
Distributed Systems Engineering

Implementing configuration management policies
for distributed applications
To cite this article: Gerald Krause and Martin Zimmermann 1996 Distrib. Syst. Engng. 3 86

View the article online for updates and enhancements.

You may also like
CRAB3: Establishing a new generation of
services for distributed analysis at CMS
M Cinquilli, D Spiga, C Grandi et al.

-

DIVE: a scaleable network architecture for
distributed virtual environments
Emmanuel Frécon and Mårten Stenius

-

Distributed least-squares estimation
applied to GNSS networks
A Khodabandeh and P J G Teunissen

-

This content was downloaded from IP address 18.191.152.120 on 14/05/2024 at 13:05

https://doi.org/10.1088/0967-1846/3/2/003
https://iopscience.iop.org/article/10.1088/1742-6596/396/3/032026
https://iopscience.iop.org/article/10.1088/1742-6596/396/3/032026
https://iopscience.iop.org/article/10.1088/0967-1846/5/3/002
https://iopscience.iop.org/article/10.1088/0967-1846/5/3/002
https://iopscience.iop.org/article/10.1088/1361-6501/ab034e
https://iopscience.iop.org/article/10.1088/1361-6501/ab034e

Distrib. Syst. Engng 3 (1996) 86–95. Printed in the UK

Implementing configuration
management policies for distributed
applications

Gerald Krause † and Martin Zimmermann ‡
IBM European Networking Center, Heidelberg, Germany

Abstract. The central purpose of this paper is to present a novel framework
supporting the specification and the implementation of configuration management
policies for distributed applications. The introduced approach is part of a system
called PRISMA (A platform for integrated construction and management of
distributed applications). It provides an integrated application development
environment comprising of a distributed application model, a specification language
and several design, implementation and management tools. To reduce
management complexity, we introduce a technique which permits the definition of
configuration management policies as an integral part of an application
specification. A configuration management policy is composed of one or more
instantiation rules and termination rules for component creation and termination,
and event-driven reconfiguration rules.

1. Introduction

The central purpose of this paper is to present a novel
framework supporting specification and implementation of
configuration management policies for distributed applica-
tions. The introduced approach is part of a system called
PRISMA (a platform for integrated construction and man-
agement of distributed applications). It provides an inte-
grated application development environment comprising a
distributed application model, a specification language and
several design, implementation and management tools.

Distributed applications can be characterized by the
following features [14]:

• Complexity: typical distributed applications contain
a large number of cooperating components and
interconnections, resulting in a complex overall
structure.

• Intensive communication: during runtime components
use intensive communication and coarse-grained
parallelism due to independent activities of the different
components.

• Dynamic changes: a distributed application may be
reconfigured during its lifetime due to evolutionary
and operational changes, e.g. creation or deletion of
components.

Long-running applications are a major challenge be-
cause they require specific mechanisms for reconfiguration.
Changes should be executable during runtime, they should
cause minimal disturbance to the running application and
must be performed in such a way that leaves the running

† Email address: krauseg@vnet.ibm.com
‡ Email address: mzimmermann@vnet.ibm.com

application in a consistent state. As a consequence, appro-
priate mechanisms for monitoring and controlling of com-
ponents and interconnections are required, e.g. reconfigu-
ration mechanisms which preserve consistency. An inter-
active management system is also needed which supports
automatic control of distributed applications.

A precondition for configuration management is the
availability of a specification technique for application
configurations, i.e. specification of components (e.g.
single components, component groups), communication
relationships between components (e.g. one to many or
many to many relationships), as well as specification of
configuration constraints (e.g. the minimum cardinality of
running component instances of a component type). To
reduce management complexity, this must also involve a
technique which permits the specification of configuration
management policies as an integral part of an application
specification.

The paper is organized as follows. Section 2 illustrates
the basic characteristics of our application specification
technique: specification of application configurations,
components, interfaces and communication contexts. In
sections 3, 4 and 5 we present a technique which permits
the specification of configuration management policies as
an integral part of an application specification. A policy is
composed of one or more instantiation rules, termination
rules and reconfiguration rules. Based on a rule-driven
platform, in section 6 we illustrate a set of tools and the
software architecture of our management system. Related
work is discussed in section 7.

0967-1846/96/020086+10$19.50 c© 1996 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd

Implementing configuration management policies for distributed applications

.....

Figure 1. Configuration specification.

2. Specification of distributed applications

A distributed application is composed of several coop-
erating components running on different physical nodes.
From the application designer’s viewpoint the basic build-
ing blocks of a distributed application are components with
their interfaces and communication properties.

In the following, we illustrate the basic features of
our specification technique. A client–server application
is chosen to illustrate how our application model and the
related specification technique can be used to specify the
different aspects of a distributed application.

2.1. Application configuration

The configuration language is based on Darwin [7]
but additionally provides configuration constraints, which
describe configuration properties by predicates valid
at all times during a running distributed application.
A configuration specification describes the types of
application components, the initial component instances,
how these component instances are interconnected, and
optionally a set of configuration constraints.

A component is either associated with a user and
therefore calledinteractive or a software agent offering
some service or executing some intermediate function.
Besides ‘single’ component instances it is possible to define
component groups whose size can vary during runtime.

Figure 2. Component and interface specification.

These groups are the basic concept for modelling dynamic
user groups as interactive components in which new
members join, and existing members leave the application
at arbitrary times. Configuration constraints describe
restrictions concerning the allowed configurations.

Figure 1 illustrates the specification of a client–server
configuration. From the configuration point of view, the
basic structure of a client–server application is that of
an interactive client group communicating with one or
more server components (document server and workflow
server). The application configuration describes the initial
client and server components (COMPONENTS), the topology
(BINDINGS), and a set of configuration constraints (not
shown in figure 1).

The component group concept is used to specify a
collection of client and server components. Such a group
can be annotated with an initial set of members and in the
case of interactive components with users who are allowed
to participate in the application, i.e. may create a client
component instance (INSTANTIATION BY).

Regarding the bindings, a designer can specify explicit
or implicit bindings. In the first case, a binding
declaration contains concrete component instances, known
at specification time. In the latter case (see figure 1),
bindings are defined implicitly by component properties
instead of certain component instances.

To express consistency requirements a distributed ap-
plication can be enriched with constraints. Existence con-

87

G Krause and M Zimmermann

straints define invariants in terms of required components
and/or bindings. Placement of components onto a set of
available computer nodes is determined by specification of
placement constraints.

2.2. Components, interfaces and communication
contexts

Components represent the distribution and configuration
entities of a distributed application. A component type
is described in terms of interfaces and communication
contexts (see figure 2).

Interfaces are interaction points of components and
describe the permissible interactions between cooperating
components. Concerning the polarity, we distinguish
between asymmetric interfaces which represent client–
server behaviour and symmetric interfaces which enable a
peer-to-peer cooperation. In addition to other approaches,
the language allows the integration of a cooperation
protocol. For each asymmetric interface of a component
the polarity at the interface has to be determined, e.g.
whether the component acts as a consumer and/or a
supplier. The properties of each interface are described
separately using the interface specification language. An
interface specification consists of the operations which can
be invoked and/or the operations which are offered. It is
an optional part of an interface specification and enables
the specification of regulations, i.e. we can specify which
operation should be executed on which interface and by
whom.

Communication contextsspecify explicitly the commu-
nication requirements of distributed applications. For this
purpose we provide a language which enables the specifica-
tion of communication-oriented properties, such as the com-
munication relation (connection-oriented or connection-
less), the interaction type (message-oriented or operation-
oriented) and the properties of a transport service [1, 2].
The latter are determined by the kind and amount of data ex-
changed between participants. For example, in interactive
multimedia applications, the transport system requirements
depend on the kind of media [17]. The communication re-
quirements of a component are described by assigning one
or more communication contexts to each interface.

3. Configuration management

Configuration management for distributed applications
covers all phases during the lifetime of a distributed
application: application specification, application creation
and change management. In the specification phase, the
initial application configuration, consisting of

• components
• bindings
• configuration constraints
• configuration management policies.

has to be defined using a configuration specification
language (figure 3). After validation, creation of an
initial application configuration can be initiated. This

Figure 3. Management activities.

involves the creation of corresponding software processes
and communication channels.

During runtime, change management is needed for the
following activities:

• component management: creation, deletion and
migration of components

• binding management: creation, deletion and modifica-
tion of communication relationships between compo-
nents

• status and history management: evaluation and
modification of the application status, e.g. passivation
of components

• policy management: definition of policies, modification
and deletion of existing policies [16].

Figure 4 illustrates the basic infrastructure of our
configuration management system. From the user’s point
of view a configuration management system provides
an interactive graphical interface for specification of an
initial configuration, for establishment of the corresponding
processes and communication channels, for performing
reconfiguration activities during runtime, and for observing
the administrative and operational status of the application.

A management component must maintain an internal
representation of a running distributed application in
order to support operations for monitoring and control
of a distributed application as well as for performing
management policies. Such a computational representation
consists of component representatives together with the
communication relationships of each component instance,
related configuration constraints, as well as configuration
management policies.

4. Configuration management policies

According to the definition in [10, 11, 15], a policy is
defined as a ‘persistent specification of an objective to
be achieved or a set of actions to be performed in the
future or as an ongoing regular activity’. More formally,
a policy is a pattern of the form ‘condition→ actions’
(when? what? how?), where the condition specifies when
something, namely the specified action, has to be done to
preserve the policy.

88

Implementing configuration management policies for distributed applications

Figure 4. Management infrastructure for distributed application management.

4.1. Characteristics of configuration management
policies

In our work, policies are used to influence the application
configuration. They are the first step toward automated
high-level management tasks currently maintained by
human administrators.

Figure 5 illustrates the basic infrastructure of our
policy-driven configuration management system. From
the administrator’s point of view there are operations
for defining, querying and changing of policies. We
distinguish two categories of reconfiguration activities. The
first category contains management activities regarding
creation of new components and termination of existing
components. These types of activities are specified using
the concept of instantiation and termination rules(IT
rules). IT rules can be regarded as specific transactions
which define the behaviour on creation and deletion of
components. The idea behind the explicit specification
of IT rules is similar to the concept of constructors
and destructors as used in the programming language
C++ to express instantiation and termination activities
associated with object creation and deletion. Similarly to
IT rules constructors and destructors are implicitly invoked
each time a class object is allocated or deleted. The
second category of management activities results from
the fact that specific events from the application and
network management, such as a crash of a computer node
or the overload of a server component may lead to a
reconfiguration activity. For this purpose, we provide a
concept to specify a reconfiguration activity as a set of
event drivenreconfiguration rules.

The clear separation of policies into instantiation
rules, termination rules, and reconfiguration rules not only
supports modularity, reusability and extensibility of the
management rule data base but also enables the designers
to be guided more efficiently in building their policies. For
instance, we can combine one set of IT rules with different
sets of reconfiguration rules to provide application specific
management policies. Additionally, the close relationship
between reconfiguration rules and IT rules can be handled
automatically by the management system. For example,
whenever a component has to be created or terminated as
part of a reconfiguration rule the corresponding instantiation
and termination rules are triggered implicitly (see figure 5).

It should be noted, that during the runtime of a
distributed application, it must be possible to establish new
policies, and to modify or discard existing policies. Hereby
new and changing management objectives can be achieved.
For instance, there can be a set of policies to describe fault

tolerant application configurations, and there can be another
set to describe high performance configurations for stable
and reliable system environments.

4.2. Instantiation and termination rules

During runtime of a distributed application, the basic
configuration management activities are the creation and
termination of application components. However, in most
cases it is not sufficient simply to create and remove
components. Instead there are additional initializing and
terminating actions to be performed so that the resulting
application configuration will be consistent. Consider for
instance, a server group with replicated resources. The
integration of a new server into such a server group
implies that the existing group must be passive to prevent
modifications of the resources during the join activity.
Also, after creation it must be connected with the other
servers of the group.

The concept of instantiation and termination rules facil-
itates a consistent integration of newly created application
components into a running distributed application as well
as a correct termination of components. They are described
in terms of

• administrative state: preparation of a configuration
change by passivating components or their interfaces
ensuring minimal disturbance of components not
involved in the change and preservation of the resulting
configuration’s consistency

• management transactions: sequences of basic manage-
ment operations which are executed with transaction
semantics. Depending on the application state, differ-
ent management transactions may be executed.

A configuration change consists of several consecutive
steps. In the case of terminating a component, the
component must be set in a ‘frozen’ state where we can
guarantee that all incoming interactions (at any of its
interfaces) are completed, and no new interactions are
initiated. This can be reached by passivating the component
as a whole. In a second step, the current application state
is examined and used to select an appropriate sequence of
configuration change operations. This operation sequence
is finally executed to perform the configuration change. To
be able to restore the original configuration this is done
within a transaction.

To illustrate this procedure, consider the termination
of a server in the introduced example: Before removing
it, all connected clients must be passive to prevent any

89

G Krause and M Zimmermann

Figure 5. Integration of configuration management policies.

incomplete interaction. Then, as an optional terminating
action to preserve the operability of the application, the
client bindings must be delegated to another server. Finally
the server component is removed.

In order to preserve consistency, the rules have to be
executed according to a specific protocol, consisting of a
sequence of phases. In the first phase, the administrative
state of a component is set by the management system
as specified in the rule. Before performing a rule the
internal representation of the configuration is used to
compute the resulting configuration by simulating the
selected management transaction. If the new configuration
does not satisfy the specified consistency constraints, the
change will not be performed. Before executing the rules,
checkpoints have to be set to be able to completely undo a
change if some operation fails. After successful completion
the checkpoints are cleared, and the remaining passive
components are activated.

4.3. Reconfiguration rules

A reconfiguration rule describes a condition and a sequence
of related management transactions to be executed when
the condition is observed. A condition is a predicate
expressed on the application model, i.e. configuration
information about components, interfaces and roles. In
contrast to instantiation and termination rules where a
management transaction is selected by some application
state, reconfiguration rules are triggered by events.

We distinguish between periodic events generated by
a scheduler, and change events to reflect a state change
of some application or network entity. The latter includes
events from the network management (e.g. shutdown of
a node) and/or application management (e.g. overload of
a component). For example, depending on the current
load of a server, a reconfiguration rule could describe that
replication has to be initiated.

In order to get information from the underlying net-
work, we extend the basic management architecture by an
additional network management component (see figure 6).
From the network management point of view, there are op-
erations to indicate events relevant for the application man-
agement, e.g. the eventprepareForShutdown indicating
a shutdown of a computer node (figure 6). In the opposite
direction the network management component provides op-
erations to receive events from the application management

Figure 6. Interaction between network management and
application management.

(e.g. the eventreadyForShutdown in figure 6) and opera-
tions to acquire resource properties of computer nodes. The
latter operations are essential for determining alternative
nodes for automatic placement at component creation time
and migration of components during runtime. Application
events are generated by notifications of application com-
ponents. Performance monitoring events are of special in-
terest, because they can result in the need to reconfigure
the application. Therefore, metric objects are integrated
into the application components. They are responsible for
notifying a management component when relevant value
changes take place.

A metric object consists of a metric element such as
a counter or a gauge, and a description when to send
an event notification [3]. Hereby, the filter mechanism
is incorporated into the application component. When a
component is prepared for the integration of metric objects,
they can be created, removed, activated and passivated
during runtime to avoid any unnecessary performance loss
and to be able to adjust them to the minimum set of required
events. In order to reduce the huge amount of event
notifications to a reasonable size, an intermediate filter as
a discriminator forwards relevant events and discards all
other.

5. Policy specification

In this section we outline our specification language for
instantiation and termination rules and for reconfiguration
rules. Both languages are based on the fact that
it can be foreseen what kind of actions have to be
performed for what purpose, independent of any concrete
configuration. Therefore the languages must provide

90

Implementing configuration management policies for distributed applications

expressive capabilities to reference the building blocks
of an application specification, i.e. names of components,
contained interfaces, etc. Rather than describing the full
flavour of both languages, the most important constructs
are presented in the context of examples.

5.1. Instantiation and termination rule specification

According to the different aspects of a configuration
change introduced in the previous section, a rule
description is divided into multiple parts. In figure 7
an example for a termination rule for a document server
component is shown; it consists of the partsCONSTANTS,
ADMINISTRATIVE STATE, andTRANSACTIONS.

The CONSTANTS part is optional and can be used to
define some constants which may be referenced throughout
the rest of the rule. Here, the set constantboundClients
designates all clients bound with the server to be terminated.
With the constantaltServer an alternative server is
determined to which all theboundClients could be bound.

Next, in theADMINISTRATIVE STATE part the required
frozen state of the server is specified. Here, all bound
clients must be passivated before the server can be
terminated. Finally, the configuration change operations are
determined. First, all the concerned clients are bound to the
alternative server, and then the server can be terminated.

In more complex examples, another optional part is
included in a rule where the management transaction is
selected by querying the current application state. In this
case, several named transactions are specified.

5.2. Reconfiguration rule specification

In order to explain the specification of reconfiguration rules,
we use a migration rule for the document servers which
should take place when a shutdown event notification is
sent by the network management. Figure 8 shows the
specification. The overall structure of the rule consists of
a part containing the conditions to be observed, and an
action part which describes the actions to be performed for
satisfied conditions.

In the example above, the first clause of theshutdown
condition is a notification prepareForShutdown for
a specific node which is indicated by the network
management (see figure 6). If this clause becomes true,
the next clause checks all other conditions required for
migration for all servers running on that node. First, a
server on the affected node must be able to migrate (which
is not necessarily true for any kind of components). Then,
there also must be an alternative node to migrate to which
fulfils the resource requirements of the server.

Now, whenever ashutdown condition becomes true,
the corresponding actions are performed. For each server
of the set computed in the condition, an appropriate node is
selected for migration. Finally, the shutdown request will
be confirmed by areadyForShutdown notification sent
back to the network management system (see figure 6).

6. Tools and software architecture

For the implementation of a distributed application we
have developed an object-oriented software architecture
where components, interfaces and roles are realized by
C++ classes. In the following, we concentrate on the
implementation of the management system, especially the
implementation of configuration information, IT rules and
reconfiguration rules.

6.1. Architecture

The functionality which must be implemented for a
configuration management application results from the
underlying application model. A management component
has five essential parts (see figure 9, right part):

• representation of configuration information
• representation of configuration management policies
• configuration management application
• communication infrastructure
• rule interpretation system

A computational representation of an application
configuration and its parts is stored in an information base
consisting of component representatives with their bindings
and roles, related constraints, instantiation and termination
rules and reconfiguration rules.

6.2. Representation of management information

The top-level object of the information base is a
configuration object which serves as a local computational
representation of a running distributed application. It is
composed of component objects as local representatives
of application components and is obtained from a
configuration specification.

Each component representative has three essential parts
[19]:

• configuration information: this consists of information
about interfaces, roles and bindings of an application
component as well as related type information.
Operations are provided to access and manipulate
the configuration information, e.g. creation of a new
binding.

• management functionality: this part contains informa-
tion about how to access the corresponding running
application component. It includes a reference to a
communication object to enable access to the remote
managed application component.

• graphical representation: the graphical representation
serves as the interface to the human administrator.
It contains information for the representation of
components, interfaces, roles etc as graphical icons
and operations for access and manipulation of icons.
For example, data to represent position and colour of
component icons as well as methods to move and delete
component icons.

91

G Krause and M Zimmermann

Figure 7. Example of a termination rule.

Figure 8. Example of a reconfiguration rule.

Figure 9. Architecture of a management component.

Using the object-oriented paradigm, we developed a
set of classes for the basic elements of a configuration
specification. These classes serve as a foundation
for building an information base to enable access and
modification of an application configuration [20]. A
base class contains all the information about the currently
valid component instances with their interfaces, roles and

bindings and the location of the components. From this
base class we derive a class which is used to represent
a configuration associated with constraints. Constraints
are mapped onto corresponding parse tree objects. These
tree objects keep all the information required to perform
consistency checks. Whenever a check of a constraint is
initiated, the related tree is easily walked through.

92

Implementing configuration management policies for distributed applications

In the existing prototype, the configuration information
is based on a central file system. Future work will
concentrate on an implementation using an object-oriented
data base. This enables not only direct and natural handling
of persistent C++ objects but also supports enhanced
navigator mechanisms within the object store.

6.3. Representation and implementation of rules

The management application for execution of reconfigura-
tion activities is mainly based on the integration of a rule
interpretation system. We use Nexpert Object [12] as a
platform for rule based systems. This approach permits us
to use a general purpose rule interpreter. The representa-
tion of information and rules in Nexpert Object conforms
to our application model. Especially, the expert system
shell has an object oriented data model to express descrip-
tive information. Dynamic knowledge is represented by
situation–action statements stored as rules. The situation
part of a rule consists of one or more conditions that must
apply, if the action part is to be triggered during knowledge
processing. This knowledge presentation allows us to rep-
resent the elements of a distributed application by objects
in Nexpert Object.

Before processing of rules, in a first step, rules
are transformed into the computational representation of
Nexpert Object. In the second step, these rules are
executed by the built-in rule interpreter. During knowledge
processing Nexpert Object interacts with the configuration
object, which is part of the information base. In the
situation part of the rules information about the application
configuration (components, interfaces, roles, bindings) is
fetched using method calls of the configuration object and
its contained objects. Similarly, in the action part of the
Nexpert Object rules the configuration object is modified
or extended using appropriate method calls.

A configuration management application is responsible
for handling incoming events from the graphical user
interface as well as from the remote application
components.

6.4. Tools

To support the specification, implementation and manage-
ment of distributed applications, we developed a set of tools
in C++ (figure 9, left part). There are tools for

• specification of interfaces, components and application
configurations (design editor, see figure 10)

• specification of configuration management policies (text
editor)

• validation of a specification (interface compiler,
component compiler, configuration compiler)

• generation of an internal object-oriented representation
• interactive graphical management system.

We use our configuration and management system
for a distributed application from the Message Handling
System (MHS) domain, consisting of user agents, message
store components and message transfer agent components.
However, the existing prototype does not support the

interaction between application management and network
management. Events from the network management must
be notified to the application management by explicit user
interactions.

Currently, we concentrate on configuration and
management of telecooperation applications. Our
telecooperation infrastructure is composed of document
servers, workflow servers, and conference servers based
on Lotus Notes as the document application platform and
FlowMark as the workflow application platform.

The experiences gained so far showed that the
management functions provided at component level are not
sufficient to meet the requirements of complex distributed
business applications. The existing configuration and
management platform must be extended to enable more
sophisticated techniques that support also management of
fine-grained objects.

7. Related work

Rex [8] focuses on an integrated methodology and associ-
ated support tools for the development and management of
parallel and distributed systems. A distributed application
is structured as a set of software modules and communi-
cation ports. The structure of a distributed application is
described by the separate configuration language Darwin
which is based on experiences using the Conic configura-
tion language. Darwin includes facilities for hierachic defi-
nition of composite objects, for parameterization of objects,
for multiple instantiation of components and recursive def-
inition of components. Components are objects and have
well defined interfaces specified by an interface specifica-
tion language. A component may be implemented in a
range of heterogeneous programming languages.

Our approach can be regarded as an extension of the
work done in Rex and Conic. At interface level we provide
the concept of a cooperation protocol which can be used to
describe the cooperation between application components
as well as to specify the interaction between management
and application components. In contrast to Rex, we use
an explicit representation of communication properties and
management interfaces as an integral part of a component
specification. Our configuration language provides means
to specify constraints, explicit and implicit bindings, and
configuration management policies.

Polylith [4, 13] is a platform for development and
management of distributed software applications. It
provides similarly to Conic a language for describing
the application structure as well as a software bus for
managing the runtime activities. Based on an application
specification, the software bus initiates the establishment
of the distributed application, i.e. execution of the modules
and creation of communication channels between modules.
Insofar, Polylith differs from our approach in similar ways
to Rex.

Meta [9] aims to provide a technique for integration
of management functionality into application code. The
basic idea is to instrument an application with sensors
and actuators. A sensor represents part of the state
of the monitored application, e.g. built-in sensors for

93

G Krause and M Zimmermann

Figure 10. Graphical design editor.

obtaining statistics about utilization of memory and
processor. Actuators provide operations for changing
process priority, migrating processes to another machine or
restarting a failed process. A control program observes the
application behaviour through interrogating sensors which
return values of the application state and its environment.
Correspondingly, the behaviour of the application can be
altered using the concept of actuators. On top of this
functionality, a rule based language is provided which
supports the specification of management policy rules.
Each rule is composed of a condition part and a sequence
of expressions involving actuators and sensors.

In contrast to Meta, our specification technique is used
for describing application- and management properties of a
distributed application. Moreover, based on our application
model we support mechanisms to automatically determine
the management properties of an application component.
For example, the type of binding management required for
an application component can be obtained by analyzing the
binding properties of the application interfaces as part of
the component specification.

The standardization activities in Open Distributed
Processing (ODP) [5, 6] aim to provide a support
environment for distributed applications. Based on the
object-oriented paradigm, a distributed system is considered
from different viewpoints, each of which is chosen to reflect
one set of design goals. The resulting representation is
an abstraction of a system; that is a specification which
recognizes some distinctions and ignores others. The
current work on ODP defines five viewpoints (concerning
enterprise, information, computational, engineering, and
technology aspects). However, the terminology of ODP
has not been fully developed and is still evolving.

Our work can be regarded as part of the engineering
and computational viewpoint. The computational model
describes two major aspects. The first part contains

an interaction model which introduces the concepts of
invocation and announcement to represent different types
of interactions. The second part is concerned with the
configuration of objects. There is a close relationship
between the terms introduced in this paper and those in
the ODP reference model. Our concept of configuration
constraints, instantiation and termination rules may serve as
a specification technique for the corresponding ODP terms.

8. Conclusion

A new approach for specification and implementation of
configuration management has been introduced. Consistent
change management is supported using the concepts of
constraints, instantiation rules, termination rules, and
reconfiguration rules. The major contributions and
extensions aim to provide an integrated construction
and management methodology as well as methods to
define reconfiguration activities as an integral part of an
application specification.

The clear separation of policies into instantiation rules,
termination rules, and reconfiguration rules has several
advantages. First, it supports modularity, reusablity
and extensibility of the management rule data base.
Additionally, our approach supports more flexibility in
combining different rules taking into account the specific
application requirements. Forming an integral part of a
distributed application specification, generic policies can be
defined for different cooperation paradigms, e.g. for various
types of client–server applications.

At implementation level, the different aspects are inte-
grated in a general object-oriented architecture supporting
modularity and reuse of software. To support the imple-
mentation and management of distributed applications, we
developed a set of tools for the mapping of application spec-
ifications onto an object-oriented implementation model. It

94

Implementing configuration management policies for distributed applications

includes tools for selection and initialization of managed
objects based on a library of C++ managed object classes.
A generic interactive management system enables establish-
ing, monitoring and modifying of distributed applications
as well as definition and modification of management poli-
cies. Future work will concentrate on the integration of
performance and fault management. Moreover, the experi-
ences gained from the prototype implementation will serve
as a basis for implementation of decentralized management
architectures [18], which are needed to manage larger ap-
plications.

References

[1] Berghoff J 1993 Development and management of
communication software systemsTechnical Report 6/93
J W Goethe University, Frankfurt/Main

[2] Feldhoffer M 1995 Model for flexible configuration of
application-oriented communication servicesComput.
Commun.18 69–78

[3] Festor O and Z̈orntlein G 1993 Formal description of
managed object behaviour—a rule based approach3rd Int.
Symp. on Integrated Network Management (San Francisco,
1993) (Amsterdam: North-Holland) pp 45–58

[4] Hofmeister C and Purtilo J 1993 Dynamic reconfiguration in
distributed systems: adapting software modules for
replacement,13th Int. Conf. on Distributed Computing
Systems (Pittsburgh, 1993)

[5] Information Technology–Basic Reference Model of Open
Distributed Processing–Part 2 1993 Descriptive Model

[6] Information Technology–Basic Reference Model of Open
Distributed Processing–Part 3 1993 Prescriptive Model,

[7] Kramer J and Magee J 1990 The evolving philosophers
problem: dynamic change managementIEEE Trans.
Software Eng.16 1293–306

[8] Magee J, Kramer J, Sliman M and Dulay N 1990 An
overview of the REX software architecture2nd IEEE
Workshop on Future Trends of Distributed computing
Systems in the 1990s (Cairo, 1990) IEEE Presspp 396–402

[9] Marzullo K, Cooper R, Wood M and Birman K 1991 Tools
for distributed applications managementComputerAugust,
42–51

[10] Moffett J D and Sloman M S 1991 The representation of
policies as system objectsSIGOIS Bull.12 171–84

[11] Moffett J D and Sloman M S 1993 Policy hierarchies for
distributed systems managementIEEE Select. Areas
Commun.2 1404–14

[12] Nexpert Object Version 2.01991 Functional Description
Model (Neuron Data, Palo Alto)

[13] Purtilo J 1990 The polylith software toolbusCDS Technical
Report 2469University of Maryland

[14] Schill A 1991 Distributed system and execution model for
office environmentsComput. Commun.14 478–88

[15] Sloman M 1994 Policy driven management for distributed
systemsJ. Network Syst. Management2 333–60

[16] Sloman M 1995 IDSM & SysMan common architecture,
Domain & Policy ConceptsSMDS’95 (Karlsruhe, 1995)

[17] Steinmetz R and Meyer Th 1992 Modelling distributed
multimedia applicationsInt. Workshop on Advanced
Communications and Applications for High Speed Networks
(Munich, 1992)

[18] Yemini Y, Goldszmidt G and Yemini S 1991 Network
management by delegationIntegrated Network Management
II ed I Krishnan and W Zimmer (Amsterdam: North
Holland) pp 95–107

[19] Zimmermann M and Drobnik O 1993 Specification and
implementation of reconfigurable distributed applications
2nd Int. Workshop on Configurable Distributed Systems
(Pittsburgh, 1993)

[20] Zimmermann, M, Berghoff J, D̈omel P and Patzke B 1994
Integration of managed objects into distributed applications
IFIP/IEEE Int. Workshop on Distributed Systems,
Operations & Management (Tolouse, 1994)

95

