
Distributed Systems Engineering

Scalability and performance experiments using
synthetic distributed server systems
To cite this article: C M Woodside and C Schramm 1996 Distrib. Syst. Engng. 3 2

View the article online for updates and enhancements.

You may also like
Application of Principal Component
Analysis in distinguishing three species of
‘jernang’ (Daemonorops spp.)
R Andini, L A Yanti, S Rasnovi et al.

-

Planning for change: a reconfiguration
language for distributed systems
B Agnew, C Hofmeister and J Purtilo

-

The ArgusSpec Prototype: Autonomous
Spectroscopic Follow-up of Flares
Detected by Large Array Telescopes
Nathan W. Galliher, Thomas Procter,
Nicholas M. Law et al.

-

This content was downloaded from IP address 52.14.85.76 on 25/04/2024 at 07:45

https://doi.org/10.1088/0967-1846/3/1/002
https://iopscience.iop.org/article/10.1088/1755-1315/918/1/012026
https://iopscience.iop.org/article/10.1088/1755-1315/918/1/012026
https://iopscience.iop.org/article/10.1088/1755-1315/918/1/012026
https://iopscience.iop.org/article/10.1088/1755-1315/918/1/012026
https://iopscience.iop.org/article/10.1088/1755-1315/918/1/012026
https://iopscience.iop.org/article/10.1088/1755-1315/918/1/012026
https://iopscience.iop.org/article/10.1088/0967-1846/1/5/006
https://iopscience.iop.org/article/10.1088/0967-1846/1/5/006
https://iopscience.iop.org/article/10.1088/1538-3873/ad2c95
https://iopscience.iop.org/article/10.1088/1538-3873/ad2c95
https://iopscience.iop.org/article/10.1088/1538-3873/ad2c95

Distrib. Syst. Engng 3 (1996) 2–8. Printed in the UK

Scalability and performance
experiments using synthetic
distributed server systems

C M Woodside † and C Schramm

Deptartment of Systems and Computer Engineering, Carleton University, Ottawa,
K1S 5B6, Canada

Abstract. The Layered System Generator is used to create synthetic distributed
systems of tasks with client–server style (RPC) interactions, representing a wide
range of software architectures and workload patterns. A synthetic task system can
be used to generate network and workstation traffic which represents the load from
a planned software system, so one can observe its probable performance when
run on the target network, or its probable impact on other existing applications. It
can be used to evaluate the planned software design, or the target network’s
capability, or both combined. Using LSG, tests were made with systems of up to
39 tasks on a UNIX network, to investigate the performance changes that occur
when a small task system is scaled up in size. The performance recorded across
the range of experiments was also compared with predictions made by an analytic
performance model. The errors were found to be small provided an allowance is
made for workstation daemons and similar load components.

1. Distributed server systems

The computing world is moving steadily towards distributed
systems running on networks, driven by the need to
communicate between applications in different places, by
the economics of workstations, and by the opportunity to
build reliable systems in this way. Technology to support
this is becoming available in the form of remote procedure
calls (RPCs), Object Request Brokers such as CORBA
[1], and other ‘midware’ such as security servers. The
Distributed Computing Environment (DCE) [2] provides a
collection of these features, and the Advanced Network
Services Architecture (ANSA) is another such collection.

These distributed processing frameworks support what
we will call a ‘layered software architecture’, with
applications in the top layer and service requests descending
through the layers, as illustrated in figure 1. Client–
server systems have this structure, with the deeper-
layered versions being known as ‘three-tiered’ client–server
systems. This notion of layering is not quite the same as
the layers of an operating system or a protocol suite, but
has many resemblances since lower level servers tend to
offer more generic services, for example file service. We
will classify systems in section 2 by their breadth, depth and
the balance of the workload between the layers. As systems
are scaled up typically their breadth increases, with more
clients at the ‘top’, and (perhaps) replication of servers in
the middle layers. Sometimes there is an increase in depth
also, due to a reorganization of services to divide local

† Email address: cmw@sce.carleton.ca

services which can be replicated from global services which
cannot. This paper uses a narrower idea of scalability, and
measures it by the ability to get satisfactory performance
from a set of tasks as the breadth is increased. A scalable
system is one which can be adapted as the number of users
is increased, by replicating servers, to give a proportional
increase in throughput (or, to retain the same performance
for each user).

There are many performance hazards in distributed
systems, including the overhead of the midware, the delays
in the security features (obtaining and managing access,
encryption), and uncertainty in the delays for obtaining
remote services. This makes it worthwhile to study the
performance issues while planning the system. Models
based on simulation or analytic techniques (for instance [3–
5]) may be helpful, but trials on the real network with the
real midware are also required. They can demonstrate the
achievement of response times under load, and determine
the network traffic created to support the application. Some
network component which might be ignored in a model—a
router, for instance—might turn out to play an unexpected
role. A synthetic version of a new system can reveal
the amount of overhead in the midware, the effectiveness
of priorities in reducing certain important delays, and the
sensitivity of the entire system to certain execution times
or services, while the software is still in the planning
stage. If a proposed new application is to be added to an
existing system, a synthetic representation could be loaded
together with the existing running applications to determine
its impact.

The present study uses a tool called the Layered System

0967-1846/96/010002+07$19.50 c© 1996 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd

Scalability and performance experiments using synthetic distributed server systems

Figure 1. Layered software in a distributed service system.

Generator (LSG) to create a set of tasks which represent
the final workload. The tasks execute dummy instructions
to create a workload which matches the given execution
parameters for each task, and make random choices to
simulate their request rates to servers. Systems were
created with different depths of layering, and different
numbers of clients. They were loaded on a UNIX
workstation network and run and measured to show their
performance characteristics. The throughput achieved was
then compared as the breadth of different layers was
increased.

This research borrowed the idea of a synthetic task
system from research by El-Rayess, Rolia and MacGillivray
[6]. They have described a proprietary ‘Performance
Modeling and Monitoring Center’ (PMMC) tool which also
generates synthetic processes in a layered architecture, to
obtain measures of processing overhead for the mechanisms
proposed to support distributed computing. They measured
the overhead of thread management, RPCs and secure
(encrypted) communication in DCE, when running a small
layered set of tasks on a fully instrumented network.
They then proposed to use the data for overhead costs
for building analytic models to predict the performance
of larger systems, using the layered queueing network
models described previously. This raises the question of
accuracy of the predictions, which is addressed in the
present paper by generating larger systems, and comparing
analytic predictions to results.

In principle the overheads determined by the PMMC
could be used with LSG, except that PMMC is a proprietary
company tool. For this work each overhead component was
measured in simpler separate experiments, and these values
were used to construct task systems of any size, with any
desired total workloads including overheads. The use made
of the task systems is quite different in the present paper,
being to generate performance tests, to explore scalability
and to validate an analytic approximate model as systems
are scaled up.

Avritzer and Weyuker [7] have considered the related
question of performance testing for distributed systems.

They investigated the ability of a planned new processor
configuration to carry a known distributed application, by
creating a synthetic version of the new system. Their
purpose was to get early warning of any problems before
porting the application over, and in fact they found that
the new configuration would have inadequate performance.
To do their tests they created a synthetic workload which
mimicked the intended operation mix at the level of
operating-system primitives (as measured by the UNIX
utility ‘sar’) and ran it on the new configuration of
processors.

The present work goes beyond Avritzer and Weyuker
in imitating not only the operation loadings but also the
software blocking relationships that influence the rate at
which applications can proceed, when software resources
are constrained. However they went further in representing
the operation workload of a process. They tried to match
the mix of a dozen frequent operations (lread, lwrite, fork,
exec, iget, msg, sema,...) while up to now LSG only
matches the cpu execution time, and the interprocess remote
procedure calling. Their workload mix could be used with
LSG, to obtain a performance tester with the advantages of
both.

It is of considerable interest to know if the performance
information could instead have been obtained from an
entirely analytic performance model, so a comparison is
made between the measured performance and the results
of a model, over a range of sizes of systems. Provided an
allowance was made for other workloads such as UNIX
daemons and logged-in users, the model results were
quite close, suggesting that for systems which meet their
assumptions, the models can be trusted. Other analytic
models, that do not use the layered queueing concepts,
have also been proposed for client–server systems. Some
of them are clearly toy examples to show off certain model
features [8] but others are quite detailed. Ibe and Trivedi
[5] described a model using Petri Nets which is in this class,
and the book of Menasceet al [9] uses queueing network
models without layering for this purpose. In both cases the
authors only consider user processes with a single layer of
servers, and we have shown in previous research that deeper
layering makes a substantial difference to the bottlenecks
that may occur and the traffic generated by the requests
[10]. For this reason we prefer the layered approach to
modelling.

The layered queueing model has advantages over
standard queueing models and Petri Nets. While Petri Net
models can faithfully represent the details and interactions,
they suffer from state explosion when they are scaled up to
realistic sized applications. Decomposition techniques may
eventually make Petri Nets practical. Standard queueing
networks do scale up but they leave out important effects
of software delays due to request queueing. Layered models
basically treat each software server as a queue server and
determine waiting for requests. The solution algorithms we
have developed for these models use mean value analysis
to solve a series of approximate models, layer by layer,
as described in [3, 4]. The structure and parameters of a
layered queueing model are specified within the concrete
architecture, as described in the next section.

3

C M Woodside and C Schramm

The synthetic system has user and server processes
that create a simple computational load and a series of
interprocess requests, as defined by a special notation. In
fact it uses the same notation as the layered queueing
network models in [3]. The definition of a system will
be called its ‘concrete architecture’.

2. Concrete architectures for layered service
systems

Each synthetic server system is created from a description
of its ‘concrete architecture’ which defines the actual UNIX
processes and their interfaces, and the services each one
requests from lower level servers. Processes will be called
‘tasks’. One server may offer several different services
with a different workload for each one. For instance, a
repository may offer a browsing service to view data, and
an update service. The update service would generate a
very different workload, and perhaps different requests to
other servers. In the concrete architecture each distinct
service is represented by a distinct ‘service entry’, usually
called an entry, and the workload parameters are associated
with the service entries. A task with just one service has
one entry, and a top-level client task has been assumed to
have one entry. In single-entry tasks the entry can have the
same name as the task.

This description of a concrete software architecture is
equivalent to a graph with entries represented by nodes
and entry-to-entry accesses as arcs, with the entries of a
task grouped together in a hyper-node which represents the
task. Figure 2 shows the architecture graph for the system
in figure 1. Our layered architectures have acyclic graphs,
and if they are arranged with the arcs pointing downwards
(as in figure 2) then the user-level ‘pure client’ tasks are at
the top, and ‘pure servers’ (that do not request any lower
services) are at the bottom. These are typically system
servers like file servers or print servers. If we need to
determine the exact layer of a given server it can be taken
as the maximum path length from any ‘pure client’ task, to
that server, by following and counting the request arcs on
the path.

The above description relates just to the software
architecture. The workload parameters and the execution
environment also need to be described, to define a full
synthetic server system. The additional information is given
as parameters of the entities named in the architecture:

Task:

• processor on which it executes (a real processor in the
target system)

• priority of the task

Entry:

• average workload parameters (e.g. a CPU time ofS

seconds) including overheads
• average numbery(e) of RPC requests to each lower

entry e used by this entry
• for a pure client, a wait timeT for thinking between

requests.

Figure 2. Architecture graph for the system of figure 1.

The workload parameters could include file operations
as well as CPU time (as in [6]) or could include system calls
as in [7]. In its present form, LSG only defines CPU time
parameters. The generalization to include other operations
seems to be straightforward. At present the CPU time is
calibrated for each processor type, to give the specified
number of milliseconds, by straightforward calibration
experiments using special instrumented test procedures.

When we are creating a system from task templates, the
definitions of the tasks and entries are basically definitions
of the templates. However the concrete architecture may
include many instances of each template, and it includes a
separate task definition for each instance. The structural
definition is the same as the template, but the CPU
execution parameters depend on the workstation type, and
the specific lower service entries accessed will be different
for different instances (for example a client may access a
particular replica of a server).

2.1. Concrete architecture ‘shape’

Software is normally designed not for a single deployment
with just one concrete architecture, but for flexibility
and a range of deployments. For example distributed
database software would be designed for organizations
with different numbers of database sites, different numbers
of client applications accessing it, and different numbers
of users. Flexibility enables the software not only to
serve different potential customers, but to allow a given
customer organization to evolve freely. Therefore for a
given software system one is interested in its performance
potential across many concrete architectures and target
environments.

In our terms the software design creates a set of task
templates (or classes) which can be deployed in different
concrete architectures. The possibilities can be summarized
in changes to the depth, breadth, and load distribution of
the system, which together will be called its shape. We will
use the following definitions:

• depth of a system: the numberL of layers;
• breadth of a layer: the total number of tasks in the

layer. (For layeri it is ni);

4

Scalability and performance experiments using synthetic distributed server systems

• workload share of a layer (its part of the load
distribution): the fraction or percentage of the total
CPU work to complete an average response, which is
executed in that layer. (For layeri it is xi .)

• shape of a system: a list of values of breadth and
workload share for each layer, from the top down, in
the form

n1(x1)/n2(x2)/ . . . /nL(xL).

The shape is a much simplified summary of a concrete
architecture. It ignores important performance determinants
like the processor allocation of the tasks, and it ignores the
fact that a single layer can contain tasks of very different
character. However, we have found it does capture useful
comparative information. If one system is scaled up from
another, so that they are based on the same tasks and
differ only in breadth, this gives a quick summary of the
differences over the layers. If there is a shift in workload
between layers it exposes bottleneck possibilities at heavily
loaded layers. If there is a small change in depth by
dividing one task between layers it also captures the extent
of the change in the layer workload share. So the shape is
useful but it is not intended to be a complete definition of
an architecture.

The workload share of a layer is found by first finding
the total workload per user-level response, for each task
in the layer, then adding up the work over the layer, and
expressing it as a fraction of the sum over all layers. To
find the workload of each task for one type of response,
one traces down through the layers to find how often each
entry is invoked, multiplies by the execution timeS for the
entry, and adds up over the entries. If there are several
types of response one must know the relative frequency of
each type, and combine the workload figures in proportion
to their relative frequency.

An example of the calculation of workload shares will
be given with the experiments for case 5, in section 6.

3. The synthetic server system

The synthetic system is made up of instantiations of a single
generalized task template, with computation parameters
that impose the desired workload quantities for each given
concrete task. The parameters of each entry are read
from a file during initialization. The parameters are:S

the total execution time of the service;y(e) the average
number of service requests made to lower entrye (sum of
y(e) = Y); s the average execution time for a ‘slice’ of
execution by the entry, between requests for lower-level
service, with an extra slice at the end,s = S/(Y + 1); p(e)

the probability that a slice ends with a request to lower
entrye, p(e) = y(e)/(Y + 1); p(END) the probability the
slice ends the service,p(END) = 1/(Y + 1).

The behaviour of the task template can then be
described as follows:

loop forever

accept a new request for entryE
while (not END)

• generate a timet with averages and expend time
t by a calibrated repetitive operation

• generate an entrye or the conditionEND, with
probability p(e) or p(END) respectively

• if not (END) make a service request to entrye,
by RPC

end while
send RPC reply to requester

end loop

For a ‘pure client’ top-level task there are no requests
arriving, so the flow is simpler. The loop simply starts
again after completing, without waiting for a request to
arrive. Also the loop begins with an optional waiting time
with meanT , to represent the time a human user might
spend between inputs. Also,

• file I/O can be included by having certain entries
designated as file service entries, and having them
generate file I/O requests instead of RPCs to servers.

• we could use a synthetic spin loop representing the
planned application code, instead of the total execution.
In LSG, a calibrated server ‘slice’ time was determined
to give the desired value ofs for a ‘slice’, including
overheads such as for the RPC.

3.1. Loading and running an experiment

The set of processes needs to be loaded and run on the
target network. For this one could use a script, or a
system like PVM. We used a program called DECALS
[11] that was previously developed to run performance
experiments in a distributed heterogeneous enviroment.
DECALS provides facilities for the automatic launching
of experiment sets, including synchronized startup and
shutdown, and initialization of the task templates via
parameter files. As well, we used DECALS’s event
monitoring facilities to capture events through software
probes in the task templates, to determine response time
and user-level throughput.

4. Scaling experiments on systems with one
server layer

The first experiments were done on a system with a set of
user tasks and a single server, as shown in figure 3. It is a
simplified version of the most common concept of a client–
server system. In reality the server is usually a database
system, possibly on a mainframe computer; here we have
represented it by a single process with only a CPU load.
Nonetheless this task could approximate a real server with
the given CPU load, and in which the storage subsystem is
not a bottleneck.

The simplest scaling issue to examine is the capacity of
the server to handle an increased population of user tasks,
with no change at the server. As the population increases
the server will saturate and response times will begin to
increase due to waiting in the server queue. Then we could

5

C M Woodside and C Schramm

look at expanding the second layer ton2 servers, giving the
shape

n1(.)/n2(.).

We might hypothesize that we will need one server for
everyN users for some value ofN ; our search then is to
determineN and see what it depends on. Again a simple
hypothesis is that, if the server work ist2 seconds per
response and a user can generate a new requestt1 seconds
after a previous response, thenN is roughly t1/t2. If users
run desktop devices that share workstations this could be
modified. We studied a system in which each response is
90% executed by the user tasks and 10% executed by the
server, thereby giving a shape:

case 1 :n1(0.9)/1(0.1) for n1 = 1, . . . , 10.

In the actual experiments we set the parameters of the user
tasks atS = 135 ms andT = 0 (to generate as much
load as possible from a limited number of user tasks), the
service requests at one per user response, and for the server,
S = 15 ms. This makest1 = 0.135, t2 = 0.015 and our
estimate ofN = 9. As stated previously the service times
were calibrated to include the RPC time to marshal and
unmarshal messages. The message sizes were all set to
messages of 16 bytes. The experiments used various types
of station, all running the Solaris version of UNIX system
V. Ten replications were run for each set of parameters,
with a minimum of 1000 responses for each user task in
each replication, and confidence intervals were calculated
across the replications.

To consider a system with a similar stress on the server,
but with the load shared among three servers, a second set
of experiments had 87.5% of a response executed at the
user and 12.5% at the server, thus the shape:

case 2 :n1(0.875)/3(0.125) for n1 = 1, . . . , 10.

In this case each client hadS = 315 ms and accessed all
three servers an average of one time each, per response.
The servers hadS = 15 ms as before.

The results for the total user throughput give a good
idea of scalability; in a fully scalable system the total
throughput is proportional to the number of users. From
the 20 experiments defined above, the results are shown
with whiskers for the 95% confidence intervals attached in
figure 4. As we might expect, the throughput initially rises
linearly with the users and then flattens out as the server
saturates. The saturation effect is evident well below nine
users, which might have been predicted above. In this case
it is due to the client tasks sharing just three workstations.
In the cases with three servers the corresponding level is
3 × (0.875/0.125) = 21 users, and again the saturation is
visible well below this level.

The saturation above three user tasks turns out to be due
to saturation of the three processors running the user tasks,
which are computationally intensive. The server utilization
levels off at about 30% in case 1 and about 12% in case
2. The case 2 throughputs are lower because each response
does three times as much work, however case 2 achieves
more than one third the total throughput of case 1, because
of greater parallelism at the server level.

Figure 3. Systems with one layer of service.

Figure 4. Systems 1 and 2.

The analytic model accurately reflected the software
architecture and the allocation to processors. The results
are close to the measurements and accurately reflect the
trends. However the results are consistently higher than
the measured throughputs by about 12–15%. This is
because the analytic model was not corrected for the
additional workload present on each workstation during
the experiment. This additional workload has three
components:

• UNIX daemons which are estimated at about a 2% load
on each processor;

• DECALS overhead, which is roughly 2%;
• other users, doing word processing mostly.

None of these loads is easy to estimate precisely, but
the relationship between the prediction and measurement is
very consistent. We conclude that we can trust the analytic
model, with the caveat that an allowance must always be
made for competing workloads. If the competing workload
utilization is known the analytic model can be adjusted to
account for it.

5. Experiments with two server layers

Instead of just replicating the servers in the second layer we
may also be able to divide each service into a ‘front-end’
part and a ‘back-end’ part, with the latter implemented in a
deeper layer of servers. This divides the service load further

6

Scalability and performance experiments using synthetic distributed server systems

Figure 5. Systems with two layers of service (cases 3 and
4).

and increases the basic capacity of the system. Figure 5
shows a second layer of servers. Experiments were done
with two shapes:

case 3 :n1(0.8)/1(0.1)/1(0.1) for n1 = 1 to 10

case 4 :n1(0.5)/3(0.3)/2(0.2) for n1 = 1 to 10.

Case 3 can be compared with the single layer experiments
in the previous section, since each server takes the same
share (10%) of the total load. Case 4 has a fatter service
portion and a smaller total client share of the work, which
might characterize systems needing deeper service.

Seven workstations were used for the experiments.
The client tasks were distributed as equally as possible
among three workstations, with servers from the same
layer on different workstations. Replications for confidence
intervals were used as before.

The total throughput results are shown in figure 6, with
whiskers for the 95% confidence intervals. The dotted
line again represents the predictions by an analytic layered
queueing model. We might expect case 3 to be worse than
case 1, because each request has two opportunities to queue,
but this is offset by the fact that more of each request is
done by the servers. Again the analytic model predictions
are a little higher than the reality, by much the same ratio
as in cases 1 and 2.

6. Experiments on deeply layered systems

Scalability is less obvious in deeply layered systems, where
saturation may be introduced in many different ways. Two
cases with five layers were considered to explore this effect,
with 19 tasks in case 5 and 39 tasks in case 6, and differing
degrees of replication of servers. These might represent a
three-tiered client–server system as described by Febish and
Sama [12], with a user services tier at the top level, a data
services tier at and near the bottom, and a business services
tier, perhaps with many layers, in between. The business
services tier provides composite services. The shapes of
the two systems are:

case 5: 10(0.8)/3(0.05)/3(0.05)/3(0.05)/3(0.05), 19 tasks

case 6: 20(0.82)/10(0.1)/5(0.05)/2(0.02)/1(0.01),

39 tasks

and figure 7 shows the concrete architecture in both cases.
They represent different approaches to dividing the work

Figure 6. Throughput results for cases 3 and 4.

between layers. In both cases, each task below the top
layer takes the same share of the work per response (1%
in case 6, 1.67% in case 5). However case 5 has equal
balance among the service layers, while case 6 has a tapered
workload with more servers at the higher layers, to share a
larger percentage of the load. Case 6 has just about twice
as many servers to serve twice as many top-level clients;
the question is, can it provide twice the throughput?

Case 5 will provide an example of the calculation of a
load distribution, as promised above. The execution times
of the user tasks areS = 2304 ms, and for the tasks in
successive layers down from there,S is 72, 36, 18 and 9 ms
respectively. Each task requires, besides its own execution,
one request to each task on the next layer down. Thus in
a typical response there is one invocation in the user layer,
2 in the next layer, and then 4, 8 and 16 invocations in
the lower layers, in order. Each layer below the top thus
contributes 144 ms of execution to a response, giving a
total of 2880 ms in total for a response. The share of the
top layer isx1 = 2304/2880= 0.8; of all the lower layers
it is xi = 144/2880= 0.05, as defined for the case.

The results with 95% confidence intervals were:

case 5: measured 1.18± 0.045, analytic prediction 1.24

case 6: measured 3.545± 0.142, analytic prediction 3.656.

Case 6 with its tapered shape has provided more than twice
the throughput (for twice the users), compared to case 5,
showing that workload should be located as high as possible
in a deeply layered architecture, and should be supported
by replication. The accuracy of the analytic predictions for
these two cases is excellent.

7. Conclusions

The value of doing real network tests with a full-scale
synthetic system is (1) that they verify any assumptions that
have been made about device and network capacity, and
system overheads and (2) that they reveal any performance-
limiting component in the network. In cases 1 and 2 of this
paper, for example, the performance-limiting factor was not

7

C M Woodside and C Schramm

Figure 7. Deeply layered systems (cases 5 and 6).

the servers but the processor support for the user tasks. This
was not totally unexpected in these cases, but it illustrates
the point.

The analytic modelling by the LQNS solver gave
quite accurate predictions across the full range of systems
examined here, provided allowance is made for competing
workloads that have not been modelled. For example,
in cases 1 to 4 the synthetic user tasks were run on
workstations that were also in use for text editing, program
debugging and e-mail. As these workstations were the
saturation point in the system, the entire throughput in the
saturated range is reduced by the fraction of cpu that was
devoted to the competing work—about 12% to 15%.

For cases 5 and 6 the accuracy of the analytic
predictions is very good—5% and 3% error, respectively.
These tests were run in a relatively quiet period, with
smaller competing workloads. Thus, for most practical
purposes the analytic predictions are accurate enough,
and accurately reflect performance trends. Some care
must always be taken to account for potential effects of
competing workloads. If they are well known, they can
even be included in the analytic model itself.

In summary, LSG seems to fill its desired role for
performance testing, and the results also back up the use
of analytic modelling. Further development of LSG to
generate multithreaded server tasks, and extensions to the
workload characterization to include file operations and
other kernel operations, are underway.

Acknowledgments

This research was supported by grants from TRIO, the
Telecommunications Research Institute of Ontario, and by
NSERC, the Natural Sciences and Engineering Research
Council of Canada. We wish to thank Alex Hubbard, who
developed DECALS and helped us to use it with LSG;
Greg Franks, who helped program the definition of the
synthetic system, and Jerry Rolia who suggested synthetic
task systems to us in the first place.

References

[1] 1992 Object Management Group and X/OpenThe Common
Object Request Broker: Architecture and Specification
Framingham, MA, USA and Reading, Berkshire UK

[2] Open Software Foundation 1992Introduction to OSF DCE
(Englewood Cliffs, NJ: Prentice Hall)

[3] Woodside C M, Neilson J E, Petriu D C and Majumdar S
1995 the stochastic rendezvous 15 network model for
performance of synchronous client–server-like distributed
softwareIEEE Trans. Comput.44 20–34

[4] Rolia J A and Sevcik K C 1995 The method of layersIEEE
Trans. Software Eng.21 689–700

[5] Ibe O C, Choi H and Trivedi K S 1993 Performance
evaluation of client–server systemsParallel Distrib. Syst.4
1217–29

[6] El Rayess A, Rolia J A and MacGillivray R 1995
Performance prediction of distributed applications using the
performance modeling and monitoring center (PMMC)
Proc. 6th IEEE Int. Workshop on Distributed Systems
Operation and Management (Ottawa)

[7] Avritzer A and Weyuker E J 1996 Deriving workloads for
performance testingSoftware Pract. Exper.to appear

[8] Buchholz P 1993 Aggregation and reduction techniques for
hierarchical GCSPNsProc. 5th Int. Workshop on Petri Nets
and Performance Models (Toulouse)(Los Alamitos, CA:
IEEE Computer Society Press) pp 216–25

[9] Menasce D A, Almeida V A F andDowdy L W Capacity
planning and performance modeling(Englewood Cliffs, NJ:
Prentice Hall)

[10] Neilson J E, Woodside C M, Petriu D C and Majumdar S
1995 Software bottlenecking in client–server systems and
rendezvous networksIEEE Trans. Software Eng.21 776–82

[11] Hubbard A, Woodside C M and Schramm C 1995
DECALS: Distributed Experiment Control and Logging
SystemProc. CASCON’95, Meeting of Minds (Toronto)
(Toronto: IBM Center for Advanced Studies) pp 146–60

[12] Febish G J and Sarna D E Y 1995 Building three-tier
client–server business solutionsWhite paper(Englewood,
NJ: ObjectSoft Corp.)

8

