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Parallel application performance in a
shared resource environment

Gregory D Peterson { and Roger D Chamberlain i

Computer and Communications Research Center, Washington University, Campus
Box 1115, One Brookings Drive, St. Louis, MO, 63130-4899, USA

Abstract. The utilization of networked, shared, heterogeneous workstations as an
inexpensive parallel computational platform is an appealing idea. However, most
performance models for parallel computation are oriented towards the use of
tightly-coupled, dedicated, homogeneous processors. We develop and validate an
analytic performance modelling methodology for synchronous iterative algorithms
executing on networked workstations. The model includes the effects of application
load, background load, and processor heterogeneity. We use two applications,
nonlinear optimization and discrete-event simulation, to validate the model. Various
policies for the use of the workstations are considered and the optimal (or
near-optimal) scheduling found. The performance modelling methodology provides
significant help in addressing scheduling and similar issues in a shared resource
environment.

1. Introduction accurate performance models that take into account both
the mapping of application tasks to processors and
To provide cost-effective computing resources for compu- the background load resulting from other users of the
tationally intensive applications, parallel processing tech- processors (e.g., the workstation’s owner).
niques are increasingly being applied to networks of exist- We focus on the important class of synchronous
ing workstations. The majority of the time, these work- iterative (or multiphase) algorithms. This is a large
stations are idle and therefore under-utilized. The use of class of algorithms, including optimization, discrete-
networked workstations as a parallel computing platform event simulation, solution to sets of partial differential
raises a number of interesting issues, especially when theequations, Gaussian elimination, and many others. Several
primary use that motivated a workstation’s purchase was theauthors have derived performance models (and can find
day-to-day computing needs of the workstation’s owner.  completion times) for synchronous iterative algorithms
The processing environment assumed here is a networkrynning on dedicated, homogeneous resources [4,9, 13].
of workstations that are connected via a local area network. |n contrast, analytic performance results for the use of
The workstations are not dedicated resources; several userghared, heterogeneous resources have been sparse. In this
may be UtlllZIng them while the Computation of interest paper, we deve]op a performance mode”ing methodo]ogy
is executing. In addition, the power (i.e., computational for synchronous iterative algorithms executing on shared,
speed) of the individual workstations may vary, although heterogeneous resources. The performance model focuses
we will assume their basic architecture is the same (Single on Computationa| requirements; we assume a Compute_
CPU, significant local memory, possibly local disk). In jntensive parallel application in which the computational
order to facilitate cooperative work across the workstations, requirements dominate. Hence, the modelling methodology
there are a number of systems available that provide js most accurate for relatively small processor populations
message passing and process control primitives [26]. Our (typically with less than 100 machines).
experimental results use the Parallel Virtual Machine Once we have an accurate performance model, it can
(PVM) system [24]. . o be used to help address a number of interesting policy
The use of networked workstations as a distributed guestions that relate specifically to the use of shared
computing platform has many similarities with massively computing resources. Essentially, we need to balance
parallel processing (MPP) systems (e.g., parallel algorithm the competing requirements of the various users of the
development, workload partitioning, ~communications \yorkstations. For an individual workstation’s owner, the
scheduling, etc). However, there are challenges that aréprimary purpose of the machine is to service his or her
specific to the distributed computing environment. This day-to-day computing requirements (e.g., word processing,
paper explores two of these challenges: the performancee_maiL etc). For these types of computing needs, minimum
implications and policy issues associated with executing response time is typically of primary importance. For
parallel programs on shared resources. ~We presentihe initiator of a large parallel application, minimum
+ E-mail: gdp@el.wpafb.af.mil completion time is also an important goal. However, for
1 E-mail: roger@ccrc.wustl.edu these two types of users to effectively share a common
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machine (or set of machines), resource utilization policies Biostatistics researchers employ the nonlinear optimization
must balance their competing interests. code in genetic epidemiology for determining whether

The performance models can be used to effectively genetic causes are responsible for diseases [7]. At its
allocate computing resources under a variety of usagecore, it minimizes a user provided cost function using
policies. Essentially, a policy is embodied into a cost quasi-Newton optimization methods. Essentially, a gradient
function that can be optimized under a given set of descent is followed to the minimum of the cost function.
constraints. The optimization problem is then solved to Discrete-event queueing network simulation is used in the
determine resource allocations. For example, if one wished performance analysis of computer and communications
to give complete priority to large parallel applications, systems. Here, a globally-clocked algorithm is utilized
the cost function to optimize might be the execution to simulate networks of FCFS queues. The job service
time of the parallel program. The optimization process requirements are exponentially distributed with departing
could then choose the appropriate set of processors tojobs routed uniformly to neighbouring queues. These two
minimize the completion time of the parallel application, codes are typical synchronous iterative applications.
independent of the impact the parallel execution has on At a high level, the runtime of synchronous iterative
other workstation users. At the other end of the policy algorithms can be described by a simple performance
spectrum, priority could be bestowed upon the workstation model. In theith iteration, a parallel algorithm requires
owner, and workstations that are not completely idle be some amount of time to complete serial calculations
barred from executing parallel jobs (this latter policy is (operations that are not or cannot be parallelized) denoted
used by the Condor [15] system). Leriari-  Similarly, each processof completes some

A spectrum of policies exists between these two portion of the parallel computations for iteratinrrequiring
extremes. Such policies may reflect the relative cost of 7,,.4.:,;,;. Because processors completing early must
processing time on various machines, biases for or againstsit idle at the end of the iteration before the barrier
the use of certain machines, and the relative importancesynchronization operation, ma < p (tparauer,i,j) 9ives the
of a workstation owner’s load to the parallel application. time required for the last processor to complete iteration
By carefully constructing the cost function used in the i. Finally, the use of parallel processing typically results
optimization, different resource utilization policies can be in some additional overhead, denoted, overncaa,i- We
evaluated. This yields near-optimal allocations of parallel include operations such as the barrier synchronization at
tasks across the workstations while minimizing the impact the end of each iteration i3, _overneqa,i- With I iterations
on the original users of the workstations. of the algorithm, the runtime witt? processorsRp, can

In the following section, we develop a performance be modelled as:
model for synchronous iterative algorithms executing ,
on shared, heterogeneous computing platforms. After _ o o )
validating the accuracy of the model, we then explore Rp = ; [[m”“l” M Tparattet i +tp”’"”"h”d”]'
mechanisms for effectively utilizing these computing Q)
platforms under a spectrum of policy options. We show For the applications in this paper, we assume each
how changing the relative priority given to workstation iteration requires roughly the same amount of computation.
owners and parallel applications can impact on the optimal Therefore, we consider the computations required for a
resource allocation. Section 4 concludes and describestypical’ iteration. To do so, we remove the direct

future work. reference to individual iterations in (1). We model the
time needed to complete the serial and parallel overhead
2. Performance model tasks in a typical iteration by the random variablgs., ;
and fpu overhead,i- We define z,,.;,, as the expected

Synchronous iterative algorithms repeatedly execute aValue Offs.iar,i @Ndpar_overneaa @s the expected value of
computation, with an explicit synchronization of the tasks Zpar_overhcaa.i- WWe model the time to complete the parallel
and exchange of data performed at the end of eachtasks assigned to processgrin a typical iteration by
computation (iteration). Each processor reaches a barrierthe random variable,.,.e1,;. The expectation of the
synchronization after every iteration and awaits the arrival maximum ¢,q,ai1,; (1 < j < P) describes the mean
of the other processors before continuing. The model time required for the last processor to complete its parallel
quantifies the performance effects afplication load ~ computations. Assuming the.,iai.i, fpar_overhead,i, @nd the
imbalance the variance in runtime at each processor fparailel.i; fandom variables are independent and identically
caused by an uneven distribution of the computation amongdistributed (iid), the runtime can be modelled as follows:
the processors, anttackground loagd the performance ;

degradation resulting from other users of the shared _ o o
resources. The model also accurately characterizes the Rp = ;(E [tseriri] + E [1ma>;_ t”"”’”d"”]

<j=<

performance of applications running on heterogeneous

workstations with different computational speeds but +E[tpa,-,overhead,f]>
similar architectures.
We employ two applications tq |Ilustratg qnd .valldate —7 (,m_al +E [ max tpam”el.j} + tpm,overhead) .
the performance models: a nonlinear optimization code 1<j<P
and a globally-clocked, discrete-event simulation code. 2
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It is often beneficial to rewrite the parallel task
completion time within an iteration in terms of the total
workload across the processors (denotedshy ) rather
than the maximum.

P

E tparallel,j

tpar.wg = E |:
j=1

:| —P.E [t,mmuel,j]' )

Uneven distribution of the computatiorgpplication
load imbalancewill impact on performance. Similarly, the

the integer constanty, the processing time per unit work
of processorj, and A, the time per unit work of a baseline
processor. For homogeneous resourégss A = 1. 5 is
then redefined for heterogeneous processors as:

[z

We can find the cumulative distribution and probability
distribution of the individual processor load imbalance scale

1
=—F

= AB

max (n;
N M)

l=j=pP

[lgz)é(ﬂj Vi 5/)] (8)

tasks of other users of the shared resources compete witfactors as follows:

the distributed application. We refer to this laackground

load imbalance To model the effects of application and

background load imbalance, the expected value of the
maximum task completion time is expressed as the average

task completion time within an iteration multiplied by a
load imbalance facton.

N tpPAR_WK

S @

=j=

E |:lma)1(3 tparallel.j] = E[tparallel.j] n=

The resulting run time expression is:

NtpPAR_WK

>t

t

RP =1 <tsgrial + par,overhead) . (5)

Note that the ideal value of is 1, which corresponds

Prob{ max (n;) < k}
1l=j=pP

Pk
= HZProb{yj =a} Prob {ﬂj < L
j=la=1

Prob {12}2)§(nj) = k}
= Prob {12}?1“"” < k}
— Prob { max (n;) < k — 1} (10)
1l<j<pP

with the floor present sincg; is integer-valued. Taking the
normalizing factorsB and A into account and finding the

to a system with a single processor or a perfectly balancedgypectation yields:

system (i.e., no variation im,u e, j, and the expected
value of the maximum equals the mean value). As the load
imbalance worseng, increases. Determining the valuerpf

is one of the challenging aspects of developing an accurate

performance model.

We assume the background load on each processo
is independent and the parallel application load and
background load are independent. We can model the
total load imbalance on each procesgomwith the scale
factor n; = B;y;, where the factorss; and y; represent
application and background load imbalanceespectively.
These are combined with the normalization factBr
(explained below) to find the maximum imbalance over all
the processors;:

1
_4)] = E [J“ax ® w)] NE)

We definey; to be a discrete, positive integer-valued
random variable. Similarly, we defing to be a positive,
integer-valued random variable representing the amount
of work done on processoj (in units of work) and
introduce the normalization factdt, the average work for
a processor. (Thug;/B is the application load imbalance
scale factor for processor.) Real valuedg; andy; are
considered in [19]. The probability distribution fgf can
be expressed as follows:

a k

= Z Prob {yj = Ol} Prob {ﬁj = f}

a=1 o

Prob {n; = Bjy; =k}
Q)
where Prob{f; = k/a} = 0 if k/a is not a positive

l (o]
BA k=1
Pk
><<1_[2Prob {y] = Ol} Prob {ﬁ] < LiJ}
r j=1a=1 J
P k-1 _
—1_[ Prob{yj—a}Prob{,Bj <\‘ J})
j=la=1 3

11)

This model is widely applicable and has been used for
the performance evaluation of a number of synchronous
iterative applications. In this paper, the model is used
to describe the performance of discrete-event simulation
and nonlinear optimization [7,20]. The general model
has also been applied to Gaussian elimination and matrix
multiplication [6]. A similar model is described by
Atallah et al [1]; however, they assume a known constant
background load and do not consider application load
imbalance.

Having formulated a general performance model, we
next investigate the distributions of; and g;. We
first consider the impact of application load imbalance
alone. We then consider background load imbalance and
the effects of heterogeneity. Finally, we consider the
interaction of application and background load imbalance
on heterogeneous resources.

2.1. Application load imbalance

To refine the model to reflect the effects of application load

integer. To model heterogeneous processors, we introducembalance alone, we begin by considering the discrete-event

11
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simulation application running on dedicated, homogeneous

resources. Here,

NN.t,
P

NPAR- WK __
P

E[ max lparallel,j] = (12)
1l<j=<pP

whereN, is the mean number of events that are processed

(on all processors) each iteration. Each event takéime
to be processed.

Three techniques for determiningare empirical mea-
surement [5], modelling via order statistics [17], and ana-
lytic modelling via a known probability distribution [20].
We use the latter method. Starting from (11), wejset 1
to reflect no background load adgd= A = 1 to reflect the
same computational speed across the processors.

= ;ik(ﬁProb {,Bj <k
=

k=1
P

—[]Prob{s <k- 1}).
j=1

Note that the normalization factd?, the average work for
a processor, is simpl = N, /P.

Each iteration, for each processor, we model the
generation of an event via a Bernoulli trial for each of the
simulated objects. If processgrhass; simulated objects,
each with a probabilityp to have an event at any time,
then [20]:

(13)

o

2

=0

Prob{B; < a} (‘j”)p’(l -p)¥ (14

The average number of events per iteratiav), can be

found in a similar manner [20]. Each processor has a finite

amount of work possible, so we defigge= max.<;<p(S;),
the maximum possible work for any processor. Then for
dedicated, homogeneous processors

;g (1] > ( )pu )5
p min(k=15) ;o '
11 (;)plu—p)sj—').

1=0

Using an approximation to make evaluationsofmore
tractable, we apply the DeMoivre—Laplace theorem [18]: if
Sip(1—p) > 1then

P min(k,S;)

(15)

Sj) ! S;—1 1
A-pitmr
<l PRmp = s pa-p)

(- Sjp)z
X exp(— 725117(1 — p)) . (16)

Therefore, we approximate as follows:

P min(k,S;)

1

=M1y s
G jp)2

Xem( %wﬂ—pJ

12

_f[min(k—l,sj) 1
-1 1= V2ESipd-p)

(- S;p)?
: p(‘zsm—m))

If we assume that each processor Sasimulated objects,
then

17

L @rSp(l—p))?
B

(- Sp)?

(_ 0% ))”}

25p(1-p)
We now have an analytic expression for application
load imbalance for a discrete-event simulation application
executing on dedicated, homogeneous resources.

X Xs:k
k=1

- <i exp

=0

(18)

2.2. Imbalance due to background load

We next turn to modelling the imbalance due to background
load and focus on genetic epidemiological optimization
applications without any appreciable application load
imbalance (i.e.f; = 1). We assume the application and the
background load are independent, the background load on
each processor is independent and identically distributed, all
tasks on a processor have the same priority, and (initially)
the processors are homogeneous. Substityging B = 1
ands; = A =1 into (11) yields

(19)

If the background load on processpris k tasks, and
each task (including the application) gets an equal fraction
of the CPU time, the application will také + 1 times
as long as if it were run on an idle processor. Hence,
y; = k + 1 in this case. Assuming the existence of
a background load distributio®; ; (the probability ofk
background tasks on processpy, Prob {yj =k+ l} =
Qjk. This distribution can be derived via a queueing
model of the background workload. We assume that the
background jobs arrive following a Poisson process with a
given ratex; and consider two queueing models to describe
the background load. The first, a Processor Sharing (PS)
model, is an idealization of round robin scheduling where
the time quantum for each process approaches zero [12].
Assuming that the service distribution is Coxian [11], the
queue length distribution for a server@ ; = (1— pj)p]]f,
where p; is the ratio of the arrival rate to the service rate
(pj = Aj/1;j). For general service distributions, finding the
queue length distribution for a processor sharing server is
impractical.
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For the processor sharing case with Coxian distributed processes [14]. They found that exponential distributions

service times, are not accurate for modelling service times, but a good
@ model for the cumulative distribution function of service
Prob{y; <a+1} =) (1-p)p} time is:
=0

Fx)~1—rx“105<c <125 (26)

with the best results with = 0.241 andc = 1.122. This
model is only accurate for jobs of at least 1 second duration,
Prob|y; <a}=1-pf. (20) and does not have a finite variance. Order statistics (such
' as the expected maximum &f random variables) which
Assuming processor sharing on shared, homogeneousare drawn from distributions with infinite variance are
resources running the nonlinear optimization application, unbounded [8]. To address this, we have modified this

_p{Hl
=1-pH)| — ) =1-—pett
( p,)( 1-p ) P

the load imbalance is given by: to a density function as follows:
00 P P 0.759 fo<x <1
= k [l_[ (- -T1(2- pf‘l)} - @ fe =1 e if1<x <1000 (27)
k=1 |j=1 j=1 0 if x > 1000

To extend the processor sharing model to heterogeneous  Although this distribution now has a finite variance, the
resources, we substitug = B =1 into (11). Pollaczek—Khinchine transform yields a solution whase
transform inversion is intractable. Therefore, we do not use

1& P k this distribution in the performance model, but we will use
T=A >k H Prob {Vf = ng” synthetic workloads in accordance with this distribution to
=t L=t validate the modelling methodology.
d k—1 In their simulations of load balancing algorithms,
- ﬂpmb {yj : L‘SJ’” ' (22) Banawan and Zeidat utilize a hyperexponential (mixed

exponential) service distribution to model the required CPU
We also include the impact of heterogeneity on the service time of processes [2]. Based on these results, we model the
rate for background tasks by defining the service rate service distribution as a hyperexponential distribution with
nj = u A/S;, wherey; is simply the baseline service two types of customers. For some probabilities; and
rate . scaled to reflect the relative processing power of 7»; = 1— 7, ; and service rateg,,; and u,, ;, we have

processorj. Applying this result into (20) yields: the density
. — . . @ YHa,j . . @ YHb.j
) k ) (Sj)\j L%J - b/(-x) = Tlq,j Ha,j € +7Tb,/ Mb, j € (28)
Tai Mai T Wb
The load imbalance for the optimization application Bi(s) = ;/‘ _:sj M)j‘ +Sj~ (29)
running on shared, heterogeneous resources and assuming “! !
processor sharing is then System accounting tools were used to collect statistics
on the service requirements of processes on numerous
1 & L 8\ /) machines for several weeks. Similarly, arrival rate statistics
T=A ;k l_! 1- uA for the machines were accumulated. These statistics are
1 |j=

used to determine the service and arrival rate distributions
F 8ja; \ e in the model. We choose the valuesof the arrival rate

- H(l_ < ) ) ) (24) of jobs at processoy; m, ; andm, ;, the probabilities of

each type job; ang., ; and u, ;, the service rates of each

A second queueing model, based on FCFS M/G/1 type of job based on the empirical results.

gueueing theory, is also used to derive the queue length

distributions, allowing us to include more general service 2.3. Application and background load imbalance

distributions. Given a service time densidy,(x), and its

Laplace-Stiltjes transforns?(s), the Pollaczek—-Khinchine

transform formula [12] is employed to find thetransform

of the queue length distribution for procesgor

Having developed performance models for both application

load imbalance and background load imbalance, we now

scrutinize their combined effects. Once again, discrete-

event simulation is the parallel application of interest.
(1—pHL-2) We now model the load imbalance on shared heteroge-

B — 2 2) — 2 (29) neous resources assumipgand g; are independent dis-
g crete random variables,

The_ queue length distribution is then found by performing p,,p {nj <k} = Prob{y;B; < 1k/8;1)

an inversez-transform.

k
To understand the service requirements of typical UNIX  _ Z Prob {,Bj _ a} Prob {yj < {LJ } (30)
a=1

Qj(@) = B (A;j — 4; 2)

processes, Leland and Ott collected statistics on 9.5 million
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If we restrict ourselves to processor sharing, then from the
derivation in section 2.2,

k
Prob{nj §k} :ZProb {,BJ :o{} 3
— *
azik/ ) o * Measured
Ax ~ 3 4 PS Model
><<1— <7f> ) (31) g - " ode
Hé; S S |
The load imbalance is then g -
1 & P s 8 - ; Lambda = 0.4
n=-— k l_[P}"Ob{r]/<k} % 3 \
BA &\ g .
B i=1 £ S A +\
2 g {,
P g + \¢
_l_[Prob{nj §k—1}> (32) e g 1+
= g \* Lambda = 0.2
1 o] P k é 8 | \
= — k Prob B =« * F——=
BA; <,11(; { ! } S Lambda=0.1\*%1
Ao /s T T . :
x(1- (—’) ) 1 2 3 4
MO
P k-1 Number of Slave Processors
~T1>_ Prob{g; =} Leland & Ott Service Distribution

Figure 1. Nonlinear optimization on shared, homogeneous

A\ LKk=1)/ad;]
y <1 _ (%) )) (33) resources.
Hoj

We apply the results of the Bernoulli trials and the
DeMoivre—Laplace theorem to fing for the simulation
application. The load imbalance is given by

1 & P min(S;8;,k) 1 ﬁ ] +
]’] = k B S —— * *
AB ; 111 o; V2rnSip(L—p) 7 g
c
S (SR 5 +
xexpl —so——— J{1-| a3 - N
28;p(1—p) nd; =
. o
_lﬂlmm(%kfl) 1 'g g 4f
j=1 a=1 Vv ZHSJp(l - p) ; S_'; - *
(=8
—(a — 8;p)? a\ L) g \
X exp<7(a iP) ) 1- (—J> . (34) % S "
28;ip(1—p) oy 3 .
. . . Q 4 *Measured
Using this equation and the general performance model + PS Model .
given in (5), we can describe the performance of the ‘ — ‘
discrete-event simulation application running on shared, 2 4 6 8

heterogeneous resources.
Number of Slave Processors
2.4. Model validation

Figure 2. Nonlinear optimization on shared, heterogeneous

We first consider the impact of background load on the [ESOUICES.

nonlinear optimization application. Using synthetic loading
corresponding to the results of Leland and Ott discussed
above, we varied the background load by increasing thethe fact that, although the second processor in the pool

arrival rate of background tasks As shown in figure 1, is more powerful than the other processors, it is heavily
the model accurately predicts the impact of background load loaded. The performance model accurately predicted the
imbalance. performance of the nonlinear optimization executing on the

Experiments with moderately loaded, heterogeneous shared, heterogeneous workstations.
workstations were also performed. Figure 2 shows the The discrete-event simulation application was executed
predicted and measured performance of the nonlinearon an nCUBE/7 hypercube to validate the model when
optimization application on a network of workstations. there is application load imbalance, but no background
The poor performance with two processors is caused byload imbalance [20]. Figure 3 shows that the model is

14
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3. Usage policies and parallel application
scheduling

When two or more parties are sharing a common resource,
the effective utilization of that resource must be measured
against a desired policy, or usage goal. Here, we are
interested in investigating various policies to guide the
sharing of a network of workstations between the individual
workstation owners and distributed applications. We are
also interested in mechanisms to carry out those policies.
Specifically, we help to solve the following problem: given
a set of workstations with some existing background load
pattern and a parallel application with known computational
requirements, choose an appropriate set of workstations on
which to execute the parallel application that best meets a
- Model set of predetermined policy goals.

A number of issues must be addressed when
establishing a usage policy. Defining the relative
importance of parallel applications compared to background
load is one important policy issue. In addition, it is
Processors often desirable to differentiate between the individual
workstations in the pool (i.e., guiding the parallel
application towards some machines and away from others)
due to their processing power, current workload, or other
external factors.

To implement a desired policy, we will incorporate
the goals of that policy into a cost function that rates
how well the assignment of parallel tasks to workstations
meets the policy goals. By using optimization techniques

800 850
1 1

750
1

Runtime (seconds)

700
1

* Measured

650
1

Figure 3. Simulation on dedicated, homogeneous
resources.

3 to minimize the cost function, the parallel application

N can be scheduled to most efficiently utilize the shared
+ computational resources.

8 /*\ Optimization of a general cost function is an NP-hard

S | +/ \* problem. Therefore, true optimization is often limited

to restricted classes of problems which have efficient
solutions. A number of restricted scheduling problems
have been studied with efficient algorithms for finding

Runtime (secs)
800

* Measured optimal solutions described in [3,23,25]. Atalla al
8 | + Model investigate parallel algorithms similar to those considered in
* this paper and give an algorithm for finding the optimal set
of homogeneous processors to minimize runtime assuming
§ i a known constant background load [1]. To determine the

schedule with the minimum parallel application runtime
we use the algorithm shown in figure 5, where the sort
Processors is based on the arrival rate of background jobs. This
algorithm, similar to the one described in [1], gives the
optimal solution.

For parallel applications running on heterogeneous
resources, the performance model and cost function are
significantly more complex. To find the minimum runtime
in this case, we resort to greedyheuristic to find a near-
optimal solution [16,22]. If we assume that the parallel
application is divided equally among each of the processors,
then we only need to consider the background load and
heterogeneity to determine the set of processors to use.

2.0 3.0 4.0 5.0

Figure 4. Simulation on shared, heterogeneous resources.

accurate in this instance also. Finally, the discrete-event
simulation application was executed on a network of shared
work;tayons to validate the quel when there is both The background load is modelled with a processor sharing
application and background load imbalance [21]. Although queueing model, so the expected number of background

the model error |S |al’ger in '[hIS instance, the mOde| tasks at processoj |S p]/(l — p]), assuming that the
is still reasonably accurate, reliably reflecting measured service distribution of background tasks is Coxian. Adding
performance trends, as illustrated in figure 4. the parallel application, the expected number of tasks at
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Sort available processors S

P «<{i}, where i is processor in § with lowest arrival rate

while not done do

P’ <P U{j}, where j is next processor in §

if RP' < RP
P <P
else
done < TRUE
endwhile
return optimal set P

Figure 5. Optimal algorithm for minimum runtime (homogeneous processors).

processorj is 1/(1 — p;). Because the processors are
heterogeneous, we scale the runtimespyA. Multiplying

the background load and heterogeneity scale factors, we
find that processoy is expected to take;/[A(1 — p;)]
times as long as if run on an idle baseline processor. For
the heuristic, we sort the processors based on the values of
this scale factor, and find a near-optimal set of processors
P using the same algorithm as shown in figure 5.

The above two algorithms (for homogeneous and
heterogeneous processors) implement a policy that ignores
the impact of the parallel application on the other
workstation users. By minimizing the execution time of
the parallel application, without considering the impact on
other users, the cost function essentially gives the parallel
application priority over the owners of the workstations.

We next introduce a more flexible cost function
that explicitly reflects the importance of minimizing the
completion time of the parallel application as well as
minimizing the impact that the parallel application has on
other workstation users. We assume that there is some
cost per unit timex, which reflects the goal of minimizing
the runtime of the parallel application. If each processor
J used in the computation has some cost per unit time,
¢j, associated with its usage by the application, then we
formulate a cost functionCp, which reflects the trade-
off between maximizing application performance and the
expense of using the workstations:

P P
Cp =XRP+ZCjRP=RP(x+ Cl) (35)
j=1 Jj=1

By assigning appropriate; values, the cost function
reflects policies concerning which workstations are
encouraged for use with parallel applications. As the
values increase, the cost of using additional processors
increases, making the use of fewer processors more likely
to be optimal. In contrast to the individual processor
costs,x is used to reflect the importance of minimizing the
execution time of the application, regardless of the number
of processors. As we change the relative values ahd
the ¢; terms, we have a spectrum of policies that describe
the relative importance of application performance and its
impact on background processing.

Optimal P

Optimal P

30

10

15

10

Optimization

10.0 100.0

x/c

Simulation

* X kX - %
-

10.0 100.0

x/c

Figure 6. Optimal set of homogeneous processors.

case, the cost function i€p = Rp(x + cP)).

Once

We explore one example of this type of policy by again we find the optimal solution using the algorithm in

considering a network of homogeneous workstations with figure 5, replacingRp with Cp.

Because the algorithm

identical costs for the use of each workstation (in this orders the processors and adds processor® to order,
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knowing the number of processors iRt is sufficient
information to describe which processors areinFigure 6 Optimization
displays the optimal number of processors to use for
the nonlinear optimization and discrete-event simulation
applications running on a homogeneous network of 32 © 7 R R Rox ok ko
workstations. In this figure, we vary the ratio/c to /
reflect a variation in the relative importance of the parallel o A *
application and the workstation owner’s load. With enough
priority given to the workstations’ owners (low/c), the
parallel application is assigned to only one processor. With
enough priority given to the parallel application (high
x/c), the cost function effectively minimizes the application /
runtime. Between these two extremes, the number of
processors assigned to the parallel application reflects the /
assigned importance of the application and the background
workload at each processor. : ‘

When running the application on heterogeneous 01 10 100 100.0
processors, we need to use a heuristic as before, again
replacingRp with Cp. In this example, the heterogeneous x/c
network contains 32 workstations of four different speeds,
as denoted by the valug for processorj. Six of the
processors havé, = 1, six haves; = 2, ten have; = 4
and ten havé; = 8. The performance of the serial case is
found by using the fastest processor while unloaded. ] P

The near-optimal number of processors to use for /

Optimal P

Simulation

4.0

the two applications when running on heterogeneous 1
workstations is shown in figure 7. As in the homogeneous
case, we vary the relative importance of the parallel
application and the background load. Again, when the
parallel application is given low priority (low /c), it is
assigned to only a single processor (in this case, the fastest
processor with the lowest background load). When the
parallel application is given higher priority (high/c), a ]

larger set of processors is used.

The previous two examples assigned an equal priority
to each of the available workstations (i.€j, c¢; = ¢). By
assigning different values af; to different workstations, 0.1 1.0 10.0 100.0
a number of different policies can be reflected. In the
simplest case, assigning a highgrto some workstations
and a lowerc; to others discourages the use of the
workstations with higher;. For example, the workstation  Figure 7. Near-optimal set of heterogeneous processors.
where the parallel application is initiated could have a low
¢j to encourage the application to run locally and only
branch out to other workstations if there is a significant
runtime benefit to doing so. Additional sophistication can
be incorporated into the usage policies by making ¢he

3.0

Optimal P
\

2.0

1.0

x/c

processors so that it is expected to complete in a specified

values functions of either time of day and/or current load. amount of time, buF !t IS to be, assigned to processors in
As functions of the time of day, parallel applications can SUCh @way as to minimize the impact on other workstation
be encouraged to use a larger set of workstations when thd®@d while still meeting its runtime goal. This policy could
workstations’ owners are not expected to be present. By be formulated as the following optimization problem: given
makingc; a function of the current workload at procesgor ~ @n execution time goab x, minimize
the policy can further discourage the use of already loaded
workstations. P
So far we have considered mechanisms that assign chRp
varying priorities to the parallel application or to the other j=1
workstation load, but do not put hard limits on where (or ] o )
for how long) the parallel application is allowed to execute. under the constraink, < Gg. Similarly, a policy that
Policies that include such limits can be implemented using bounds the resource utilization of the parallel application
a constrained optimization. and desires to minimize the execution time under a
For example, consider a policy that states the parallel utilization constraint could be formulated as the following:
application should be assigned to an appropriate set ofgiven a resource utilization bour@c:, minimize Rp under
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the constraint the relationship between the cost function and policy
» goals relies heavily on the accuracy of the performance

ZC'RP < Ge. model. Although an accurat'e pgrformancg model was

p IR = presented for synchronous iterative algorithms, many

' parallel applications do not fit the model and would need an

In both of the above two examples, we are essentially alternative performance predictor for effective use. Second,
constraining one of the two terms in (35) and minimizing the development described in this paper assumed the
the other term. problem of assigning a set of processors to execute only one
As the cost function becomes more complicated (either parallel application. The methods developed here must be

by varying thec; values or imposing additional constraints), extended to support multiple parallel applications executing
the optimization problem becomes significantly more Simultaneously. Efe and Schaar [10] have some results in
difficult. As a result, the simple algorithms described above this area, supporting co-scheduling of parallel applications.

are no longer effective and general optimization techniques Third, once assigned to a processor, parallel tasks are
must be used. assumed to be of equal priority to the other workstation

The above discussion shows how one can useload. We are currently extending the performance model

performance models of parallel applications executing on t0 accurately reflect priority assignments on individual
networks of workstations to help implement usage policies Workstations. — Fourth, the cost function optimization is
that guide the sharing of available computational resources.likeély to be a computationally intensive operation in its
A policy is embodied in a cost function that is minimized to OWn right. Either the cost functions must be constrained
yield the optimal (or near-optimal) assignment of processors S© that the scheduling decisions can be made efficiently, or

for a parallel application execution. Depending on the form More efficient heuristics must be developed to find near-
of the cost function to be optimized, either an optimal optimal solutions to sophisticated cost functions. In spite

algorithm, heuristic, or general optimization technique is °f the limitations described above, we are clearly making
the most appropriate. progress in supporting the effective sharing of currently

underutilized resources.

4. Conclusions and future work
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