1846/95/030171+11519.50 6 1995 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd 171 



A Dix 

data. We will see that mobile applications fall into an odd 
middle ground between synchronous groupware (such as 
video-conferencing) and asynchronous groupware (such as 
email). Furthermore, the shift between these modes will 
often be because of the state of communications links rather 
than at the choice of the user. The awareness of the state 
of communications is thus also a significant issue. 

Finally, we will find that the requirements of the 
above two areas are to some extent in conflict. High 
availability in order to achieve sufficient feedback requires 
replication of data. However, periods of synchronous 
cooperative activity wiil increase the likelihood that several 
users will be accessing and updating the same information. 
Inconsistency during unplanned periods of disconnection 
becomes almost inevitable. The paper therefore finishes 
with a discussion of algorithms and user interface issues 
for the resynchronization of data. after disconnection. 

The first two parts can be thought of as ‘liveness’ 
issues-the availability of data when it is needed, feedback 
of ones own actions and the awareness of other users’ 
presence and actions. The end of the paper addresses 
‘correctness’ the consistency of data after concurrent 
activity. That i s  the user interface problems often mirror 
those which face the designer of other network services 
such as low-level protocols and distributed databases. For 
example. we will be discussing caching and replication of 
data. However, the solutions adopted within a computer 
system cannot be transferred without modification when 
humans are involved-it is reasonable to ask a computer 
agent to rollback to a previous state, hut not a user. 

2. The individual: pace and feedback 

First we consider issues for the individual using an 
application on a mobile platform. A key problem is where 
to place information and processing: locally on the portable 
computer itself, or centrally accessed over the wireless 
network. On the one hand we could simply replicate all data 
onto local machines, then use normal desktop applications 
on that data. Periodically some form of file-transfer could 
be used to download up-to-date information. On the other 
hand, we could use the mobile computer solely as a (very) 
remote interface, running a terminal emulator or possibly 
an X server with the application running on a central site. 
Although we shall see that there is room for individual 
application specific choices, there are also good guides from 
the tasks being performed which force some placement 
decisions. central to understanding these choices is the 
notion of pace. 

2.1. Pace and bandwidth 

If one is looking for single attribute to describe a 
communication channel or network, it is likely that the 
first candidate would be bandwidth. Indeed, the word is 
often not used solely in its information theoretic sense, 
but has entered everyday technical vocabulary. For 
example, in comparing video with audio communications, 
the advantages of video are often expressed in terms of 
greater bandwidth. It is certainly true that video requires 

172 

greater bandwidth to transmit and furthermore our human 
visual system has a greater information processing capacity 
than our aural system. However, the difference between 
media types is clearly qualitative not quantitative. Although 
useful as a measure, bandwidth is clearly insufficient. 

In previous work I have argued that for the user of a 
system it is rarely bandwidth which is critical to interaction, 
but instead pace: the rate at which the user can interact 
with others or with an application (Dix 1992). ,Wen users 
type, they don’t care how many megabytes pass across the 
network, all they notice is whether the response time is 
acceptable. Pace is important for both individual users 
interacting with data and also for users communicating 
with one another. Many of our innate abilities to act 
and communicate depend on the feedback we get from 
the environment and from others and it has recently been 
recognized that these interactions are intimately tied into 
our very thought processes (Suchman 1987). 

The pace of user interaction is driven by a range of 
factors. The network latency is obviously one such factor, 
but not the only one. If each user interaction involves a 
large amount of data to be tran then the bandwidth 
may dominate in determining e of the interaction, 
or if each interaction requires a large number of small 
network exchanges, then an inherently low latency network 
might still appear slow. At a higher level, delays may 
he caused by buffering and processing at various points, 
both at a remote site and locally, or if you are interacting 
with a remote user, then it may be the speed of the remote 
users actions which dominate. .,Finally, the nature of the 
interface may determine the effective pace. If users do not 
notice when they are required to respond or when they have 
received a response, then their interaction with one another 
will be slowed down. 

For wireless networks, the picture is further compli- 
cated by delays due to interference and packet loss and 
also the possibility of a completely lost connection with 
subsequent set-up time as the connection is re-established. 
These serve to reduce the pace of interaction, but in an un- 
predictable manner. One of the few well established facts 
about delays in user interfaces is that whereas slow response 
times are bad, variable ones are worse (Shneiderman 1982). 

Figure 1 positions mobile communication in band- 
widwpace space. The problems are obvious! Things could 
be worse. The planned Mars robot landing will experience 
20 minute communications delays and of course posting 
floppy disks has a turnaround of days. However, in these 
situations there is at least no attempt at interactive applica- 
tions! In the case of mobile communications, the variabil- 
ity of the medium means that one can achieve reasonable 
interactive response when all is working well, but interfer- 
ence and broken connections can push one into a situation 
where such interaction is impossible. Similar problems do 
arise with conventional applications, and many do not cope 
well with poor network perfonnance: applications freeze, 
misbehave and crash. For mobile applications these issues 
cannot be ignored. So, perhaps the lessons learnt from de- 
signing for mobile platforms will be of value across the 
spectrum. 



Cooperation without (reliable) communication 

version (but using a mckball or touch screen rather than a 
mouse) and in addition require the system to pass on details 
of route choices from the driver to the central office and 
details about changes in jobs from the office to the driver. 

Different pms of the application require different 
timescales: 

(a) Freehand drawing. This is a hand-eye coordination task 
and must have feedback within tens of milliseconds. 

(b) Adding a town to the itinerary and zooming. To feel 
that clicking a button (or a keypress) has been effectual, 
some feedback must occur within a couple of hundred 
milliseconds. 

(c) Calculating the itinerary. This is a major task and the 
user will expect a substantial wait. 

(d) Passing messages between office and driver. This sort 
of activity may only require a pace in the order of 
fractions of an hour. 

Notice that for (a) the very nature of the action requires 
a certain pace of interaction, whereas judgements like (c) 
and (d) rely on knowledge of the specific task and the 
users expectations. To this knowledge about the users’, 
physiology and expectations we also need to add knowledge 
about the domain: maps are stable and only need periodic 
update whereas accidents, floods and traffic jams change 
from.hour to hour. 

Typically the higher and lower pace tasks are easiest to 
deal with. The message passing (d) by its nature requires 
network transmission but is of sufficiently slow pace that 
only total wireless failure would hamper it. At the opposite 
extreme, the drawing task (a) must happen locally, even the 
best wireless connection would be unable to deal with this 
pace of activity. Note that this is not a negotiable position. 
Freehand drawing is impossible without a sufficient pace 
of feedback. If this proves impossible (say because some 
central information is necessary) then we must adopt a more 
radical redesign, changing the way the task is performed. 

Pace 

Figure 1. Bandwidth versus pace. 

2.2. Pace of tasks 

In a speed dominated world, it is easy to think that faster is 
always better. However, what matters is not so much the 
absolute speed of interaction, but whether it is well matched 
to the tasks that users perform. If two users are writing a 
book together and have decided to ‘own’ different chapters, 
then a pace of interaction measured in days, mediated 
by email and file transfers will be sufficient (and more 
frequent interaction may be counter-productive). However, 
if drawing a line in a CAD package involved a (perhaps 
wireless) network access to a central database, then even a 
fraction of a second is too long a delay. Knowing this one 
can do one of two things: 

(i) Match pace to task-analyse the tasks that users are 
performing either together or individually. If the 
pace of a task is greater than that possible over the 
communications infrastructure, then we know that task 
must be performed by one individual using locally 
available data. This typically involves keeping local 
copies of shared or fixed information. 

(ii) Match task to pace-restructure the task so that high 
pace interaction is unnecessary. For example, choosing 
to edit a paper in a round robin fashion means that no 
two authors require simultaneous high pace interaction 
with the paper or with one another. 

We can think of (i) as being the technical fix and (ii) 
as the social fix. 

2.3. An example 

Consider a route finding application to be used by truck 
drivers (whilst parked!). The desktop version uses current 
information about traffic conditions in combination with 
fixed geographic information to determine optimal routes. 
The users see an electronic map of the country and can 
navigate using ‘zoom in’ and ‘zoom out’ buttons. The 
maps can be annotated by the users by freehand drawing 
with the mouse. Ifa town or city is clicked, it is added to an 
itinerary and when the itinerary is complete the user clicks 
the ‘find route’ button and the system works out alternative 
routes which call at the selected towns ordered by travel 
time. We would want roughly similar features in the in-cab 

2.4. The middle ground 

The most problematic areas are those which fit within 
the broad range of pace which may occur with mobile 
communications, from seconds to minutes. Tasks (b) and 
(c) fit into this category. If we take a pessimistic outlook, 
we could plan for disconnection to be the norm. In this 
case we would be forced to conclude that all the data. for 
tasks (b) and (e) would have to be held locally or, if this 
is impossible, that the tasks have to be radically redesigned 
to be less interactive, perhaps forcing the driver to do daily 
route planning. However, this would squander the very 
advantages that mobile communications should give us. On 
the other hand, if we take an optimistic view and consider 
the pace of communications to be sufficient to allow central 
processing of both (b) and (c), what will happen when there 
is a temporary disconnection or interference? 

Consider task (b), each time the user clicked a map 
location the coordinates would be passed back to the server 
which would identify the town name, add it to its copy of 
the itinerary and tell the in-cab machine the name of the 
town it added. In normal conditions the feedback from the 

173 



A Dix 

server would be within the fraction of a second required, 
but if there were any interference the delay would stretch 
to seconds or longer. Given a lack of immediate feedback 
the reflex action of most users is to click again,  leading 
potentially to a double entry in the itinerary. 

This sort of problem will be familiar to anyone who has 
constructed distributed systems even over fixed networks. 
However, note that recognizing such trouble spots is not 
based on a professional eye, or extensive user testing, but 
on a systematic comparison of the pace of tasks with that 
which can be expected by the network infrastructure. The 
systematic nature is crucial if one is to have any confidence 
that all significant problems have been considered. This is 
important in any interface and essential if the domain is at 
all safety critical. 

Having identified such problem areas one can adopt a 
range of generic solution strategies: 

(i) Change the location of functionality. The technical 
solution, play with where we put information at a finer 
level. For example, we could have information about 
town locations in the in-cab computer and use this 
to build up the itinerary. This would allow @) to 
always be performed locally. However, road conditions 
change and instead of continually downloading this 
information, we could still allow the route calculation 
to be performed centrally. As this operation normally 
involves a substantial delay, the extra time to upload 
the itinerary would be acceptable and the user could be 
warned of any additional delays without breaking the 
flow of the task. 

(ii) Change the semantics. Whenever there is a possibility 
that a user will think an input has been missed, it is 
likely that operation will be repeated. Where possible 
the designer should seek to make such operations 
idempotent, that is the second one is ignored. Although 
this is not always possible, it is a good rule of thumb. 

(iii) Change the feedback. Note that the original pace 
requirement at (b) was for some feedback. The rise of 
direct manipulation interfaces has encouraged interfaces 
to be built which rely on the feedback of the effect of 
actions-in this case the name appearing in the list. 
However, low pace responses, whatever their reason, 
should be regarded as a form of mediated interaction. 
The user requesting the action and the result of that 
action are separate events. There should therefore be 
feedback at three levels: 

Feedback that the input has been noticed, e.g., 
highlight the button, or audible click. 
Feedback that the action is happening, e.g., a line 
of dots is added to the itinerary. . Feedback when the action has happened, e.g., the 
dots change to the town name. 

The first of these may often be a default effect of 
the interface toolkit for on-screen buttons. but may 
be confused with cancelling the button (see (Dix and 
Brewster 1994)). The second is often supplied in 
the form of an hour-glass, or other progress indicator 
when the programmer thinks that something major (like 
reading a file) is happening. However, in an application 

.. 
174 

over wireless networks virtually .any action can be 
major. The last is the normal effect of the operation. 

We may decide that it is 
too memory intensive to store every map locally, 
instead only a subset would be cached. If the names 
of the operations ‘zoom-inlmom-out’ were replaced 
by ‘fetch area maplsee national map’, then the user 
would be encouraged to expect a longer wait. One 
could even have a virtual glove compartment where 
a selection of maps were stored into which additional 
maps could be loaded. Note this is both deliberately 
stepping away from a direct manipulation interface 
and also deliberately destroying the illusion of network 
transparency espoused by most distributed platforms. 
This is because over any form of slow or unreliable, 
network distribution is never transparent. Only by 
admitting this can we choose interface metaphors which 
give the users a faithful virtual world in which to work. 

The choice of solution depends on a range of technical 
and interface design tradeoffs, and the chosen solution may 
involve a mixture of the solutions. 

2.5. Local storage and caching 

Most solutions to increase the availability of data involve 
some form of replication or caching. This may be 
done by hand or automatically. The former is probably 
most common in everyday portable computing. Files are 
downloaded onto the portable when it is connected to its 
host machine either directly or via a modem. The user 
has the sole responsibility to choose what is downloaded 
and to update the central site when local changes have 
been made. One of the reasons for the popularity of Lotus 
Notes is that, within its own database, it handles issues of 
replication almost transparently. In contrast, Coda attacks 
the replication of the normal file system, using a mixture 
of user preferences and whole file caching (Satyanarayanan 
et al 1990; Kistler and Satyanarayanan 1992). 

If all the required data were stable and there were 
unlimited local storage, then one could simply keep 
everything that could ever be wanted on the portable 
computer. However, there is always more central data 
than you can hold locally and even the data you hold 
may be changing. There are two principal causes of data 
volatility: changes in the environment (as in the case of 
traffic conditions) and changes due to the actions of other 
people. We will return to the latter of these in the next 
section. 

When dealing with disk or CPU caching the algorithms 
used must be automatic. simple and fast. It is no good 
having an optimal disk caching algorithm which takes more 
time than it does to access the disk anyway! However, the 
costs of failure are not excessive. A certain percentage of 
cache misses is to be expected and merely has the result of 
reducing the overall performance of the system. It is to be 
expected that some of the lessons from low-level caching 
will be of benefit at a higher level. Indeed, Coda uses 
a simple on demand strategy for down loading files and 
least recently used discard policy. However, the balance of 
costs for caching on a portable computer is different from 

(iv) Change the metaphor. 



Cooperation without (reliable) communication 

3. Cooperation: awareness and feedthrough 

The focus so far has been principally on issues of single user 
interaction. For a mobile worker, it must always be possible 
to work individually in case communication links are lost- 
hence the need for local caching and replication. However, 
the existence of relatively good wireless communication 
makes more closely synchronized work possible. In this 
section we’ll look at some of the issues arising from this. 

The time-space matrix has been very influential in 
categorizing groupware (Rodden 1991). Systems are 
classified using two axes. The space axis looks at whether 
the users are operating at the same place (local) or a 
different place (remote). For mobile workers we are 
principally concerned with remote cooperation (although 
of course we should not ignore the cooperative needs of 
several mobile workers at the same site). The second 
axis, time, is more interesting distinguishing those systems 
where the users work at the same time as one another 
(synchronous) from those where the users work at different 
times (asynchronous). Remote synchronous systems are 
typically based on high speed networks and include both 
communications tools, such as video conferencing. and 
various forms of shared editors and drawing tools. Remote 
asynchronous systems are commonly based on message 
passing over lower speed networks, the archetypal example 
being email. In fact, the characterization in terms of 
working at the ‘same’ time or at ‘different’ times is rather 
misleading. Two people may be using emaiI at the same 
 time,^ and indeed send each other messages. A better way 
of looking at this distinction is in terms of the pace of 
interaction between the participants. That is the timescale 
over which they synchronize their activities. In typical 
‘synchronous’ systems this in the order of seconds or less. 
In asynchronous groupware the pace is often in the order 
of hours or days. 

Again mobile wireless communication sits in a strange 
middle ground with respect to this distinction. When a 
connection is established we should be able to support 
synchronous groupware applications, but, we must also 
consider the possibility of deliberate or unintentional 
disconnection, in which case the users are forced into 
working asynchronously. To make things more confusing, 
even the ‘asynchronous’ periods are likely to involve 
contact at a greater pace than is normal in other 
forms of groupware. Where groupware systems support 
both synchronous and asynchronous interaction it is 
typically at the explicit request of the users whereas 
with mobile communications the change may well happen 
spontaneously when connections are lost. 

To unpack some of these issues as they relate to mobile 
wireless communication we will use parts of a simple 
framework for CSCW which has been used to taxonomize 
and analyse existing groupware (Dix 1994, Dix et a1 1993) 
and also as a design framework for novel groupware 
applications (Miles er a1 1993). 

those at a lower level. Imagine a field engineer is accessing 
layout diagrams for a faulty electricity sub-station, half way 
through the repair the communications go down, and the 
relevant part of the plans are not on the local machine. 
A ‘cache miss’ may cause several minutes delay. perhaps 
longer if the lost connection is due to bad weather. In the 
meantime, which was the 10000 V cable? 

Because the costs of failure are higher and the time 
scales are longer, caching algorithms for portable computers 
can afford to be more complex than their low-level 
counterparts. In particular. they may involve the user. For 
example, the Coda file system allows the user to set up a 
preferences file listing directories and files which should be 
permanently cached. Similarly, Lotus Notes gives the user 
some control over replication policy. This user involvement 
is crucial. Even at a IOW level it is normal for different CPU 
caching policies to be used for data, instructions and stack 
frames. You have to understand the application domain in 
order to design effective caching strategies. Some of this 
understanding may be supplied by the application designer, 
but often it is only the user who knows what will be 
required. For example, our truck driver would typically 
keep large scale paper maps of frequently visited towns. If 
the electronic system could not store maps for the whole 
country, it could download relevant ones each day based 
on the expected itinerary. If changes are made during the 
day, at least only the extra maps need to be downloaded 
over wireless, both reducing typical delays and costs. 

Unfortunately, in modern applications it is getting 
harder to work out what will be needed for any activity. 
It is no longer the case that one can identify a single file as 
being relevant. It will often reference other files, databases 
or spreadsheets using live links, hypertext anchors, or other 
forms of cross-reference. It may be possible to find such 
links by examining the files, for instance by searching 
for ‘#include’s in C programs or anchors in HTML, but 
unfortunately many links are hidden within proprietary 
formats. The moves by operating system vendors to make 
these linkages explicit, as in the Apple Edition Manager 
(Apple Computer Inc. 1993), can only be good. 

The lesson is that neither the system nor the user have 
sufficient knowledge to choose what should be locally 
cached and what should be loaded, on demand. Instead 
this must be a cooperative activity involving both parties. 
However, this imposes a difficult interface design task. 
There are no easy answers. but often there is information 
in the system which can help in the process. This will 
often be domain specific, for example, the lorry driver’s 
rough itinerary will be known in advance. It is also 
often the case that similar access patterns are repeated 
so the system can predict additional useful information 
to download. Finally, an appropriate choice of interface 
metaphor can make the process far more natural for the 
user. For example, the in-cab system could explicitly show 
downloaded maps as small icons in the interface-a sort of 

3.1. The CSCW framework virtual glove compartment! Rather than a hidden activity 
behind the scene, the need for caching can thus be projected . .  
into the user interface in a way which makes use of the The word 
user’s day-to-day experience of the world. cooperation presupposes that there are one or more 

1 75 

Consider any cooperative working situation. 



A Dix 

dire4 

conwl and 
feedback 

(AJ &&d 
(e.g., shared map) 

Figure 2. CSCW framework. 

participants involved. These are denoted by the circles 
labelled ‘P’ in figure 2. It is also normally the case that 
participants will communicate with one another, which is 
represented by the arrow between the circles. The execution 
of the ‘work‘ will involve one or more of the participants 
interacting with objects and things in the electronic or real 
world. These things, which may be in different places 
and controlled by different people we call collectively the 
‘artefacts of work‘ and are denoted by the single circle ‘A’. 

If the participants are cooperating, then we may 
expect that their direct communication is about and 
makes reference to the artefacts on which they are 
working. In face-to-face working, these references between 
conversation and action are very rich, involving physical 
actions such as pointing, explicit spoken references (e.g., 
‘grab the left handle’) and implicit dependence on the 
environment and context (which way you are looking when 
you say ‘left’). Furthermore, these forms may be mixed 
(e.g., ‘turn left when you get here cpoints at map>’). 
These various forms of pointing and description are called 
deictic reference or deixis and are indicated by the broken 
arrow in figure 2. 

3.2. Linking communication and action 

It is often the relationship between communication and 
action which is lost in remote communication, even over 
fast networks. Often explicit means are introduced to 
help, for example, distributed shared editors often include 
a ‘group pointer’, an arrow or hand icon, which can be 
picked up by one participant and is then shown on all 
screens. This enables the participants to point at things in 
the shared objects. If there is any appreciable lag between 
the movement of the group pointer and its appearance 
on other participants’ screens then there is the danger of 
a breakdown in communication (e.g., when the pointing 
participant says ‘here’, the others see the pointer at the 
wrong position). These problems are particularly bad in 
mobile working if the voice channel (supporting direct 
communication) is separate from the data channel. If a 
group pointer were supplied then the data connection could 
be lost, but this not be apparent as the pointing participant’s 
voice continues. 

In asynchronous applications the need for reference 
between data and communication is often ignored, but is 
supported in some systems. The most common form of 
support is in the form of annotations. These are found 
in research co-authoring systems, such as Quilt (Leland 

176 

er a1 1988) and Prep (Neuwirth et al 1992), and also 
in commercial word processors such as Microsoft Word. 
Also, many email systems support file attachments, which 
are a way of referring to work, albeit at a course level. 
To contrast these, annotations can be seen as supporting 
the link by embedding the communication within the 
data, whereas attachments embed the data within the , 

communication (remember that an attachment is usually a 
copy rather than a reference to a file). The relationship can 
be somewhat more symmetrical where the system is based, 
as in the case of Quilt, on a hypertext structure. As noted 
previously, these systems are all built assuming a pace of 
interaction of hours or days. Thus these mechanisms are 
suitable for adoption during long periods of disconnection. 
However, to expect participants to switch from simply 
chatting about things to writing explicit annotations during 
periods of temporary disconnection is unacceptable. In 
such cases the best we can do may be to simply make the 
participants aware that there is a communication problem. 

3.3. Awareness 

The temptation as a computer scientist is to address 
problems by thinking of clever algorithms to solve them. 
In distributed systems this often takes the form of different 
types of transparency-using clever algorithms to hide 
the fact that things are distributed from the application 
programmer and the user. However, a lesson that has 
been repeatedly learnt in the field of CSCW is that people 
are very adaptable and, given suitable information about 
what is going on, they are often able to solve problems for 
themselves! In particular, transparency is often precisely 
the wrong approach, hiding exactly the information that 
users need for effective cooperation. 

The word awareness has some important connotations. 
Firstly, it suggests a low effort, often sub-conscious 
reception of appropriate information, as opposed to the 
information being available if one is prepared to look for it. 
Having information on-screen, for example in a status line, 
may not be sufficient, even if the user knows it is there. 
Secondly, awareness should not interfere with the users’ 
primary tasks. So, for example, putting up a dialogue box 
after each keystroke is not a good way to give awareness of 
memory usage! Mechanisms for increasing awareness must 
therefore be subtle and implicit-a difficult design goal. 

Various forms of awareness are important in coopera- 
tive working. In figure 3, imagine that you are the partic- 
ipant on the right and your colleague the one on the left. 
You are manipulating a shared artefact. The shaded arrows 
represent the different kinds of awareness: 

(a) that you’re there 
(b) what you did 
(c) how you did it 

In faceto-face collaboration the first of these is 
obv,ious. In most phone conversations it is also no 
great’problem as we implicitly give little ‘uhms’ and ‘ah- 
has’ (called back-channels) when we are listening, and of 
course, can be heard when we are talking. This gets a 
little more difficult with half-duplex channels, but people 



Cooperation without (reliable) communication 

Unfortunately, reducing the pace of feedthrough by 
chunking will reduce this form of awareness. For example, 
if we deliberately chunk several keystrokes together before 
transmitting them, then the other users will see the typing 
appear in bursts, rather than a continuous stream. Delays 
due to packet loss or temporary intemptions to service will 
only make this worse. To some extent this is an inevitable 
loss due to limited communications channels, however, the 
effects can be alleviated by use of animation techniques. 
For example, when a packet containing several characters 
arrives, they can be displayed one by one rather than in a 
single burst. Note that such animation is only mimicking 
the original users actions, but offers some feeling that it is 
someone else working with you. 

All of these forms of awareness fail or are misleading 
when communications fail or suffer unusual delays due to 
disconnection or protracted interference. Thus a fourth 
form of awareness is needed-awareness of the state of 
the communication channels. Remembering the general 
principles for awareness information, it is not sufficient to 
have a status line or logging window, nor is acceptable to 
put up a dialogue box every time a communication problem 
occurs. Although it is easy to reject bad alternatives, 
it is considerably harder to find good ones. The best 
solutions will add information to points of shared focus. 
For example, in a shared text editor where other users’ 
cursors are shown then any temporarily disconnected users 
can have their cursors greyed out. 

4. Consistency and resynchronization 

The need for feedback and high availability required 
local copies of shared data. However, in a cooperative 
application, the need to have a shared focus for work 
and communication will mean that several users will need 
copies. That is, shared data is replicated on several users’ 
workstations leading to the possibility of inconsistent data. 

Figure 3. Forms of awareness. 

have developed ways of coping. However, in a mobile 
application, the participants may be focused on using the 
application itself, and may be largely silent. It is then not 
at all obvious whether a period of silence is due to the other 
person being quiet or due to a break in communications. 

The second form of awareness, (b), concerns the fact 
that the effect of your actions on a shared object may be 
visible to other people. This does two main things. Firstly, 
it tells the other users that you are busy (if they are aware of 
who is doing the manipulation)-that is, it helps awareness 
of type (a). Secondly, the other users become aware of the 
changed information. Note that both of these can be seen 
as a form of communication between the pmicipan+ 
communication through the artefact. In many cases this 
communication is more important for effective cooperation 
than direct communication. However, to be effective, the 
pace of such communication must match the cooperative 
task. In the beginning of this paper we were mainly 
concerned with the pace of feedback for the participant, but 
it is also important that we maintain effective feedthrough 
to the other participants. Traditional distributed databases 
and file systems prevent simultaneous access to the same 
object, or at best allow a static snapshot of the changing 
data. These remove the need to maintain feedthrough (and 
hence the associated cost), but in doing so prevent any 
communication through the artefact and hence much close 
cooperation on a Task. 

It is usually the case that feedthrough can operate at 
a slightly slower pace than feedback. This is because you 
know that you have pressed a key and so expect a response. 
Your colleagues need no such immediate feedback. We 
can take advantage of this over low-pace orlow-bandwidth 
channels by, for example, sending groups of keystrokes 
every few seconds. However, this requires some care as 
it is precisely when feedback and feedthrough become too 
out of step that problems of deictic reference occur. 

The last kind of awareness, (c), concerns the way in 
which a change occurred. For example, if you draw a 
line and then the line simply appears on everyone else’s 
screen, they won’t know which end was the beginning of 
the stroke. Arguably, if this were important enough, you 
would have made it explicit using an arrow rather than a 
line. However, it is the nature of the informal collaborative 
use of such media that we implicitly make such distinctions 
and it is the ephemeral, rather than the persistent meaning 
of many marks which is most important. This is evident 
from the appearance of most white boards at the end of a 
meeting! 

4.1. Why mobile applications are difficult 

The traditional approach to this has been to use pessimistic 
algorithms which prevent simultaneous conflicting updates 
even in the face of complex network partition failures 
(Davidson 1989). However, the cost of such preventative 
mea.sures is a reduced availability of data for updates. To 
counter this a range of optimistic algorithms have been 
proposed and implemented. The general approach of such 
algorithms is to allow possibly inconsistent updates and 
then to detect and possibly correct and inconsistencies at a 
later stage. 

It is clear that mobile computers cannot hold long 
term locks or similar mechanisms necessary for pessimistic 
algorithms without seriously jeopardizing availability. 
Even where wireless networks can be employed full-time 
there will b- periods of unplanned disconnection. However, 
there are also problems with optimistic algorithms. 

The normal assumption underlying optimistic algo- 
~ rithms is that conflicts and hence repair will be infrequent. 

For example, the designers of Coda ran extensive tests and 
estimated that when a UNIX file was updated there was 

177 



A Dix 

only a 0.5% chance that it would be updated by a differ- 
ent user within a day. That is only 1 in 200 file updates 
would be likely to require conflict resolution after a day’s 
disconnected operation. At first sight this looks hopeful 
where wireless networks are being used, typical periods 
of disconnection are likely to be in the order of minutes 
rather than days. Unfortunately the relatively high avail- 
ability and pace of the medium is likely to cause trouble 
for cooperative applications. Because an acceptable band- 
width and pace are available we are in a position to support 
synchronous applications. For example, in the in-cab route 
system we may allow several remote users to draw on the 
same map, simultaneously seeing each other’s annotations. 
However, now when a disconnection occurs the users are 
likely to be simultaneously updating the same map. That 
is the availability of synchronous activity means that con- 
flicts are more likely during the periods of (enforced) asyn- 
chronous activity. Furthermore, if the system is attempting 
to handle temporary intemptions to service, the users may 
not even be aware of the potential problem. 

As with other issues in this area, solutions depend on 
a mixture of technical fixes, user involvement and domain- 
specific methods. Any solution requires at least two stages: 
conflict detection and conflict repair. The repair may either 
involve some completely automatic merging or an element 
of user involvement. Furthermore, the repair process may 
well proceed over a limited bandwidth network and so 
must attempt to minimize unnecessary transmission. A 
determining factor for all this is the type of data and the 
manner in which it is updated, so we begin with a discussion 
of this, before moving on to the other issues. 

4.2. Types of data and update 

E we want to access existing centralized data or modify an 
existing interface, then we may have little control over the 
types of data and updates that are allowed. However, it is 
often the case that we can influence these choices for some 
or all of a system if we do so early enough in the design 
process. These choices make a fundamental difference to 
the difficulty of handling multiple updates and the methods 
used when conflicts occur. 

We can consider three classes ofdata: 

Independent facets or objects. The data comprises a 
collection of objects each of which can be updated 
without affecting the others. The smaller such objects 
are, the less likely it is that any individual item will 
be updated by more than one person. Thus conflict is 
often avoided. However, this only works if there are 
no integrity constraints between the objects. 
Linear, growable objects. The primary example being 
text, where insertions, moves etc. may change the 
absolute and relative positions of text ranges. 
Other structured objects. For example, trees, graphs, 
file directories, hypertext etc. 

To these data objects we can perform several types of 

Monotonic-where items are only added and the order 
of addition is (more or less) immaterial. In these 

update: 

178 

cases merging updates is little more than a process 
of concatenation. Examples include annotations in co- 
authoring environments such as Quilt, bulletin boards 
and some forms of hypertext. Even some kinds of 
databases, such as bibliographies, are largely addition 
based with few amendments or deletions. 
Single owner or single stream of update-we may 
ensure that each object can only be updated at one site 
by enforcing ownership or otherwise. This is a form of 
pessimistic concurrency. 
Reflection of the world-the information reflects the 
current state of some aspect of the real world. In this 
case, we may often simply assume that the most up-to- 
date information is correct. 
Application specific updates-often the semantics of 
specific objects offers opportunities for easy and safe 
simultaneous update. For example, incrementing or 
decrementing a counter (a form of monotonic update) 
(Schwarz and Spector 1984). Of course, these are often 
guarded by integrity constraints which reduce the range 
of use. 
True distributed update-when none of the above hold! 
A special case of this is: 
Major structural change-In most areas of computing 
structural changes are more complex than simple 
updates to data. Many databases find changes in 
their schema difficult even when operating on a single 
machine-what hope for mobile workers! Even when 
data objects are ‘independent they may be named 
or organized using a complex structure (such as a 
hierarchical file system). Also, part of the complexity 
of ‘simple’ linear text is that every update may change 
the location (the name) of subsequent text. 

Opting for simpler forms of data and update one can . -  
make the job of designing distributed applications easier 
and ofren achieve better results for the user. This idea 
was developed in multiple source control, a proposed 
mechanism for handling data-resynchronization problems 
p i x  and’ Miles 1992). A branching version tree is stored 
at each site (similar to those in conventional version control 
systems like RCS (Tichy 198s)). Changes to version 
trees are by addition only, hence updates to linear text (a 
difficult case) have been converted to monotonic version- 
tree updates. 

4.3. Detecting conflicts 

Detecting updates conflicts requires three things: identify- 
ing the ‘same’ objects at the different sites, detecting any 
differences, and if they are different working out which 
has changed. The identification problem is itself not triv- 
ial. File-based systems often rely on file-name matching, 
but need to cope with differently structured name spaces 
and file name conventions. Custom applications can use 
some sort of unique identifier, often a combination of a site 
id and a per-site sequence number. Difficulties may arise 
even here if the ‘same’ entry is simultaneously created at 
two different sites (consider the merging of road accident 
reports), leading to alias records and further complexity! 



Cooperation without (reliable) communication 

updates by keeping explicit track of who knows what. 
Coda automatically manages the case when only one update 
has occurred, keeping the most up to date, and flags 
true conflicts for the user to deal with manually. Lotus 
Notes is somewhat more sophisticated. It handles all the 
simple cases, but options can be set to allow either manual 
or automatic action on conflicts, although the automatic 
options merely involve adding the alternative versions of a 
note as ‘responses’ to the note. 

It is not obvious whether finer granularity is desirable 
in an automatic merge. For example, would it make 
sense to put together fields from different’ versions of a 
database record? However, in specific applications totally 
automatic merging may be possible. For example, in the 
Grove distributed editor any single character insert or delete 
operations can be performed concurrently (Ellis and Gibbs 
1989). The updates from each site are broadcast to all 
others and are transformed into actions which have an 
equivalent effect at the recipient site. The Grove algorithms 
were proposed to cope with the short lived concurrency for 
replicated text over any network, but not aimed at long 
periods of disconnection. However, dynamic pointers, a 
similar technique, have been applied to the analysis of long 
term concurrent activity (Dix 1995). 

Again note that it is possible to deliberately design data 
structures to facilitate merging at any pace. For example, 
annotations to a map could all be performed in XOR 
mode. This would mean that the order of updates, whether 
creating, changing or deleting shapes, would not matter. 

4.5. User involvement 

There will always be cases where automatic merging is 
either not desirable or impossible (for example if two people 
set the same attribute to different values). In these cases 
the users have to manually restore consistency. Systems 
vary in the extent to which they support this. Many 
simply give up when true conflicts are found. For example, 
Coda hands control back to the user when a write-write 
conflict is discovered, Similarly, in the software engineering 
domain, the version management system described in 
Harrison et al (1990) allows optimistic concurrency in 
certain circumstances, but restricts resynchronization to 
‘safe merges’, that is when there is no true conflict. The 
support in Lotus Notes at least associates the variants with 
the note itself, but offers no help in merging the versions. 

There are, of course, various file difference tools which 
can be used to facilitate manual merging. These range 
from the UNJX ‘diff program to flexible diff. a visual 
tool which makes it easy to differentiate major and minor 
changes (Neuwirth et al 1992). Unfortunately, simple 
differencing between two versions of the same file gives 
the users exactly the same problems as the system has in 
determining which files are in true conflict. If a paragraph 
is different does that mean that it has been updated in both 
documents or only one. If the latter, then which is the newer 
version of the paragraph? A two file difference cannot 
determine this for the user. The updated versions must also 
be compared with the most recent common ancestor (hat is, 
the copy of the file just before the two sites diverged). This 

179 

Having located the two copies of the same object at 
the different sites, one needs to detect whether they are 
different. This may be based on an actual comparison of 
contents (accelerated using checksums), but is more often 
accompiished with timestamps. Even assuming that the 
clocks are synchronized, two problems arise: 

If one copy is newer than another has only the newer 
copy been updated, or both copies? 
If only one copy exists does it mean it is a new object, 
or is it an object which has been deleted at one site? 
In systems which enforce strictly sequential updates, the 

first is no problem-the newer copy is always the correct 
one. However, in general systems must keep track of the 
state of the system when it was last synchronized. For 
the first problem a timestamp of the last synchronization 
is sufficient. If both copies are dated after the last 
synchronization then there is a conflicting update. Deletes 
take more care and may involve permanent records being 
kept. To illustrate this let’s look at Liveware. 

Liveware is an unusual database designed for 
maintaining information shared by loosely structured 
groups of people (witten et nl 1991). It has been used 
to maintain contact information among the Scottish HCI 
community. Each person has a copy of the database and 
when meeting other people you take a copy of the database 
with yon on floppy disk. When inserted the copy on 
floppy merges with the hard-disk copy on your colleague’s 
machine. When you return to (one of)  your own machine(s) 
you perform a similar process and so information spreads 
from person to person. In early work this was likened to 
a form of benign virus. Each person is responsible for 
their own contact details and so each record has a single 
owner and hence a single stream of update. This means 
that records can be merged on a simple most-up-to-date 
principle. If a record exists on one database and not on 
another the record is simply copied. However, this runs 
the risk that a deleted record could spring back into life 
if an older copy of the database (with the record still in 
existence) were merged. To avoid this special ‘deleted’ 
records have to be maintained. Because there is no limit 
on the number of copies of the database, the deleted records 
have to be kept around indefinitely causing a ‘space leak‘. 

4.4. Automatic merging 

If disconnection is reasonably frequent then it is obviously 
good if systems can automate the merging of updates 
wherever possible. 

Some file transfer programs, such as Laplink have 
options for automatically merging file systems. The 
mechanisms have been designed for someone wanting to 
merge a portable computer’s file system with that of a 
desktop machine. However, the implicit assumption is that 
both are private files and will not have been updated by 
anyone else, the single stream of update again, and so, 
like Liveware, they use the most-up-to-date policy. They 
therefore deal badly with deleted files and are certainly not 
optimal for multi-user applications. 

Systems designed with multi-user update in mind, such 
as Coda and Lotus Notes, correctly identify conflicting 



A Dix 

insert 

Suddenly a lasro fell 
pinking her a r m  

Ngure 4. Two updates based on a common original. 

third file could either be displayed to the user or simply concurrency (such as the Grove algorithms) may be 
used by the system to determine which parts have been able to be modified to handle batches of operations. 
updated. Figure 4 illustrates the problem: without the Minimize granularity. Where possible application 
original it would be impossible to tell whether ‘trapping specific algorithms should identify which portions have 
her’ or ‘pinioning her arms’ is the updated text. been altered during periods of disconnection, to avoid 

Manual merging is acceptable after long periods of sending large units between sites. _ -  . .  
disconnection, especially if it is deliberate. However, it is 
likely to be annoying after short periods of disconnection 
due to interference or temporarily broken connections. So, 
if the pace of interaction is such that involving the user is 
felt to be inappropriate, it may be better to accept a certain 
level of inconsistency between different users interfaces. 
For example, we may allow non-XOR operations for map 
annotation and not wony if the occasional pixel is different. 
Algorithms which allow a level of  inconsistency may 
be considerably simpler, less computation and network 
intensive than their correct equivalents. In a sense this 
still migrates work to the users who have to be aware of 
and compensate for the differences in their interfaces. 

4.6. Reducing the impact on the users and on network 
traffic 

The Coda developers say that ‘typical disconnected sessions 
. . . lasting a few hours required about a minute for re- 
integration’. Since disconnection is planned there are no 
comparable figures for very short periods of disconnection. 
For the same reason, the re-integration phase is not 
concurrent with normal operations. Whereas this sort of 
interruption is acceptable for deliberate disconnection it 
would not be for temporary unplanned broken connections. 
In addition, measurements show that the re-integration 
phase may involve the transfer of several megabytes of data, 
acceptable for direct connection to a local area network, 
but not over typical wireless links. One reason for this 
high volume is that the granularity of Coda is whole files. 
This is compounded by the fact that many UNM operations 
create and update many large files for the user. In contrast, 
in an application like Lotus Notes, the basic unit (the note) 
is on average smaller and there is less automatic generation 
and update of notes. The lessons are clear: 

User input not system output. People can only 
generate so much data in a given time and hence 
resynchronization mechanisms which operate closer 
to the user’s input are likely to have lower 
bandwidth demands than those which operate on  the 
outputs or effects of user actions. Given some 
level of concurrency is inevitable in non-centralized 
architectures, the algorithms to deal with high pace 

180 

The sort of incremental algorithms suggested by 
the above usually require that the sites need extensive 
knowledge about each other. Not only must the sites know 
when they were last synchronized, but also know something 
about their mutual state at that point. 

5. Summary 

We have seen how a systematic analysis of the pace 
of different user tasks can indicate where data needs to 
be cached or replicated at a local machine and where 
remote operations are possible. Also we have seen 
how collaborative work requires awareness of other users’ 
presence, feedthrough of the effects of their actions 
on shared data, and awareness of the current state of 
communications. 

However, these conflicting demands of high interactiv- 
ity and collaborative working mean that we both require 
replicated data and expect that data to be being accessed 
simultaneously by different users. When disconnection oc- 
curs the potential for inconsistency is high. Existing mech- 
anisms assume infrequent, planned and relatively long p e  
riods of disconnection, and require extensive modification 
to cope gracefully with occasional unplanned broken con- 
nections. 

Although some solutions and design advice has been 
given, these are by no means solved problems. Each 
situation requires a different balance between the various 
conflicting factors. Also there is at present no satisfactory 
generic implementation framework. Although general 
advice can be used, each application must be individually 
crafted for a portable platform. 

References 

Apple Computer Inc. 1993 Inside Macintosh: Inrerapplication 
Communication (Reading, M A  Addison-Wesley) 

Davidson S B 1989 Replicated data and partition failures 
Disrributed Systems ed S Mullender (New York ACM 
Press, Addison-Wesley) pp 265-92 

People ond Computers VI1 (Cambridge: Cambridge 
University Press) 

Dix A J 1992 Pace and interaction Proceedings of HC1‘92: 



-1994 Computer-supported cooperative work-a framework 
Design Issues in CSCW ed D Rosenburg and C Hutchison 
(BerIin: Springer) pp 9-26 

Computing l(3) 191-216 

Ancilla?y Pmceedings of HC/’94 [Glasgow) (University of 
Glasgow Press) 

Dix A, Finlay I, Abowd G and Beale R 1993 Human-Computer 
Interaction (Englewood Cliffs, NJ: Prentice-Hall) 

Dix A 1 and Miles V C 1992 Version control for asynchronous 
group work Technical Report YCS 181 (Department of 
Computer Science, University of York) 

Ellis C A  and Gibbs S J 1989 Concurrency control in groupware 
systems Pmc. 1989 ACM SIGMOD lnt. Conf on 
Management of Dara, SIGMOD Record 18(2) 399-407 

concurrent development CSCW9O-Proceedinm of rhe 

-1995 Dynamic pointers and threads Collaborative 

Dix A and Brewster S A 1994 Causing trouble with buttons 

Harrison W H, Ossher H and Sweeney P F 1990 Coordinating 

Conference on Compurer-Supported Cooperative Work 
[ACM SIGCHI & SIGOIS) pp 157-68 

Kistler I I and Satvanaravanan M 1992 Disconnected oneration 
in the Coda $le sysiem ACM Trans. Computer Sy&. lO(1 )  
3-25 

document production using Quilt Proceedings of CSCWSS, 
Porrland, OR pp 206-15 

Leland M D P, Fish R S and Robert K E 1988 Collaborative 

Cooperation without (reliable) communication 

Miles V C, McCarthy I C, Dix A I, Hamson M D and 
Monk A F 1993 Exploring designs for a 
synchronous-asynchronous group editing environment 
Computer Supported Collaborative Writing ed M Sharples 
(Berlin: Springer) 

Neuwirth C M, Candhok R, Kaufer D S, Moms J and Miller D 
1992 Flexible diff-ing in a collaborative writing system 
CSCW‘92-Proceedings of the Conference on 
Computer-Supported Cooperafive Work (New York: ACM 
Press) 

Compurers 3(3) 319-53 

Siege1 E U and Steere D C 1990 Coda: a highly available 
file system for a distributed workstation environment IEEE 
Trans. Computers 39(4) 447-59 

Abstract Types. ACM Tram. Compurer Sysr. 2(3) 223-50 

performance with computers ACM Comput. Sum. 16(3) 
265-86 

Suchman L A 1987 Plum and Sifwfed AcriDns (Cambridge: 
Cambridge University Press) 

nchy W F 1985 RCS-a system for version control Sofnvare 
Pracrice and Bperience 15(7) 637-54 

Witten 1 H, Thimbleby H W, Coulouris G and Greenberg S 1991 
Liveware: a new approach to sharing data in social 
networks Int. J. Man-Machine Studies 34 33748 

Rodden T 1991 A survey of CSCW systems Inreracring with 

Satyanarayanan M, Kistler J I. Kumar P, Okasaki M E, 

Schwan P M and Spector A Z 1984 Synchronising Shared 

Shneiderman B 1982 Response time and display rate in human 

181 


