
Distributed Systems Engineering

Parallel application performance in a shared
resource environment
To cite this article: Gregory D Peterson and Roger D Chamberlain 1996 Distrib. Syst. Engng. 3 9

View the article online for updates and enhancements.

You may also like
Simulation Design of Spot Welding of
Body Structure and Transfer Robot
Workstation
Jun Gao, Chang Han and Yicai Liu

-

Workstation and posture improvement in
cutting machine process using virtual
modelling
L Studiyanti, W Septiani and N Aulia

-

Redesign of computer workstation using
ergonomics
A Sreerag, S Arunkumar, J Jayadeep et
al.

-

This content was downloaded from IP address 18.224.64.226 on 07/05/2024 at 12:46

https://doi.org/10.1088/0967-1846/3/1/003
https://iopscience.iop.org/article/10.1088/1742-6596/2029/1/012009
https://iopscience.iop.org/article/10.1088/1742-6596/2029/1/012009
https://iopscience.iop.org/article/10.1088/1742-6596/2029/1/012009
https://iopscience.iop.org/article/10.1088/1757-899X/1072/1/012032
https://iopscience.iop.org/article/10.1088/1757-899X/1072/1/012032
https://iopscience.iop.org/article/10.1088/1757-899X/1072/1/012032
https://iopscience.iop.org/article/10.1088/1742-6596/1706/1/012201
https://iopscience.iop.org/article/10.1088/1742-6596/1706/1/012201

Distrib. Syst. Engng 3 (1996) 9–19. Printed in the UK

Parallel application performance in a
shared resource environment

Gregory D Peterson † and Roger D Chamberlain ‡
Computer and Communications Research Center, Washington University, Campus
Box 1115, One Brookings Drive, St. Louis, MO, 63130-4899, USA

Abstract. The utilization of networked, shared, heterogeneous workstations as an
inexpensive parallel computational platform is an appealing idea. However, most
performance models for parallel computation are oriented towards the use of
tightly-coupled, dedicated, homogeneous processors. We develop and validate an
analytic performance modelling methodology for synchronous iterative algorithms
executing on networked workstations. The model includes the effects of application
load, background load, and processor heterogeneity. We use two applications,
nonlinear optimization and discrete-event simulation, to validate the model. Various
policies for the use of the workstations are considered and the optimal (or
near-optimal) scheduling found. The performance modelling methodology provides
significant help in addressing scheduling and similar issues in a shared resource
environment.

1. Introduction

To provide cost-effective computing resources for compu-
tationally intensive applications, parallel processing tech-
niques are increasingly being applied to networks of exist-
ing workstations. The majority of the time, these work-
stations are idle and therefore under-utilized. The use of
networked workstations as a parallel computing platform
raises a number of interesting issues, especially when the
primary use that motivated a workstation’s purchase was the
day-to-day computing needs of the workstation’s owner.

The processing environment assumed here is a network
of workstations that are connected via a local area network.
The workstations are not dedicated resources; several users
may be utilizing them while the computation of interest
is executing. In addition, the power (i.e., computational
speed) of the individual workstations may vary, although
we will assume their basic architecture is the same (single
CPU, significant local memory, possibly local disk). In
order to facilitate cooperative work across the workstations,
there are a number of systems available that provide
message passing and process control primitives [26]. Our
experimental results use the Parallel Virtual Machine
(PVM) system [24].

The use of networked workstations as a distributed
computing platform has many similarities with massively
parallel processing (MPP) systems (e.g., parallel algorithm
development, workload partitioning, communications
scheduling, etc). However, there are challenges that are
specific to the distributed computing environment. This
paper explores two of these challenges: the performance
implications and policy issues associated with executing
parallel programs on shared resources. We present

† E-mail: gdp@el.wpafb.af.mil
‡ E-mail: roger@ccrc.wustl.edu

accurate performance models that take into account both
the mapping of application tasks to processors and
the background load resulting from other users of the
processors (e.g., the workstation’s owner).

We focus on the important class of synchronous
iterative (or multiphase) algorithms. This is a large
class of algorithms, including optimization, discrete-
event simulation, solution to sets of partial differential
equations, Gaussian elimination, and many others. Several
authors have derived performance models (and can find
completion times) for synchronous iterative algorithms
running on dedicated, homogeneous resources [4, 9, 13].
In contrast, analytic performance results for the use of
shared, heterogeneous resources have been sparse. In this
paper, we develop a performance modelling methodology
for synchronous iterative algorithms executing on shared,
heterogeneous resources. The performance model focuses
on computational requirements; we assume a compute-
intensive parallel application in which the computational
requirements dominate. Hence, the modelling methodology
is most accurate for relatively small processor populations
(typically with less than 100 machines).

Once we have an accurate performance model, it can
be used to help address a number of interesting policy
questions that relate specifically to the use of shared
computing resources. Essentially, we need to balance
the competing requirements of the various users of the
workstations. For an individual workstation’s owner, the
primary purpose of the machine is to service his or her
day-to-day computing requirements (e.g., word processing,
e-mail, etc). For these types of computing needs, minimum
response time is typically of primary importance. For
the initiator of a large parallel application, minimum
completion time is also an important goal. However, for
these two types of users to effectively share a common

0967-1846/96/010009+11$19.50 c© 1996 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd 9

G D Peterson and R D Chamberlain

machine (or set of machines), resource utilization policies
must balance their competing interests.

The performance models can be used to effectively
allocate computing resources under a variety of usage
policies. Essentially, a policy is embodied into a cost
function that can be optimized under a given set of
constraints. The optimization problem is then solved to
determine resource allocations. For example, if one wished
to give complete priority to large parallel applications,
the cost function to optimize might be the execution
time of the parallel program. The optimization process
could then choose the appropriate set of processors to
minimize the completion time of the parallel application,
independent of the impact the parallel execution has on
other workstation users. At the other end of the policy
spectrum, priority could be bestowed upon the workstation
owner, and workstations that are not completely idle be
barred from executing parallel jobs (this latter policy is
used by the Condor [15] system).

A spectrum of policies exists between these two
extremes. Such policies may reflect the relative cost of
processing time on various machines, biases for or against
the use of certain machines, and the relative importance
of a workstation owner’s load to the parallel application.
By carefully constructing the cost function used in the
optimization, different resource utilization policies can be
evaluated. This yields near-optimal allocations of parallel
tasks across the workstations while minimizing the impact
on the original users of the workstations.

In the following section, we develop a performance
model for synchronous iterative algorithms executing
on shared, heterogeneous computing platforms. After
validating the accuracy of the model, we then explore
mechanisms for effectively utilizing these computing
platforms under a spectrum of policy options. We show
how changing the relative priority given to workstation
owners and parallel applications can impact on the optimal
resource allocation. Section 4 concludes and describes
future work.

2. Performance model

Synchronous iterative algorithms repeatedly execute a
computation, with an explicit synchronization of the tasks
and exchange of data performed at the end of each
computation (iteration). Each processor reaches a barrier
synchronization after every iteration and awaits the arrival
of the other processors before continuing. The model
quantifies the performance effects ofapplication load
imbalance, the variance in runtime at each processor
caused by an uneven distribution of the computation among
the processors, andbackground load, the performance
degradation resulting from other users of the shared
resources. The model also accurately characterizes the
performance of applications running on heterogeneous
workstations with different computational speeds but
similar architectures.

We employ two applications to illustrate and validate
the performance models: a nonlinear optimization code
and a globally-clocked, discrete-event simulation code.

Biostatistics researchers employ the nonlinear optimization
code in genetic epidemiology for determining whether
genetic causes are responsible for diseases [7]. At its
core, it minimizes a user provided cost function using
quasi-Newton optimization methods. Essentially, a gradient
descent is followed to the minimum of the cost function.
Discrete-event queueing network simulation is used in the
performance analysis of computer and communications
systems. Here, a globally-clocked algorithm is utilized
to simulate networks of FCFS queues. The job service
requirements are exponentially distributed with departing
jobs routed uniformly to neighbouring queues. These two
codes are typical synchronous iterative applications.

At a high level, the runtime of synchronous iterative
algorithms can be described by a simple performance
model. In theith iteration, a parallel algorithm requires
some amount of time to complete serial calculations
(operations that are not or cannot be parallelized) denoted
tserial,i . Similarly, each processorj completes some
portion of the parallel computations for iterationi, requiring
tparallel,i,j . Because processors completing early must
sit idle at the end of the iteration before the barrier
synchronization operation, max1≤j≤P (tparallel,i,j) gives the
time required for the last processor to complete iteration
i. Finally, the use of parallel processing typically results
in some additional overhead, denotedtpar overhead,i . We
include operations such as the barrier synchronization at
the end of each iteration intpar overhead,i . With I iterations
of the algorithm, the runtime withP processors,RP , can
be modelled as:

RP =
I∑

i=1

[
tserial,i + max

1≤j≤P
tparallel,i,j + tpar overhead,i

]
.

(1)
For the applications in this paper, we assume each

iteration requires roughly the same amount of computation.
Therefore, we consider the computations required for a
‘typical’ iteration. To do so, we remove the direct
reference to individual iterations in (1). We model the
time needed to complete the serial and parallel overhead
tasks in a typical iteration by the random variablestserial,i

and tpar overhead,i . We define tserial as the expected
value of tserial,i and tpar overhead as the expected value of
tpar overhead,i . We model the time to complete the parallel
tasks assigned to processorj in a typical iteration by
the random variabletparallel,j . The expectation of the
maximum tparallel,j (1 ≤ j ≤ P) describes the mean
time required for the last processor to complete its parallel
computations. Assuming thetserial,i , tpar overhead,i , and the
tparallel,i,j random variables are independent and identically
distributed (iid), the runtime can be modelled as follows:

RP =
I∑

i=1

(
E
[
tserial,i

]+ E

[
max

1≤j≤P
tparallel,i,j

]
+ E

[
tpar overhead,i

])
= I

(
tserial + E

[
max

1≤j≤P
tparallel,j

]
+ tpar overhead

)
.

(2)

10

Parallel application performance in a shared resource environment

It is often beneficial to rewrite the parallel task
completion time within an iteration in terms of the total
workload across the processors (denoted bytPAR WK) rather
than the maximum.

tPAR WK = E

[
P∑

j=1

tparallel,j

]
= P · E

[
tparallel,j

]
. (3)

Uneven distribution of the computation,application
load imbalance, will impact on performance. Similarly, the
tasks of other users of the shared resources compete with
the distributed application. We refer to this asbackground
load imbalance. To model the effects of application and
background load imbalance, the expected value of the
maximum task completion time is expressed as the average
task completion time within an iteration multiplied by a
load imbalance factorη.

E

[
max

1≤j≤P
tparallel,j

]
= E[tparallel,j] · η = η tPAR WK

P
. (4)

The resulting run time expression is:

RP = I ·
(

tserial + ηtPAR WK

P
+ tpar overhead

)
. (5)

Note that the ideal value ofη is 1, which corresponds
to a system with a single processor or a perfectly balanced
system (i.e., no variation intparallel,j , and the expected
value of the maximum equals the mean value). As the load
imbalance worsens,η increases. Determining the value ofη

is one of the challenging aspects of developing an accurate
performance model.

We assume the background load on each processor
is independent and the parallel application load and
background load are independent. We can model the
total load imbalance on each processorj with the scale
factor ηj = βjγj , where the factorsβj and γj represent
application and background load imbalance, respectively.
These are combined with the normalization factorB

(explained below) to find the maximum imbalance over all
the processors,η:

η = 1

B
E

[
max

1≤j≤P
(ηj)

]
= 1

B
E

[
max

1≤j≤P
(βj γj)

]
. (6)

We defineγj to be a discrete, positive integer-valued
random variable. Similarly, we defineβj to be a positive,
integer-valued random variable representing the amount
of work done on processorj (in units of work) and
introduce the normalization factorB, the average work for
a processor. (Thusβj/B is the application load imbalance
scale factor for processorj .) Real valuedβj and γj are
considered in [19]. The probability distribution forηi can
be expressed as follows:

Prob
{
ηj = βjγj = k

}
=

k∑
α=1

Prob
{
γj = α

}
Prob

{
βj = k

α

}
(7)

where Prob{βj = k/α} = 0 if k/α is not a positive
integer. To model heterogeneous processors, we introduce

the integer constantsδj , the processing time per unit work
of processorj , and1, the time per unit work of a baseline
processor. For homogeneous resources,δj = 1 = 1. η is
then redefined for heterogeneous processors as:

η = 1

1B
E

[
max

1≤j≤P
(ηj)

]
= 1

1B
E

[
max

1≤j≤P
(βj γj δj)

]
.(8)

We can find the cumulative distribution and probability
distribution of the individual processor load imbalance scale
factors as follows:

Prob

{
max

1≤j≤P
(ηj) ≤ k

}
=

P∏
j=1

k∑
α=1

Prob
{
γj = α

}
Prob

{
βj ≤

⌊
k

αδj

⌋}
(9)

Prob

{
max

1≤j≤P
(ηj) = k

}
= Prob

{
max

1≤j≤P
(ηj) ≤ k

}
− Prob

{
max

1≤j≤P
(ηj) ≤ k − 1

}
(10)

with the floor present sinceβj is integer-valued. Taking the
normalizing factorsB and1 into account and finding the
expectation yields:

η = 1

B1

∞∑
k=1

k

×
(P∏

j=1

k∑
α=1

Prob
{
γj = α

}
Prob

{
βj ≤

⌊
k

αδj

⌋}

−
P∏

j=1

k−1∑
α=1

Prob
{
γj = α

}
Prob

{
βj ≤

⌊
k − 1

αδj

⌋})
.

(11)

This model is widely applicable and has been used for
the performance evaluation of a number of synchronous
iterative applications. In this paper, the model is used
to describe the performance of discrete-event simulation
and nonlinear optimization [7, 20]. The general model
has also been applied to Gaussian elimination and matrix
multiplication [6]. A similar model is described by
Atallah et al [1]; however, they assume a known constant
background load and do not consider application load
imbalance.

Having formulated a general performance model, we
next investigate the distributions ofγj and βj . We
first consider the impact of application load imbalance
alone. We then consider background load imbalance and
the effects of heterogeneity. Finally, we consider the
interaction of application and background load imbalance
on heterogeneous resources.

2.1. Application load imbalance

To refine the model to reflect the effects of application load
imbalance alone, we begin by considering the discrete-event

11

G D Peterson and R D Chamberlain

simulation application running on dedicated, homogeneous
resources. Here,

E[max
1≤j≤P

tparallel,j] = ηtPAR WK

P
= ηNete

P
(12)

whereNe is the mean number of events that are processed
(on all processors) each iteration. Each event takeste time
to be processed.

Three techniques for determiningη are empirical mea-
surement [5], modelling via order statistics [17], and ana-
lytic modelling via a known probability distribution [20].
We use the latter method. Starting from (11), we setγj = 1
to reflect no background load andδj = 1 = 1 to reflect the
same computational speed across the processors.

η = 1

B

∞∑
k=1

k

(P∏
j=1

Prob
{
βj ≤ k

}
−

P∏
j=1

Prob
{
βj ≤ k − 1

})
. (13)

Note that the normalization factorB, the average work for
a processor, is simplyB = Ne/P .

Each iteration, for each processor, we model the
generation of an event via a Bernoulli trial for each of the
simulated objects. If processorj hasSj simulated objects,
each with a probabilityp to have an event at any time,
then [20]:

Prob
{
βj ≤ α

} =
α∑

l=0

(
Sj

l

)
pl(1 − p)Sj −l . (14)

The average number of events per iteration,Ne can be
found in a similar manner [20]. Each processor has a finite
amount of work possible, so we defineφ = max1≤j≤P (Sj),
the maximum possible work for any processor. Then for
dedicated, homogeneous processors

η = 1

B

φ∑
k=1

k

(P∏
j=1

min(k,Sj)∑
l=0

(
Sj

l

)
pl(1 − p)Sj −l

−
P∏

j=1

min(k−1,Sj)∑
l=0

(
Sj

l

)
pl(1 − p)Sj −l

)
. (15)

Using an approximation to make evaluation ofη more
tractable, we apply the DeMoivre–Laplace theorem [18]: if
Sjp(1 − p) � 1 then(

Sj

l

)
pl(1 − p)Sj −l ≈ 1√

2πSjp(1 − p)

× exp

(
− (l − Sjp)2

2Sjp(1 − p)

)
. (16)

Therefore, we approximateη as follows:

η ≈ 1

B

φ∑
k=1

k

(P∏
j=1

min(k,Sj)∑
l=0

1√
2πSjp(1 − p)

× exp

(
− (l − Sjp)2

2Sjp(1 − p)

)

−
P∏

j=1

min(k−1,Sj)∑
l=0

1√
2πSjp(1 − p)

× exp

(
− (l − Sjp)2

2Sjp(1 − p)

))
. (17)

If we assume that each processor hasS simulated objects,
then

η ≈ (2πSp(1 − p))−
P
2

B

×
S∑

k=1

k

[(k∑
l=0

exp

(
− (l − Sp)2

2Sp(1 − p)

))P

−
(k−1∑

l=0

exp

(
− (l − Sp)2

2Sp(1 − p)

))P
]

. (18)

We now have an analytic expression for application
load imbalance for a discrete-event simulation application
executing on dedicated, homogeneous resources.

2.2. Imbalance due to background load

We next turn to modelling the imbalance due to background
load and focus on genetic epidemiological optimization
applications without any appreciable application load
imbalance (i.e.,βj = 1). We assume the application and the
background load are independent, the background load on
each processor is independent and identically distributed, all
tasks on a processor have the same priority, and (initially)
the processors are homogeneous. Substitutingβj = B = 1
andδj = 1 = 1 into (11) yields

η =
∞∑

k=1

k

(P∏
j=1

Prob
{
γj ≤ k

}
−

P∏
j=1

Prob
{
γj ≤ k − 1

})
. (19)

If the background load on processorj is k tasks, and
each task (including the application) gets an equal fraction
of the CPU time, the application will takek + 1 times
as long as if it were run on an idle processor. Hence,
γj = k + 1 in this case. Assuming the existence of
a background load distributionQj,k (the probability ofk
background tasks on processorj), Prob

{
γj = k + 1

} =
Qj,k. This distribution can be derived via a queueing
model of the background workload. We assume that the
background jobs arrive following a Poisson process with a
given rateλj and consider two queueing models to describe
the background load. The first, a Processor Sharing (PS)
model, is an idealization of round robin scheduling where
the time quantum for each process approaches zero [12].
Assuming that the service distribution is Coxian [11], the
queue length distribution for a server isQj,k = (1− ρj)ρ

k
j ,

whereρj is the ratio of the arrival rate to the service rate
(ρj = λj/µj). For general service distributions, finding the
queue length distribution for a processor sharing server is
impractical.

12

Parallel application performance in a shared resource environment

For the processor sharing case with Coxian distributed
service times,

Prob {γi ≤ α + 1} =
α∑

l=0

(1 − ρj)ρ
l
j

= (1 − ρj)

(
1 − ρα+1

j

1 − ρj

)
= 1 − ρα+1

j

P rob
{
γj ≤ α

} = 1 − ρα
j . (20)

Assuming processor sharing on shared, homogeneous
resources running the nonlinear optimization application,
the load imbalance is given by:

η =
∞∑

k=1

k

[
P∏

j=1

(
1 − ρk

j

)−
P∏

j=1

(
1 − ρk−1

j

)]
. (21)

To extend the processor sharing model to heterogeneous
resources, we substituteβj = B = 1 into (11).

η = 1

1

∞∑
k=1

k

[
P∏

j=1

Prob

{
γj ≤

⌊
k

δj

⌋}

−
P∏

j=1

Prob

{
γj ≤

⌊
k − 1

δj

⌋}]
. (22)

We also include the impact of heterogeneity on the service
rate for background tasks by defining the service rate
µj = µ 1/δj , where µj is simply the baseline service
rate µ scaled to reflect the relative processing power of
processorj . Applying this result into (20) yields:

Prob

{
γj ≤

⌊
k

δj

⌋}
= 1 −

(
δjλj

µ1

)⌊ k
δj

⌋
. (23)

The load imbalance for the optimization application
running on shared, heterogeneous resources and assuming
processor sharing is then

η = 1

1

∞∑
k=1

k

[
P∏

j=1

(
1 −

(
δjλj

µ1

)bk/δj c)

−
P∏

j=1

(
1 −

(
δjλj

µ1

)b(k−1)/δj c)]
. (24)

A second queueing model, based on FCFS M/G/1
queueing theory, is also used to derive the queue length
distributions, allowing us to include more general service
distributions. Given a service time density,bj (x), and its
Laplace–Stiltjes transformB∗

j (s), the Pollaczek–Khinchine
transform formula [12] is employed to find thez-transform
of the queue length distribution for processorj .

Qj(z) = B∗
j (λj − λj z)

(1 − ρj)(1 − z)

B∗
j (λj − λj z) − z

. (25)

The queue length distribution is then found by performing
an inversez-transform.

To understand the service requirements of typical UNIX
processes, Leland and Ott collected statistics on 9.5 million

processes [14]. They found that exponential distributions
are not accurate for modelling service times, but a good
model for the cumulative distribution function of service
time is:

F(x) ≈ 1 − rx−c1.05 < c < 1.25 (26)

with the best results withr = 0.241 andc = 1.122. This
model is only accurate for jobs of at least 1 second duration,
and does not have a finite variance. Order statistics (such
as the expected maximum ofP random variables) which
are drawn from distributions with infinite variance are
unbounded [8]. To address this, we have modified this
to a density function as follows:

f (x) =


0.759 if 0 ≤ x < 1
crx−(c+1) if 1 ≤ x ≤ 1000
0 if x > 1000

(27)

Although this distribution now has a finite variance, the
Pollaczek–Khinchine transform yields a solution whosez-
transform inversion is intractable. Therefore, we do not use
this distribution in the performance model, but we will use
synthetic workloads in accordance with this distribution to
validate the modelling methodology.

In their simulations of load balancing algorithms,
Banawan and Zeidat utilize a hyperexponential (mixed
exponential) service distribution to model the required CPU
time of processes [2]. Based on these results, we model the
service distribution as a hyperexponential distribution with
two types of customers. For some probabilitiesπa,j and
πb,j = 1 − πa,j and service ratesµa,j and µb,j , we have
the density

bj (x) = πa,j µa,j e−xµa,j + πb,j µb,j e−xµb,j (28)

and

B∗
j (s) = πa,j µa,j

µa,j + s
+ πb,j µb,j

µb,j + s
. (29)

System accounting tools were used to collect statistics
on the service requirements of processes on numerous
machines for several weeks. Similarly, arrival rate statistics
for the machines were accumulated. These statistics are
used to determine the service and arrival rate distributions
in the model. We choose the values ofλj , the arrival rate
of jobs at processorj ; πa,j and πb,j , the probabilities of
each type job; andµa,j andµb,j , the service rates of each
type of job based on the empirical results.

2.3. Application and background load imbalance

Having developed performance models for both application
load imbalance and background load imbalance, we now
scrutinize their combined effects. Once again, discrete-
event simulation is the parallel application of interest.

We now model the load imbalance on shared heteroge-
neous resources assumingγj and βj are independent dis-
crete random variables,

Prob
{
ηj ≤ k

} = Prob
{
γjβj ≤ bk/δjc

}
=

k∑
α=1

Prob
{
βj = α

}
Prob

{
γj ≤

⌊
k

αδj

⌋}
. (30)

13

G D Peterson and R D Chamberlain

If we restrict ourselves to processor sharing, then from the
derivation in section 2.2,

Prob
{
ηj ≤ k

} =
k∑

α=1

Prob
{
βj = α

}
×
(

1 −
(

1λj

µδj

)bk/αδj c)
. (31)

The load imbalance is then

η = 1

B1

∞∑
k=1

k

(P∏
j=1

Prob
{
ηj ≤ k

}
−

P∏
j=1

Prob
{
ηj ≤ k − 1

})
(32)

= 1

B1

∞∑
k=1

k

(
P∏

j=1

k∑
α=1

Prob
{
βj = α

}
×
(

1 −
(

1λj

µδj

)bk/αδj c)
−

P∏
j=1

k−1∑
α=1

Prob
{
βj = α

}
×
(

1 −
(

1λj

µδj

)b(k−1)/αδj c))
. (33)

We apply the results of the Bernoulli trials and the
DeMoivre–Laplace theorem to findη for the simulation
application. The load imbalance is given by

η = 1

1B

∞∑
k=1

k

 P∏
j=1

min(Sj δj ,k)∑
α=1

1√
2πSjp(1 − p)

× exp

(
− (α − Sjp)2

2Sjp(1 − p)

)(
1 −

(
1λj

µδj

)bk/δj αc)

−
P∏

j=1

min(Sj δj ,k−1)∑
α=1

1√
2πSjp(1 − p)

× exp

(−(α − Sjp)2

2Sjp(1 − p)

)1 −
(

1λj

µδj

)⌊ k−1
δj α

⌋ . (34)

Using this equation and the general performance model
given in (5), we can describe the performance of the
discrete-event simulation application running on shared,
heterogeneous resources.

2.4. Model validation

We first consider the impact of background load on the
nonlinear optimization application. Using synthetic loading
corresponding to the results of Leland and Ott discussed
above, we varied the background load by increasing the
arrival rate of background tasksλ. As shown in figure 1,
the model accurately predicts the impact of background load
imbalance.

Experiments with moderately loaded, heterogeneous
workstations were also performed. Figure 2 shows the
predicted and measured performance of the nonlinear
optimization application on a network of workstations.
The poor performance with two processors is caused by

Leland & Ott Service Distribution
Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

1 2 3 4

20
40

60
80

10
0

12
0

14
0

16
0

*

*
*

*

Leland & Ott Service Distribution
Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

1 2 3 4

20
40

60
80

10
0

12
0

14
0

16
0

+

+
+

+

Leland & Ott Service Distribution
Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

1 2 3 4

20
40

60
80

10
0

12
0

14
0

16
0

*

*

* *

Leland & Ott Service Distribution
Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

1 2 3 4

20
40

60
80

10
0

12
0

14
0

16
0

+

+
+

+

Leland & Ott Service Distribution
Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

1 2 3 4

20
40

60
80

10
0

12
0

14
0

16
0

*

*

*

*

Leland & Ott Service Distribution
Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

1 2 3 4

20
40

60
80

10
0

12
0

14
0

16
0

+

+

+

+

Leland & Ott Service Distribution
Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

1 2 3 4

20
40

60
80

10
0

12
0

14
0

16
0

* Measured
+ PS Model

Lambda = 0.4

Lambda = 0.2

Lambda = 0.1

Figure 1. Nonlinear optimization on shared, homogeneous
resources.

Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

2 4 6 8

10
12

14
16

18
20

22

+

+

+

+

+
+

+

+

Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

2 4 6 8

10
12

14
16

18
20

22

*

*

*

*

* *

*

*

Number of Slave Processors

R
un

tim
e

pe
r

Ite
ra

tio
n

(s
ec

on
ds

)

2 4 6 8

10
12

14
16

18
20

22

+ PS Model
* Measured

Figure 2. Nonlinear optimization on shared, heterogeneous
resources.

the fact that, although the second processor in the pool
is more powerful than the other processors, it is heavily
loaded. The performance model accurately predicted the
performance of the nonlinear optimization executing on the
shared, heterogeneous workstations.

The discrete-event simulation application was executed
on an nCUBE/7 hypercube to validate the model when
there is application load imbalance, but no background
load imbalance [20]. Figure 3 shows that the model is

14

Parallel application performance in a shared resource environment

Processors

R
un

tim
e

(s
ec

on
ds

)

0 10 20 30 40 50 60

65
0

70
0

75
0

80
0

85
0

*

*

*

*

*

*

*

* Measured

- Model

Figure 3. Simulation on dedicated, homogeneous
resources.

Processors

R
un

tim
e

(s
ec

s)

2.0 3.0 4.0 5.0

40
0

60
0

80
0

10
00

12
00

*

*

*

*

+

+

+

+

* Measured

+ Model

Figure 4. Simulation on shared, heterogeneous resources.

accurate in this instance also. Finally, the discrete-event
simulation application was executed on a network of shared
workstations to validate the model when there is both
application and background load imbalance [21]. Although
the model error is larger in this instance, the model
is still reasonably accurate, reliably reflecting measured
performance trends, as illustrated in figure 4.

3. Usage policies and parallel application
scheduling

When two or more parties are sharing a common resource,
the effective utilization of that resource must be measured
against a desired policy, or usage goal. Here, we are
interested in investigating various policies to guide the
sharing of a network of workstations between the individual
workstation owners and distributed applications. We are
also interested in mechanisms to carry out those policies.
Specifically, we help to solve the following problem: given
a set of workstations with some existing background load
pattern and a parallel application with known computational
requirements, choose an appropriate set of workstations on
which to execute the parallel application that best meets a
set of predetermined policy goals.

A number of issues must be addressed when
establishing a usage policy. Defining the relative
importance of parallel applications compared to background
load is one important policy issue. In addition, it is
often desirable to differentiate between the individual
workstations in the pool (i.e., guiding the parallel
application towards some machines and away from others)
due to their processing power, current workload, or other
external factors.

To implement a desired policy, we will incorporate
the goals of that policy into a cost function that rates
how well the assignment of parallel tasks to workstations
meets the policy goals. By using optimization techniques
to minimize the cost function, the parallel application
can be scheduled to most efficiently utilize the shared
computational resources.

Optimization of a general cost function is an NP-hard
problem. Therefore, true optimization is often limited
to restricted classes of problems which have efficient
solutions. A number of restricted scheduling problems
have been studied with efficient algorithms for finding
optimal solutions described in [3, 23, 25]. Atallahet al
investigate parallel algorithms similar to those considered in
this paper and give an algorithm for finding the optimal set
of homogeneous processors to minimize runtime assuming
a known constant background load [1]. To determine the
schedule with the minimum parallel application runtime
we use the algorithm shown in figure 5, where the sort
is based on the arrival rate of background jobs. This
algorithm, similar to the one described in [1], gives the
optimal solution.

For parallel applications running on heterogeneous
resources, the performance model and cost function are
significantly more complex. To find the minimum runtime
in this case, we resort to agreedyheuristic to find a near-
optimal solution [16, 22]. If we assume that the parallel
application is divided equally among each of the processors,
then we only need to consider the background load and
heterogeneity to determine the set of processors to use.
The background load is modelled with a processor sharing
queueing model, so the expected number of background
tasks at processorj is ρj/(1 − ρj), assuming that the
service distribution of background tasks is Coxian. Adding
the parallel application, the expected number of tasks at

15

G D Peterson and R D Chamberlain

Sort available processors S

P ↼↽{i}, where i is processor in S with lowest arrival rate
while not done do

P ′ ↼↽P ∪ {j}, where j is next processor in S

if RP ′ < RP

P ↼↽P ′

else
done ↼↽ TRUE

endwhile
return optimal set P

Figure 5. Optimal algorithm for minimum runtime (homogeneous processors).

processorj is 1/(1 − ρj). Because the processors are
heterogeneous, we scale the runtime byδj /1. Multiplying
the background load and heterogeneity scale factors, we
find that processorj is expected to takeδj /[1(1 − ρj)]
times as long as if run on an idle baseline processor. For
the heuristic, we sort the processors based on the values of
this scale factor, and find a near-optimal set of processors
P using the same algorithm as shown in figure 5.

The above two algorithms (for homogeneous and
heterogeneous processors) implement a policy that ignores
the impact of the parallel application on the other
workstation users. By minimizing the execution time of
the parallel application, without considering the impact on
other users, the cost function essentially gives the parallel
application priority over the owners of the workstations.

We next introduce a more flexible cost function
that explicitly reflects the importance of minimizing the
completion time of the parallel application as well as
minimizing the impact that the parallel application has on
other workstation users. We assume that there is some
cost per unit time,x, which reflects the goal of minimizing
the runtime of the parallel application. If each processor
j used in the computation has some cost per unit time,
cj , associated with its usage by the application, then we
formulate a cost function,CP , which reflects the trade-
off between maximizing application performance and the
expense of using the workstations:

CP = xRP +
P∑

j=1

cjRP = RP

(
x +

P∑
j=1

cj

)
. (35)

By assigning appropriatecj values, the cost function
reflects policies concerning which workstations are
encouraged for use with parallel applications. As thecj
values increase, the cost of using additional processors
increases, making the use of fewer processors more likely
to be optimal. In contrast to the individual processor
costs,x is used to reflect the importance of minimizing the
execution time of the application, regardless of the number
of processors. As we change the relative values ofx and
the cj terms, we have a spectrum of policies that describe
the relative importance of application performance and its
impact on background processing.

We explore one example of this type of policy by
considering a network of homogeneous workstations with
identical costs for the use of each workstation (in this

* * * * * *
*

*

*

*

*

*

*

* *

Optimization

x/c

O
pt

im
al

 P

0.1 1.0 10.0 100.0

0
5

10
15

20
25

30

* * *
*

*

*
*

*

*

*
*

* * * *

Simulation

x/c

O
pt

im
al

 P

0.1 1.0 10.0 100.0

5
10

15

Figure 6. Optimal set of homogeneous processors.

case, the cost function isCP = RP (x + cP)). Once
again we find the optimal solution using the algorithm in
figure 5, replacingRP with CP . Because the algorithm
orders the processors and adds processors toP in order,

16

Parallel application performance in a shared resource environment

knowing the number of processors inP is sufficient
information to describe which processors are inP . Figure 6
displays the optimal number of processors to use for
the nonlinear optimization and discrete-event simulation
applications running on a homogeneous network of 32
workstations. In this figure, we vary the ratiox/c to
reflect a variation in the relative importance of the parallel
application and the workstation owner’s load. With enough
priority given to the workstations’ owners (lowx/c), the
parallel application is assigned to only one processor. With
enough priority given to the parallel application (high
x/c), the cost function effectively minimizes the application
runtime. Between these two extremes, the number of
processors assigned to the parallel application reflects the
assigned importance of the application and the background
workload at each processor.

When running the application on heterogeneous
processors, we need to use a heuristic as before, again
replacingRP with CP . In this example, the heterogeneous
network contains 32 workstations of four different speeds,
as denoted by the valueδj for processorj . Six of the
processors haveδj = 1, six haveδj = 2, ten haveδj = 4
and ten haveδj = 8. The performance of the serial case is
found by using the fastest processor while unloaded.

The near-optimal number of processors to use for
the two applications when running on heterogeneous
workstations is shown in figure 7. As in the homogeneous
case, we vary the relative importance of the parallel
application and the background load. Again, when the
parallel application is given low priority (lowx/c), it is
assigned to only a single processor (in this case, the fastest
processor with the lowest background load). When the
parallel application is given higher priority (highx/c), a
larger set of processors is used.

The previous two examples assigned an equal priority
to each of the available workstations (i.e.,∀j, cj = c). By
assigning different values ofcj to different workstations,
a number of different policies can be reflected. In the
simplest case, assigning a highercj to some workstations
and a lower cj to others discourages the use of the
workstations with highercj . For example, the workstation
where the parallel application is initiated could have a low
cj to encourage the application to run locally and only
branch out to other workstations if there is a significant
runtime benefit to doing so. Additional sophistication can
be incorporated into the usage policies by making thecj
values functions of either time of day and/or current load.
As functions of the time of day, parallel applications can
be encouraged to use a larger set of workstations when the
workstations’ owners are not expected to be present. By
makingcj a function of the current workload at processorj ,
the policy can further discourage the use of already loaded
workstations.

So far we have considered mechanisms that assign
varying priorities to the parallel application or to the other
workstation load, but do not put hard limits on where (or
for how long) the parallel application is allowed to execute.
Policies that include such limits can be implemented using
a constrained optimization.

For example, consider a policy that states the parallel
application should be assigned to an appropriate set of

* * *

* *

*

*

* * * * * * * *

Optimization

x/c

O
pt

im
al

 P

0.1 1.0 10.0 100.0

1
2

3
4

5
6

* * * *

* * *

* *

* * * * * *

Simulation

x/c

O
pt

im
al

 P

0.1 1.0 10.0 100.0

1.
0

2.
0

3.
0

4.
0

Figure 7. Near-optimal set of heterogeneous processors.

processors so that it is expected to complete in a specified
amount of time, but it is to be assigned to processors in
such a way as to minimize the impact on other workstation
load while still meeting its runtime goal. This policy could
be formulated as the following optimization problem: given
an execution time goalGR, minimize

P∑
j=1

cjRP

under the constraintRP ≤ GR. Similarly, a policy that
bounds the resource utilization of the parallel application
and desires to minimize the execution time under a
utilization constraint could be formulated as the following:
given a resource utilization boundGC , minimizeRP under

17

G D Peterson and R D Chamberlain

the constraint

P∑
j=1

cjRP ≤ GC.

In both of the above two examples, we are essentially
constraining one of the two terms in (35) and minimizing
the other term.

As the cost function becomes more complicated (either
by varying thecj values or imposing additional constraints),
the optimization problem becomes significantly more
difficult. As a result, the simple algorithms described above
are no longer effective and general optimization techniques
must be used.

The above discussion shows how one can use
performance models of parallel applications executing on
networks of workstations to help implement usage policies
that guide the sharing of available computational resources.
A policy is embodied in a cost function that is minimized to
yield the optimal (or near-optimal) assignment of processors
for a parallel application execution. Depending on the form
of the cost function to be optimized, either an optimal
algorithm, heuristic, or general optimization technique is
the most appropriate.

4. Conclusions and future work

There is a great desire to more efficiently utilize the
computational resources that currently go unused on
individuals’ desks. The systems that support the use of
these resources, however, are in their infancy, and therefore
do not yet provide effective coordinated sharing of machine
cycles. They typically fall at one end of the policy
spectrum or the other, ignoring the impact they are having
on a workstation’s owner or checkpointing and moving
somewhere else if they suspect that the owner is currently
using a machine. We are exploring the middle ground,
where computationally intensive applications are allowed
to exploit underutilized desktop workstations while being
cognizant of the impact they are having on the workstation’s
primary user.

To this end, we have developed performance models
for synchronous iterative algorithms that accurately
characterize parallel application performance in the
presence ofapplication load imbalance, background load
due to other users, andheterogeneityacross the processor
set. These models are used to formulate a cost function
that reflects the policy goals of the organization. This cost
function is then optimized to guide the scheduling of the
parallel application onto an appropriate set of processors.
By an appropriate choice of cost function (and associated
optimization method), a wide variety of policy choices can
be supported.

Although the results presented here are positive (i.e.,
the performance models reflect actual runtimes, the cost
functions characterize the policy goals, and the optimization
algorithms yield viable parallel algorithm assignments),
there are a number of factors limiting the widespread
adoption of the techniques described here. These factors
point to additional research that is needed. First,

the relationship between the cost function and policy
goals relies heavily on the accuracy of the performance
model. Although an accurate performance model was
presented for synchronous iterative algorithms, many
parallel applications do not fit the model and would need an
alternative performance predictor for effective use. Second,
the development described in this paper assumed the
problem of assigning a set of processors to execute only one
parallel application. The methods developed here must be
extended to support multiple parallel applications executing
simultaneously. Efe and Schaar [10] have some results in
this area, supporting co-scheduling of parallel applications.
Third, once assigned to a processor, parallel tasks are
assumed to be of equal priority to the other workstation
load. We are currently extending the performance model
to accurately reflect priority assignments on individual
workstations. Fourth, the cost function optimization is
likely to be a computationally intensive operation in its
own right. Either the cost functions must be constrained
so that the scheduling decisions can be made efficiently, or
more efficient heuristics must be developed to find near-
optimal solutions to sophisticated cost functions. In spite
of the limitations described above, we are clearly making
progress in supporting the effective sharing of currently
underutilized resources.

References

[1] Atallah M J, Black C L, Marinescu D C, Siegel H J and
Casavant T L 1992 Models and algorithms for
coscheduling compute-intensive tasks on a network of
workstationsJ. Parallel Distrib. Comput.16 319–27

[2] Banawan S A and Zeidat N M 1992 A comparative study
of load sharing in heterogeneous multicomputer systems
Proc. 25th Ann. Simulation Symp. (Orlando, FL)(Los
Alamitos, CA: IEEE Computer Society Press) pp 22–31

[3] Bokhari S H 1988 Partitioning problems in parallel,
pipelined, and distributed computingIEEE Trans.
Comput.37 48–57

[4] Brochard L, Prost J-P and Faurie F 1989 Synchronization
and load unbalance effects of parallel iterative
algorithmsProc. Int. Conf. on Parallel Processing (St
Charles, IL)vol 1 (University Park, PA: The
Pennsylvania State University Press) pp 153–60

[5] Chamberlain R D and Franklin M A 1990 Hierarchical
discrete-event simulation on hypercube architectures
IEEE Micro 10 (4) 10–20

[6] Chamberlain R D and Franklin M A 1993 Performance
effects of synchronization in parallel processorsProc.
5th IEEE Symp. on Parallel and Distributed Processing
(Dallas, TX)(Los Alamitos, CA: IEEE Computer
Society Press) pp 611–6

[7] Chamberlain R D, Franklin M A, Peterson G D and
Province M A 1995 Genetic epidemiology, parallel
algorithms, and workstation networksProc. 28th Hawaii
Int. Conf. on System Sciences (Maui, HI)(Los Alamitos,
CA: IEEE Computer Society Press) pp 101–10

[8] David H A 1970Order Statistics(New York: Wiley)
[9] Dubois M and Briggs F A 1982 Performance of

synchronized iterative processes in multiprocessor
systemsIEEE Trans. Software EngngSE-8 419–31

[10] Efe K and Schaar M A 1993 Performance of co-scheduling
on a network of workstationsProc. 13th Int. Conf. on
Distributed Computing Systemspp 525–31

[11] Harrison P G and Patel N M 1993 Performance Modelling
of Communications Networks and Computer
Architectures(Reading, MA: Addison-Wesley)

18

Parallel application performance in a shared resource environment

[12] Kleinrock L 1975Queueing Systemsvol 1 and 2 (New
York: Wiley)

[13] Kruskal C P and Weiss A 1985 Allocating independent
subtasks on parallel processorsIEEE Trans. Software
EngngSE-111001–16

[14] Leland W and Ott T 1986 Load balancing heuristics and
process behaviorProc. PERFORMANCE ’86 and ACM
SIGMETRICS (Rayleigh, NC)(New York: ACM Press)
pp 54–69

[15] Litzkow M and Livny M 1990 Experience with the Condor
distributed batch systemProc. IEEE Workshop on
Experimental Distributed Systems (Huntsville, AL)(Los
Alamitos, CA: IEEE Computer Society Press)

[16] Lo V M 1988 Heuristic algorithms for task assignment in
distributed systemsIEEE Trans. Comput.37 1384–97

[17] Madala S and Sinclair J B 1991 Performance of
synchronous parallel algorithms with regular structures
IEEE Trans. Parallel Distrib. Syst.2 105–16

[18] Papoulis A 1984Probability, Random Variables, and
Stochastic Processes(New York: McGraw Hill)

[19] Peterson G D 1994 Parallel application performance on
shared, heterogeneous workstationsDSc Thesis
Washington University in St. Louis

[20] Peterson G D and Chamberlain R D 1994 Beyond
execution time: expanding the use of performance
modelsIEEE Parallel Distrib. Technol.2 (2) 37–49

[21] Peterson G D and Chamberlain R D 1994 Sharing
networked workstations: a performance modelProc. 6th
IEEE Symp. on Parallel and Distributed Processing
(Dallas, TX)(Los Alamitos, CA: IEEE Computer
Society Press) pp 308–15

[22] Ramamritham K, Stankovic J A and Shiah P-F 1990
Efficient scheduling algorithms for real-time
multiprocessor systemsIEEE Trans. Parallel Distrib.
Syst.1 184–94

[23] Stone H S 1978 Critical load factors in two-processor
distributed systemsIEEE Trans. Software EngngSE-4
254–8

[24] Sunderam V S 1990 A framework for parallel distributed
computingConcurrency: Practice Exper.2 315–39

[25] Tantawi A N and Towsley D 1985 Optimal load balancing
in distributed computer systemsJ. ACM 32 445–65

[26] Turcotte L H 1993 A survey of software environments for
exploiting networked computing reourcesTechnical
Report MSU-EIRS-ERC-93-2NSF Engineering Research
Center for Computational Field Simulation, Mississippi
State University, Starkville, MS

19

