
Distributed Systems Engineering

An adaptive architecture for causally consistent
distributed services
To cite this article: Mustaque Ahamad et al 1999 Distrib. Syst. Engng. 6 63

View the article online for updates and enhancements.

You may also like
Jordan algebraic interpretation of maximal
parabolic subalgebras: exceptional Lie
algebras
Vladimir Dobrev and Alessio Marrani

-

Meixner functions and polynomials related
to Lie algebra representations
Wolter Groenevelt and Erik Koelink

-

Representations of the quantum algebra
Uq,s(su1,1)
A U Klimyk

-

This content was downloaded from IP address 18.218.172.249 on 09/05/2024 at 03:58

https://doi.org/10.1088/0967-1846/6/2/301
https://iopscience.iop.org/article/10.1088/1751-8121/ab5f84
https://iopscience.iop.org/article/10.1088/1751-8121/ab5f84
https://iopscience.iop.org/article/10.1088/1751-8121/ab5f84
https://iopscience.iop.org/article/10.1088/0305-4470/35/1/306
https://iopscience.iop.org/article/10.1088/0305-4470/35/1/306
https://iopscience.iop.org/article/10.1088/0305-4470/26/24/023
https://iopscience.iop.org/article/10.1088/0305-4470/26/24/023
https://iopscience.iop.org/article/10.1088/0305-4470/26/24/023
https://iopscience.iop.org/article/10.1088/0305-4470/26/24/023

Distrib. Syst. Engng6 (1999) 63–70. Printed in the UK PII: S0967-1846(99)99975-8

An adaptive architecture for causally
consistent distributed services ∗

Mustaque Ahamad †, Michel Raynal ‡ and Gérard Thia-Kime ‡

† College of Computing, Georgia Tech, Atlanta, GA 30332, USA
‡ IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

E-mail: mustaq@cc.gatech.edu, raynal@irisa.fr andthiakime@irisa.fr

Received 10 June 1998

Abstract. This paper explores causally consistent distributed services when multiple related
services are replicated to meet performance and availability requirements. This consistency
criterion is particularly well suited for distributed services such as cooperative document
sharing, and it is attractive because of the efficient implementations that are allowed by it. A
new protocol for implementing causally consistent services is presented. It allows service
instances to be created and deleted dynamically according to service access patterns in the
distributed system. It also handles the case where different but related services are replicated
independently. Another novel aspect of this protocol lies in its ability to use both push and
pull mechanisms for disseminating updates to objects that encapsulate service state.

1. Introduction

Services that are accessed by widely distributed clients are
becoming common place (e.g., especially services targeted to
the home). Such services cannot be provided at the required
level of performance and availability without replicating
the service at multiple nodes of a distributed system. In
fact, it is desirable to have an instance of the service
located in a neighbourhood of clients so access latency and
communication costs can be reduced. Since the replicated
service instances should still function as one logical service,
coordination among service instances is required for correct
operation. In this paper, we are interested in developing an
adaptive protocol for distributed services that allows service
instances to be created and deleted dynamically to match the
service access patterns. We consider systems where services
are encapsulated within objects; in that way, the state of a
service is defined by the state of the corresponding objects
(we will use the words service and object interchangeably).
Three main issues have to be addressed in such a context.

• Internal consistency of a service.Replicated instances
of a given service must be coordinated in order for the
service to be consistent for its users. This is the classical
problem of consistency among the replicas of an object.
• Adaptivity of a service. In order to reduce access

cost, instances of a given service (i.e., copies of an
object) can be created or deleted dynamically. As
indicated previously, many clients in a neighbourhood
may frequently access a service that does not have an

∗ Based on ‘An adaptive protocol for implementing causally consistent
distributed services’ by Mustaque Ahamad, Michel Raynal and Gérard
Thia-Kime which appeared in Proceedings of 18th International Conference
on Distributed Computing Systems (ICDCS ’98); Amsterdam, The
Netherlands, May 26–29, 1998. ©1998 IEEE.

instance close to them. It should be possible to create
a new service instance at a server node close to these
clients. On the other hand, when a service instance is
not used much, it may be desirable to delete this instance
to reduce the cost of coordination among the service
instances.
• Mutual consistency among a set of services.Services

are mutually related because one service may depend on
another one. This means that due to client actions, the
state of a service can be made dependent on the state of
another one (e.g., updating an object from the value of
another one). Mutual consistency considers a collection
of related services and defines consistency across a set
of such services.

Many consistency criteria have been developed for
replicated objects. Linearizability [5] is the most used
(most of the time in an implicit way) consistency criterion.
Intuitively, it says that when reading an object, the value
returned must be the last one that has been written into the
object, where ‘last’ refers to physical time. This consistency
criterion can be weakened by considering ‘last’ referring to
logical time; in that case, we obtain sequential consistency
[7]. These two consistency criteria are calledstrong.
When considering a distributed service, strong consistency
criteria could limit scalability of the service as protocols
implementing them impose a very strong synchronization
on accesses; moreover, strong consistency may not allow
requests to be processed in certain conditions when
communication cannot be completed (e.g., disconnection).
So, in this paper we explore a weaker consistency criterion
for distributed services that allows efficient implementations
of replicated services.

This consistency criterion,causal consistency(CC), has
two main advantages: (1) CC is meaningful for several

0967-1846/99/020063+08$30.00 © 1999 The British Computer Society, The Institution of Electrical Engineers & IOP Publishing Ltd63

M Ahamadet al

applications [1, 4], and (2) protocols that implement CC
require only weak synchronization that permits the design
of efficient implementations. Thus, in this paper we explore
the design of a protocol that can be used to provide causally
consistent distributed services.

The following are the main contributions of the paper:

• Design of an adaptive protocol that allows service
instances to be created and deleted dynamically at
potential servers (e.g., according to the load and the
access patterns of the service).
• Investigation of CC for a set of inter-related services

when the services are independently replicated. In other
words, related services may run on different sets of server
nodes.

This paper is divided into six sections. Section 2
defines causal consistency for distributed services. Section 3
presents the system architecture. Section 4 describes the
protocol implementing causal consistency for a collection of
related distributed services. Section 5 compares the proposed
approach with previous works. Finally, section 6 concludes
the paper.

2. Causal consistency

CC, which is based on causality in distributed systems [6], has
been explored in a number of contexts [1, 2, 10, 11]. These
papers discuss several applications which execute correctly
with the consistency guarantees provided by CC.

We consider a system composed of a finite set of
sequential processes (nodes)s1, s2, . . . , sn which interact
through a finite setO of shared objects. Each objectx ∈ O
can be accessed by a read or a write operation. A write into
an object defines a new value for the object; a read allows
a process to obtain a value of the object. The execution of
a write operation that assigns the valuev into objectx is
denotedw(x)v (for simplicity, and without loss of generality,
we assume all values written into an object are different). The
execution of a read operation of the objectx, that returns value
v is denotedr(x)v.

The execution of processsi is modelled as the sequence
op1

i , op
2
i , . . . , op

k
i . . . whereopki denotes thekth operation

executed bysi (we simply useopi to denote an operation
when we do not need to know what process executed the
operation). Such a sequence defines the local historyĥi of si .
Let hi denote the set of operations executed bysi and→i be
the total order relation on operations issued bysi . ĥi is the
totally ordered set(hi,→i).

An execution history(or simply a history) of the system
is a partial orderĤ = (H,→H) such that:

• H =
⋃
i

hi .

• op1→H op2 (op1 is causally ordered beforeop2) if:

(i) ∃ si : op1 →i op2 (in that case→H is called
process-orderrelation)

(ii) op1 = w(x)v, op2 = r(x)v such thatop2 reads
the value written byop1 (in this case→H is called
read-fromrelation)

(iii) ∃ op3: op1 →H op3 and op3 →H op2
(transitivity).

Figure 1. Classes of nodes for an objectx.

Two operationsop1 andop2 are concurrent in Ĥ if
¬(op1→H op2) and¬(op2→H op1).

CC requires that operations read values of objects that
are notcausallyoverwritten. More precisely, if operation
op2 = r(x)v reads a value written by operationop1 (i.e.,
op1 = w(x)v), it should not be the case that there exists
another operationop3, such thatop3 is an operation on
x with a value different fromv and op1 →H op3 and
op3→H op2. In other words, the value read byop2 has not
been overwritten by another operation that causally follows
op1 and precedesop2. This definition of CC allows each
process to view the execution of its operations with respect to
update operations of other processes in an order that respects
causality. Concurrent operations can be viewed in different
orders by different processes.

Notice that the characterization of CC is independent
of the assumed system environment and the particular
implementations that are used to ensure it. The read and
write operations may be executed locally or remotely by
communicating with one or more other nodes. Only the
values written by update operations and returned by read
operations, and the local order in which nodes issue the
operations are used in the definition of CC.

3. System model

3.1. The underlying distributed system

The underlying distributed system consists of a set of
nodes that communicate by exchanging messages through
a network. There is neither a shared memory nor a common
physical clock. Moreover, each node proceeds at its own
speed, communication delays are arbitrary and the network
is assumed to be reliable (i.e., no node crash, no message
loss). Communication channels are not necessarily FIFO.
Albeit important, system failures are not considered here.
Thus, the underlying distributed system corresponds to the
well known asynchronous reliable distributed model.

3.2. The case of one service (a single object)

We first consider the simple case where there is a single object
that is replicated. Let this object bex. Three sets of nodes
are associated withx (figure 1).

• PermanentServers(x)is a statically defined set of nodes
{si ,sj ,. . .}. Each of these nodes manages a copy ofx and
all nodes cooperate to keep the copies consistent. This
set constitutes the base implementation ofx. In figure 1,
this set is represented by the most interior oval.

64

An adaptive architecture for causally consistent distributed services

• Potential Servers(x)is a statically defined set of nodes
{sk,sl ,. . .}. Each of these nodes is not initially provided
with a copy ofx but it can create or delete (when it
has one) such a copy. At any time during the lifetime
of the system, this set is partitioned into two subsets
(separated by a dotted oval in figure 1): the members
of Potential Servers(x)that have a copy ofx and the
members that do not currently have its copy.
Creation of a copy ofx by a node ofPotential Servers(x)
is ruled by a policy that can be defined by the system
designer (e.g., if there is a user ofx on this node, if
a client node requests it to accessx, if creation of a
copy at this node decreases the load of the network, etc).
Section 4 describes the protocol (mechanism) executed
when a potential server creates a local copy of an object.
Deletion of a copy can be defined either by the
system designer (e.g., when the copy is no more
accessed or requested at this potential server) or by the
protocol implementing consistency (see section 3.3 and
section 4).
• Clients(x) represents the (dynamically defined) set of

nodes that do not belong toPermanentServers(x)∪
Potential Servers(x)but can access the objectx. A node
in Clients(x)accessesx by addressing a permanent or
potential server ofx through a RPC-like mechanism.
Potentially, all nodes of the system that are neither a
permanent server nor a potential server ofx constitute
Clients(x).

From an operational point of view, these three sets
of nodes for objectx can be seen in the following way:
PermanentServers(x)represents the set of nodes acting as
a ‘stable’ memory implementing the consistency and the
permanence ofx; Potential Servers(x)represents the set of
nodes that are allowed to have a ‘cached value’ ofx while
Clients(x)represents the set of nodes that can remotely access
x but are not allowed to maintain a copy ofx (due to access
control or insufficient resource reasons).

According to the previous system model, each potential
serversi of x has the following variables:

• A flag presenti(x) that indicates ifsi currently has a copy
of x. When it has one (presenti(x) = yes), the protocol
ensures that this copy is causally consistent.
• A pointerattached toi(x) that indicates the member of

PermanentServers(x)to which si sends requests for a
copy ofx when it needs one. In this paper we assume
that the value of this variable remains constant but it
could dynamically change to adapt to load changes or to
failures of permanent servers.

Similarly, each permanent serversi for x has the following
variable:

• A set provider fori(x) which includes all potential
servers ofx that receive their copy ofx from si . So,
we have:sj∈ provider fori(x)⇔ attached toj (x) = si .

Finally, each potential or permanent server for an objectx

manages the following variable.

• A node namelast writeri(x) that contains the identity
of the (permanent or potential) node that produced the
value ofx currently stored bysi (whensi is a potential
server withpresenti(x) = no, this value is irrelevant).

Figure 2. Servers for two objects.

3.3. The case of multiple related services (objects)

In general, services may be related to each other. For
example, a document sharing service may depend on
a name service and a file service. This introduces
consistency requirements across copies of multiple objects
that correspond to the different but related services. Let us
consider figure 2 where permanent and potential servers of
two related objectsxa andxb are represented (dotted ovals
have the same meaning as in figure 1). We have:

• nodesi is a permanent server for bothxa andxb;
• nodesj is a potential server (with a copy) forxa and a

permanent server forxb;
• nodesk is a potential server (without a copy) forxa and

a permanent server forxb;
• nodesl is a client forxa and a permanent server forxb.

A server node for one object (e.g.,sl) can be a client for
another object. We will consider in the following, without
loss of generality, only nodes that are permanent or potential
servers for at least one object in a set of related objects.

The fact that there are distinct sets of servers with copies
of different but related objects can create a mutual consistency
problem that the underlying consistency protocols must
solve. The problem is the following one. Lets be a node
that is a server with copies of the two objectsxa andxb, and
let us consider the following situation:s receives an update
for xb and this update depends† on some previous update to
xa that has not yet been applied to its copy ofxa. How should
s process this update? Two cases are possible according to
the status (permanent/potential) ofs with respect toxa:

• s is a permanent server forxa (that is the case ofsi in
figure 2). In this case,s has to wait for the update of
xa to arrive before processing the update ofxb. This
is necessary to avoid a violation of CC as a result of
accessing the old value ofxa after the new value ofxb is
read.
• s is a potential server forxa (that is the case ofsj in

figure 2). In that case,s can invalidate its copy ofxa and
process immediately the update ofxb. This ensures that
the causally overwritten copy ofxa cannot be accessed
at the node. Ifxa is accessed bys in the future, a newer
copy has to be fetched by it.

The consistency test that solves this problem constitutes
the core of the protocol described in the following section.

† The precise nature of thisdependenceis related to the consistency
criterion. We will see in section 4.1 how this dependence can be tracked in
the case of CC.

65

M Ahamadet al

4. The consistency protocol

Section 2 has introduced the consistency criterion (namely
causal consistency) and section 3 has presented a system
model for replicating a collection of related distributed
services. This section presents a protocol implementing this
consistency criterion in this architecture.

4.1. Tracking causality

The most fundamental data structure to track causality
relations and implement causally consistent objects is a two-
dimensional matrix of integers [2, 4, 10, 11]. Although a
version vector is sufficient for tracking causality in the full
replication case where related objects have copies at all server
nodes, partial replication, which allows different servers to
have copies of different subsets of related objects, requires
that information about updates to each object be recorded
separately. For example, consider server nodesi with copies
of objectsxa andxb, and server nodesj with copies of objects
xb andxc. Assume thatsi updatesxa and thenxb, and sends
the updated value ofxb to sj . If only a version vector is used,
si will increment its entry twice when it performs the two
updates. Whensj receives the updated value ofxb, it will not
be able to know if the two updates were both toxb or if one
was to an object thatsj does not store. In the former case,sj
has to wait for the previous update to arrive whereas such an
update will never arrive in the latter case becausesj does not
store a copy of the updated object. To be able to distinguish
between these cases, the updates to different objects have to
be recorded separately which requires a matrix structure for
tracking the causality information.

Let O = {x1, x2, . . . , xm} be the set of related objects
across which consistency needs to be provided andS =
{s1, s2, . . . , sn} be the set of all nodes that are permanent or
potential servers for at least one object inO. CMi [1..m, 1..n]
is the causality matrix† managed by a nodesi in S. Its
meaning is the following one:

CMi [a, j] = number of updates toxa issued bysj
and known bysi .

It is important to note thatCMi [a, j] remains equal to zero
whensj 6∈ PermanentServers(xa) ∪ Potential Servers(xa)
(those entries of the matrix can be saved; this can allow a
compact representation of the matrix). If forxa, the nodesi
is a permanent server or a potential server with a copy, then
the rowCMi [a, ∗] represents the ‘version’ vector of the copy
of xa currently owned bysi .

4.2. Mechanism for propagating updates

To maintain consistency of object copies, a node has to
systematically add new values of objects that it stores. Such
values can be received in messages that are sent to propagate
new values of an object that is written by a server, or a
potential server could request an object copy when it does

† The causality matrix has entries for only those nodes that are a potential or
permanent server for at least one object in a group of related objects. Entries
are not kept for nodes that are clients only. We assume that pure clients do
not directly communicate with each other and hence causality information
is not propagated by communication between clients.

not have one. The propagation of updates to other servers as
well as the processing of such messages depends on whether
a node is a permanent or potential server for an object. Since
a permanent server of an objectxa provides long-term storage
for it, updates toxa need to be sent to its permanent servers.
On the other hand, a potential server forxa only needs to
receive updates toxa when it has its copy and even in this case,
the updates may not be sent if the server fetches consistent
values when it needs them.

A new value of objectxa received at serversi also
brings new causality information based on when the value
was written. As indicated in section 3.3, some of the object
copies existing atsi could become inconsistent according to
this causality information. Ifsi is a permanent server for a
set of objects, it needs to maintain their copies and hence
must wait for causally preceding updates to arrive before
the new value ofxa is added. Sincesi may not receive
updates for objects for which it is a potential server, it is
not correct to wait for those updates. Our protocol handles
this problem by removing overwritten copies of such objects
when it processes the updated value ofxa. Since how updates
are propagated and processed constitute the most important
parts of the protocol, we describe them in detail.

Updates from potential members to permanent members.
When a potential membersj for xa has its copy and
updatesxa with a new valuenew vala, it increments
by one the entryCMj [a, j] and sends the message
newvalue(a,newvala, CMa) to the permanent member
attached toj (xa). Matrix valueCMa is the current value
of CMj and constitutes the causal timestamp of this update.

Let us now consider how a nodesi (member of
PermanentServers(xa)) handles a messagenewvalue(a,
new vala, CMa) which is received from the nodesj (by
construction,sj belongs toprovider fori(xa)). Then, si
broadcasts the messageupdate(j,a,newvala, CMa) to all
the members (including itself) ofPermanent Servers(xa).

Updates from permanent members to permanent
members. When a permanent membersi for xa
updates its copy with a new valuenew vala, it
increments by one the entryCMi [a, i] and broadcasts the
messageupdate(i,a,newvala, CMa) to all the members of
PermanentServers(xa) (including itself). As in the previous
case, this ensures all permanent servers forxa will receive the
updatemessage informing them that the nodesi has written
a new value forxa. How a permanent server processes this
message is described in the next section.

Updates from permanent members to potential members.
Two nodes that are potential servers for an objectxa do not
communicate directly as far asxa is concerned. Updates of
xa are disseminated to them from permanent servers ofxa. To
do this dissemination two different mechanisms are possible
according to the access pattern of the object at the potential
server.

• In thepush-based approach a permanent server nodesi
that receives anupdatemessage forxa systematically
forwards this message to the nodes included in

66

An adaptive architecture for causally consistent distributed services

provider fori(xa) which are currently accessing a copy
of xa. This is desirable when the potential servers
attached tosi frequently use the new values of the object.
• In thepull-based approach a nodesi that is a permanent

server for xa does not forward update messages to
members ofprovider fori(xa). It is up to a potential
serversj to send a request to the permanent server node
attached toj (xa) to get a more up-to-date value ofxa.
This could provide better performance ifsj accesses
xa infrequently and hence does not want to process all
updates toxa.

Both mechanisms can coexist. Some objects can be
updated with the push-based approach while others are
updated with the pull-based approach.

4.3. To wait or to invalidate

Consistency checks are based on vector comparisons. A
vector is actually a row of a causality matrix: the vector
CM1[b, ∗] designates thebth row of CM1 (i.e., a version
vector associated with a value of objectxb). The following
three comparison operators are used (greater than or equal,
greater thanandconcurrent, respectively):

• (CM1[b, ∗] > CM2[b, ∗]) ≡ (∀k : CM1[b, k] >
CM2[b, k])
• (CM1[b, ∗] > (CM2[b, ∗]) ≡ ((CM1[b, ∗] >
CM2[b, ∗]) and (CM1[b, ∗] 6= CM2[b, ∗]))
• (CM1[b, ∗] || CM2[b, ∗]) ≡ (¬(CM1[b, ∗] >
CM2[b, ∗]) and¬(CM2[b, ∗] > CM1[b, ∗])).

The reader can check that from these definitions we have:
• ¬(CM2[b, ∗] > CM1[b, ∗]) ≡ ((CM1[b, ∗] >

(CM2[b, ∗]) or (CM1[b, ∗] || CM2[b, ∗])).

In our implementation these vector comparisons have the
following meanings. Let us consider two updates ofxb
timestampedCM1 andCM2, respectively.

• CM1[b, ∗] > CM2[b, ∗] means that the value of
xb associated with the timestampCM2 is causally
overwritten by the value associated with the timestamp
CM1.
• CM1[b, ∗] || CM2[b, ∗] means that the value of
xb associated with the timestampCM2 and the one
associated with the timestampCM1 have been produced
by two concurrent updates.
• ¬(CM2[b, ∗] > CM1[b, ∗]) means that the value of
xb associated with timestampCM2 is either causally
overwritten (i.e.,CM1[b, ∗] > CM2[b, ∗]) by or
concurrent (i.e.,CM1[b, ∗] || CM2[b, ∗]) with the
update that produces the value with timestampCM1.

Let us consider a nodesi that receives a messagem
= update(j,a,newvala, CMa). The previous section has
described how this message is forwarded to other nodes. This
section describes howsi processes this message. Note that
in such anupdatemessagej is the identity of the node that
produced the updated value contained in the message.

The problem that has to be solved has been mentioned
at the end of section 3.3. Informally:

• First, for all the objectsxb for which si is a permanent
server (si∈ PermanentServers(xb)), si has to delay the
update of the local copy ofxa in order to avoid violation
of CC for xb. This is expressed by statement (S1)
(figure 3).
• Second, for all the objectsxc such that si ∈

Potential Servers(xc) and presenti(xc) = yes, si can
immediately invalidate their local copies if those copies
can violate CC (due to the copy ofxa being updated
with the new value contained in the message). This is
expressed by statement (S2) (figure 3).

The causality relations currently known bysi (they
are described byCMi) and those piggybacked by the
messagem (namely,CMa), allow a formal description of
updatemessage processing as described in figure 3. The
delay statement delays the processing of the concerned
message until some conditions are satisfied; those conditions
(conditionsC1,C2,C3 andC4 in statements (S1) and (S2))
are on the value ofCMi . When the processing of anupdate
message is delayed, otherupdatemessages can be processed
if their conditions are satisfied. (Lines of comment are
preceded by %.)

Statement (S1) ensures that all updates that causally
precede the value ofxa inm (i.e., precede the write operation
that produced this value) and that concern objects for which
si is a permanent server are processed beforem. This
guarantees CC for objects for whichsi is a permanent server.
If si is a potential server forxa and the received value ofxa
is causally overwritten according to the information inCMi

(see the testCMi [a, ∗] > CMa[a, ∗]), it is discarded and
no processing is necessary. This is possible becausesi need
not process all updates to objects for which it is a potential
server. As the received value forxa has been defined bysj ,
the following simpler test, namely,CMi [a, j] > CMa[a, j],
can be used instead ofCMi [a, ∗] > CMa[a, ∗] to determine
if this new value is causally overwritten.

Basically statement (S2) is similar to statement (S1). It
ensures that causal consistency is not violated for objects for
whichsi is a potential server. Let us consider an objectxc for
which si is a potential server. Ifsi was a permanent server
for it, si should wait until all causally preceding updates have
been applied to its copy ofxc (see conditionC2). As si is
only a potential server forxc, it does not have to wait for
these updates to arrive; the price it has to pay to ensure CC
is only to invalidate its current copy ofxc, so the condition
C4 follows. The statement (S2) uses a very conservative
policy (conditionC4) to delete local copies of objects. A less
conservative policy could be used by replacingC4 by the less
constrained conditionC4′ whereC4′ is (presenti(xc) = yes
andCMa[c, ∗] > CMi [c, ∗]).

Statement (S3) updates the control and data context of
si according to the messagem received.

It is interesting to note that in the particular case where
there are no potential servers for any object (i.e.,∀ xa ∈ O :
Potential Servers(xa) = φ), the second part of the statement
(S1) and the statement (S2) disappear; the resulting protocol
becomes similar to the one used in the Isis system [2]
for delivering causally ordered messages across overlapping
groups (the setPermanentServers(xa) constituting the group
associated withxa).

67

M Ahamadet al

Figure 3. Processing of anupdatemessage by nodesi .

4.4. Creation and deletion of objects

The proceduresCreateandDeleteare used by potential servers
of objects to add or remove a copy of an object. The simplest
procedure is the deletion of a copy of an objectxa by one of
its potential serverssi :

procedure Delete(a);
begin presenti(xa) := no;

deallocate the local copy ofxa;
inform attached toi(xa) that the copy
has been deleted

end

The last line allows the nodeattached toi(xa) to update
its data structures so it no longer disseminates updates ofxa

to si when a push policy is used.

When a nodesi ∈ Potential Servers(xa) wants to create
a new copy†, it uses the following procedure.

procedure Create(a);
begin let sj beattached toi(xa);

sendrequest(a)to sj ;
wait update(lastwritera, a,
new vala, CMa) and
execute statements (S1), (S2) and (S3)
(described in section 4.3)

end

† Whensi does not have a copy ofxa , this creation can be initiated by itself,
by a client that requests it to remotely accessxa , or by the underlying load
balancing mechanism. Whensi has a copy ofxa , the create procedure can
be executed whensi wants to get a more recent value ofxa .

68

An adaptive architecture for causally consistent distributed services

The permanent serversj that receives a request for
a copy of objectxa sends back the following message:
update(lastwriterj (xa),a,current value ofxa, CMj).

4.5. Creation and deletion of service instances

The protocol presents a set of mechanisms: how to create
and delete service instances to improve performance, and
how to disseminate updated values to potential servers using
a pull or push mechanism. Policies that determine when these
mechanisms should be used can have significant impact on
the overall performance of the system. For example, one
policy should monitor access patterns in the system. If it
detects that there are lot of access requests and a service
instance does not exist in a neighbourhood, one should be
created at a potential server. The creation of such a server
instance could have significant overhead because copies of
the objects that implement the service must be transmitted to
the potential server. Thus, the object size and the expected
number of invocations of the service must both be considered
in deciding when to create a service instance at a potential
server node. If the object state is large and most of it is
read-only, such a state can be saved locally across multiple
creation and deletion operations to avoid the transmission of
the entire object state each time the service is created.

A similar policy is necessary to decide when a push or a
pull mechanism needs to be used to disseminate new object
values to potential servers that have copies of an object.
Such a policy needs to monitor access patterns to detect if
a potential server node frequently has to fetch new object
copies. If this is the case, the permanent server from which
the potential server creates its copy should push new values it
receives to the potential server. On the other hand, if a server
accesses an object infrequently and several updates may be
performed between consecutive accesses, it is desirable that
not all updates be sent to the server. In this case, if latency
of a pull operation can be tolerated, better performance can
be achieved if the potential server pulls an object copy from
a permanent server when it needs to access the object. Of
course, a hybrid policy, which makes use of both pull and
push mechanisms is what will be used in a system where
different client neighbourhoods have widely varying access
patterns. Our protocol makes it possible to use such a hybrid
policy.

5. Comparison with related work

We have presented a protocol for maintaining CC among
replicated copies of objects that implement a set of related
services. As mentioned earlier, several papers have presented
implementations of CC. In this section, we compare our
protocol with these implementations.

The Isis system [2] (and others that include Horus
[12], Transis [3], Totem [8], Psynch [9])† provides causally
ordered group communication which can be used to maintain
CC among replicated objects. To maintain consistency across
multiple related objects, causal ordering has to be guaranteed

† It is important to note that these systems also put strong emphasis on
reliability and hence address failures. Since we do not address fault-
tolerance in this paper, the comparison with these systems is not complete.

across messages that are sent to different groups. The control
information required by the Isis CBCAST implementation in
this case is the same as the matrix used by our protocol. This is
due to the fact that vector timestamps for each such group will
be included in messages and stored at member nodes. The
protocol we developed exploits the fact that object values can
be overwritten and hence it does not require that messages
containing values of all updates to an object be received by
the object’s potential servers. Thus, our protocol allows a
potential server to control the update propagation rate based
on the communication resources available and the timeliness
requirements for propagating new object values.

The creation and deletion of service instances at potential
servers will result inview changewhen CBCAST is used.
View changes are costly because strong consistency (called
view synchronous communication) is required for the control
object that corresponds to group membership. In our
protocol, we can separate the cases when view changes
happen due to creation and deletion of service instances at
potential servers, which are driven by performance concerns,
from view changes that are triggered by failures. In the
former case, which is addressed in this paper, we can
make the view changeslight-weightoperations (they require
communication with just one permanent server). This is
possible because our protocol makes use of the read/write
semantics of objects and employs both pull and push styles
of communication to ensure CC. Thus, potential servers can
miss some updates when view change is not synchronous but
still can pull a consistent value of the object when they need
to access it.

Other related works that explore implementations of CC
are described in [1, 10]. They do not explore creation and
deletion of server instances and most protocols are either
pull or push-based. Thus, they include a particular policy
for propagating updates whereas our protocol can exploit a
policy that makes use of both, according to service access
patterns.

6. Conclusion

This paper focused on developing implementations of
distributed services when service instances can be created and
deleted dynamically. We investigated CC as the consistency
criterion for such services; moreover an efficient protocol that
implements it has been developed. Three types of nodes have
been identified, namely, permanent server, potential server
and client. The state of a service is encapsulated in an object
which is replicated on a certain number of permanent servers.
Potential servers of a service can also have a copy of its state
but these copies are not permanent (they can be created and
deleted dynamically according to performance or locality
motivations). A client node can access a service but does
not manage an instance of it. Our protocol makes replication
of objects transparent to users as they perceive a causally
consistent set of services. The proposed protocol is novel in
that it allows the system to adapt to service request patterns
by dynamically creating and deleting service instances at
potential servers. It could also use both pull- and push-based
mechanisms for propagating updates to objects.

69

M Ahamadet al

We are now pursuing this work by addressing fault-
tolerance issues. In the long term execution of the system, it
is also desirable to add new permanent servers and to delete
existing ones. Such membership changes can also be induced
by failures. The reliability of the permanent servers of a
service, which constitute a group, can be addressed using
concepts and techniques described in [3,8,9,12].

Acknowledgments

This work was conducted while M Ahamad was visiting
IRISA and was supported by an INRIA grant. It was also
supported in part by ARPA contract DABT-63-95-C-0125,
and by NSF grants CDA-9501637 and CCR-9619371.

References

[1] Ahamad M, Hutto P W, Neiger G, Burns J E and Kohli P
1995 Causal memory: definitions, implementations and
programmingDistrib. Comput.9 37–49

[2] Birman K, Schiper A and Stephenson P 1991 Lightweight
causal and atomic group multicastACM Trans. Comput.
Syst.9 272–314

[3] Dolev D and Malki D 1996 The Transis approach to high
availability cluster communicationCommun. ACM39
64–9

[4] Fischer M J and Michael A 1982 Sacrificing serializability to
attain high availability of data in an unreliable network
Proc. ACM Symp. on Principles of Data Base Systems
pp 70–5

[5] Herlihy M and Wing J 1990 Linearizability: a correctness
condition for concurrent objectsACM Trans. Program.
Lang. Syst.12463–92

[6] Lamport L 1978 Time, clocks and the ordering of events in a
distributed systemCommun. ACM21558–65

[7] Lamport L 1979 How to make a multiprocessor computer
that correctly executes multiprocess programsIEEE
Trans. Comput.C C28690–91

[8] Moser L, Melliar-Smith P M, Agarwal D A, Budhia R K and
Lingley-Papadopoulos C A 1996 Totem: a fault-tolerant
multicast group communication systemCommun. ACM39
54–63

[9] Peterson L L, Buchholz N C and Schlichting R D 1989
Preserving and using context information in interprocess
communicationACM Trans. Comput. Syst.7 217–46

[10] Raynal M, Schiper A and Toueg S 1991 The causal ordering
abstraction and a simple way to implement itInformat.
Process. Lett.39343–50

[11] Raynal M and Ahamad M 1998 Exploiting write semantics
in implementing partially replicated causal objectsProc.
6th Euromicro Workshop on Parallel and Distributed
Processing (January 1998, Madrid, Spain)pp 157–63

[12] Van Renesse R, Birman K P and Maffeis S 1996 Horus: a
flexible group communication systemCommun. ACM39
76–83

70

