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Abstract. This paper explores causally consistent distributed services when multiple related
services are replicated to meet performance and availability requirements. This consistency
criterion is particularly well suited for distributed services such as cooperative document

sharing, and it is attractive because of the efficient implementations

that are allowed by it. A

new protocol for implementing causally consistent services is presented. It allows service
instances to be created and deleted dynamically according to service access patterns in the
distributed system. It also handles the case where different but related services are replicated
independently. Another novel aspect of this protocol lies in its ability to use both push and

pull mechanisms for disseminating updates to objects that encapsulate service state.

1. Introduction

Services that are accessed by widely distributed clients are

becoming common place (e.g., especially services targeted to
the home). Such services cannot be provided at the required

level of performance and availability without replicating
the service at multiple nodes of a distributed system. In
fact, it is desirable to have an instance of the service

located in a neighbourhood of clients so access latency and
communication costs can be reduced. Since the replicated

service instances should still function as one logical service,
coordination among service instances is required for correct
operation. In this paper, we are interested in developing an
adaptive protocol for distributed services that allows service

instances to be created and deleted dynamically to match the
service access patterns. We consider systems where service

are encapsulated within objects; in that way, the state of a
service is defined by the state of the corresponding objects
(we will use the words service and object interchangeably).
Three main issues have to be addressed in such a context.

e Internal consistency of a servic&eplicated instances
of a given service must be coordinated in order for the
service to be consistent for its users. This is the classical
problem of consistency among the replicas of an object.

o Adaptivity of a service. In order to reduce access
cost, instances of a given service (i.e., copies of an
object) can be created or deleted dynamically. As
indicated previously, many clients in a neighbourhood

instance close to them. It should be possible to create
a new service instance at a server node close to these
clients. On the other hand, when a service instance is
not used much, it may be desirable to delete this instance
to reduce the cost of coordination among the service
instances.

Mutual consistency among a set of servic&ervices

are mutually related because one service may depend on
another one. This means that due to client actions, the
state of a service can be made dependent on the state of
another one (e.g., updating an object from the value of
another one). Mutual consistency considers a collection
of related services and defines consistency across a set
of such services.

Many consistency criteria have been developed for
replicated objects. Linearizability [5] is the most used
(most of the time in an implicit way) consistency criterion.
Intuitively, it says that when reading an object, the value
returned must be the last one that has been written into the
object, where ‘last’ refers to physical time. This consistency
criterion can be weakened by considering ‘last’ referring to
logical time; in that case, we obtain sequential consistency
[7]. These two consistency criteria are callsttong
When considering a distributed service, strong consistency
criteria could limit scalability of the service as protocols
implementing them impose a very strong synchronization
on accesses; moreover, strong consistency may not allow
requests to be processed in certain conditions when

may frequently access a service that does not have anfommunication cannot be completed (e.g., disconnection).

* Based on ‘An adaptive protocol for implementing causally consistent
distributed services’ by Mustaque Ahamad, Michel Raynal arédai
Thia-Kime which appeared in Proceedings of 18th International Conference
on Distributed Computing Systems (ICDCS '98); Amsterdam, The
Netherlands, May 26—-29, 1998. ©1998 IEEE.

So, in this paper we explore a weaker consistency criterion
for distributed services that allows efficient implementations
of replicated services.

This consistency criteriortausal consistendCC), has
two main advantages: (1) CC is meaningful for several
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applications [1, 4], and (2) protocols that implement CC Dynamically changing boundary
between servers with and without instance
of the service represented by object x..

require only weak synchronization that permits the design
of efficient implementations. Thus, in this paper we explore
the design of a protocol that can be used to provide causally
consistent distributed services.

The following are the main contributions of the paper:

e Design of an adaptive protocol that allows service
instances to be created and deleted dynamically at
potential servers (e.g., according to the load and the
access patterns of the service).

e Investigation of CC for a set of inter-related services
when the services are independently replicated. In other Two operationsopl andop2 areconcurrentin H if
words, related services may run on different sets of server —(op1 — 5 0p2) and—(op2 — y opl).
nodes. CC requires that operations read values of objects that
This paper is divided into six sections. Section 2 &€ notcausally overwritten. More precisely, _if ope_ration

defines causal consistency for distributed services. Section P2 = 7(x)v reads a value written by operatiop1 (i.e.,
presents the system architecture. Section 4 describes th¢Pl = w(x)v), it should not be the case that there exists
protocol implementing causal consistency for a collection of @nother operatiomp3, such thatop3 is an operation on
related distributed services. Section 5 compares the proposed With @ value different fromv and opl — 4 op3 and

approach with previous works. Finally, section 6 concludes P3 — 1 op2. In other words, the value read by2 has not
the paper. been overwritten by another operation that causally follows

opl and precedesp2. This definition of CC allows each
process to view the execution of its operations with respect to
update operations of other processes in an order that respects
causality. Concurrent operations can be viewed in different

Figure 1. Classes of nodes for an object

2. Causal consistency

CC, whichis based on causality in distributed systems [6], has ders by diff ¢
been explored in a number of contexts [1, 2, 10, 11]. These OTC€rs DY dIlErent processes.

papers discuss several applications which execute correctly Notice that the characterlz_atlon of CCis |ndepen_dent
with the consistency guarantees provided by CC of the assumed system environment and the particular

We consider a system composed of a finite set of im!olementat_ions that are used to ensure it. The read and
sequential processes (nodes)s-, ..., s, which interact write opgrat!ons may be executed locally or remotely by
through a finite seO of shared objects. Each objeck O communlc_atmg with one or more other nodes. Only the
can be accessed by a read or a write operation. A write imovalues. written by update operatlpns apd returneq by read
an object defines a new value for the object; a read allows operat!ons, and the.local oro.le.rlln which nodes issue the
a process to obtain a value of the object. The execution of OPerations are used in the definition of CC.

a write operation that assigns the valuénto objectx is

denotedy (x)v (for simplicity, and without loss of generality, 3. System model

we assume all values written into an object are different). The

execution of aread operation ofthe objedhatreturnsvalue 3.1 The underlying distributed system

VIS denoted(x)_u. . The underlying distributed system consists of a set of
| The execution of processis modelled as the sequence  oges that communicate by exchanging messages through
op;, op;. ..., op; ... whereop; denotes théith operation 5 neqyork. There is neither a shared memory nor a common
executed by; (we simply useop; to denote an operation physical clock. Moreover, each node proceeds at its own
when we do not need to know what process executed thegpeeq communication delays are arbitrary and the network
operation). Such a sequence defines the local higiasfs; is assumed to be reliable (i.e., no node crash, no message
Leth; denote the set of operations executed;gnd—; be sy communication channels are not necessarily FIFO.
the total order relation on operations issuedspyh; is the Albeit important, system failures are not considered here.

totally ordered seth;, —;). _ Thus, the underlying distributed system corresponds to the
An execution historjor simply a history) of the system e known asynchronous reliable distributed model.
is a partial ordeH = (H, — p) such that:

o H= U hi. 3.2. The case of one service (a single object)

1
e opl —y op2 (oplis causally ordered beforp?2) if: We first consider the simple case where there is a single object
that is replicated. Let this object be Three sets of nodes

i) 3 s 1 —; 2 (in that case—y is called . e
M) 3 i opl =i op2 ( " are associated with (figure 1).

process-orderelation)

(i) opl = w(x)v, op2 = r(x)v such thatop2 reads e PermanentServers(x)s a statically defined set of nodes
the value written byp1 (in this case— y is called {s:,5j,...}. Eachofthese nodes manages a copyaid
read-fromrelation) all nodes cooperate to keep the copies consistent. This

@ii) 3 op3: opl —y op3 and op3 —y op2 set constitutes the base implementation.ofin figure 1,
(transitivity). this set is represented by the most interior oval.
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e Potential Servers(x)s a statically defined set of nodes
{sk.s1,- . . }. Each of these nodes is not initially provided
with a copy ofx but it can create or delete (when it
has one) such a copy. At any time during the lifetime
of the system, this set is partitioned into two subsets
(separated by a dotted oval in figure 1): the members
of Potential Servers(x}that have a copy of and the
members that do not currently have its copy.

Creation of a copy af by a node oPotential Servers(x)
is ruled by a policy that can be defined by the system
designer (e.g., if there is a user ofon this node, if
a client node requests it to accessif creation of a

copy at this node decreases the load of the network, etc).

servers of object x,
A

(Kom)

—

I

servers of object x,

Figure 2. Servers for two objects.

Section 4 describes the protocol (mechanism) executed3.3. The case of multiple related services (objects)

when a potential server creates a local copy of an object.

Deletion of a copy can be defined either by the
system designer (e.g., when the copy is no more

accessed or requested at this potential server) or by the

protocol implementing consistency (see section 3.3 and
section 4).

Clients(x) represents the (dynamically defined) set of
nodes that do not belong tBermanentServers(x)J
Potential Servers(xput can access the objectA node

in Clients(x)accesses by addressing a permanent or
potential server ofc through a RPC-like mechanism.
Potentially, all nodes of the system that are neither a
permanent server nor a potential server afonstitute
Clients(x)

From an operational point of view, these three sets
of nodes for objectk can be seen in the following way:
PermanentServers(xyepresents the set of nodes acting as
a ‘stable’ memory implementing the consistency and the
permanence aof; Potential Servers(xyepresents the set of
nodes that are allowed to have a ‘cached valuet @fhile

In general, services may be related to each other. For
example, a document sharing service may depend on
a name service and a file service. This introduces
consistency requirements across copies of multiple objects
that correspond to the different but related services. Let us
consider figure 2 where permanent and potential servers of
two related objects, andx, are represented (dotted ovals
have the same meaning as in figure 1). We have:

e nodes; is a permanent server for bath andx;;

e nodes; is a potential server (with a copy) fay, and a
permanent server fou;

e nodes; is a potential server (without a copy) fey and
a permanent server fay;

e nodes; is a client forx, and a permanent server foy.

A server node for one object (e.g:) can be a client for
another object. We will consider in the following, without
loss of generality, only nodes that are permanent or potential
servers for at least one object in a set of related objects.

The fact that there are distinct sets of servers with copies

Clients(x)represents the set of nodes that can remotely accesf different but related objects can create a mutual consistency

x but are not allowed to maintain a copy.ofdue to access
control or insufficient resource reasons).

According to the previous system model, each potential
servers; of x has the following variables:

o Aflagpresent(x) that indicates if; currently has a copy
of x. When it has onepresent(x) = ye9, the protocol
ensures that this copy is causally consistent.

e A pointerattachedto;(x) that indicates the member of
PermanentServers(x}o whichs; sends requests for a
copy of x when it needs one. In this paper we assume
that the value of this variable remains constant but it
could dynamically change to adapt to load changes or to
failures of permanent servers.

Similarly, each permanent servegrfor x has the following
variable:

e A set provider_for;(x) which includes all potential
servers ofx that receive their copy aof from s;. So,
we have:s; e provider_for;(x) < attachedto;(x) = s;.

Finally, each potential or permanent server for an object
manages the following variable.

e A node namdast writer;(x) that contains the identity
of the (permanent or potential) node that produced the
value ofx currently stored by; (whens; is a potential
server withpresent(x) = no, this value is irrelevant).

problem that the underlying consistency protocols must
solve. The problem is the following one. Lete a node

that is a server with copies of the two objegjsandx,, and

let us consider the following situation:receives an update

for x;, and this update dependst on some previous update to
x, that has not yet been applied to its copypf How should

s process this update? Two cases are possible according to
the status (permanent/potential)sofvith respect tox,:

e s is a permanent server fay, (that is the case of; in
figure 2). In this casey has to wait for the update of
x, to arrive before processing the updatexpf This
is necessary to avoid a violation of CC as a result of
accessing the old value of after the new value of;, is
read.

s is a potential server fax, (that is the case of; in
figure 2). In that casa,can invalidate its copy of, and
process immediately the updatexgf This ensures that
the causally overwritten copy af, cannot be accessed
at the node. I, is accessed hyin the future, a newer
copy has to be fetched by it.

The consistency test that solves this problem constitutes
the core of the protocol described in the following section.

Tt The precise nature of thidependences related to the consistency
criterion. We will see in section 4.1 how this dependence can be tracked in
the case of CC.
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4. The consistency protocol

Section 2 has introduced the consistency criterion (namely

not have one. The propagation of updates to other servers as
well as the processing of such messages depends on whether
anode is a permanent or potential server for an object. Since

causal consistency) and section 3 has presented a system permanent server of an objegiprovides long-term storage

model for replicating a collection of related distributed
services. This section presents a protocol implementing this
consistency criterion in this architecture.

4.1. Tracking causality

The most fundamental data structure to track causality
relations and implement causally consistent objects is a two-
dimensional matrix of integers [2, 4, 10, 11]. Although a
version vector is sufficient for tracking causality in the full
replication case where related objects have copies at all serve
nodes, partial replication, which allows different servers to

have copies of different subsets of related objects, requiresihe new value ofy, is added. Since;

that information about updates to each object be recorded
separately. For example, consider server npadth copies

of objectsx, andx,, and server nodg with copies of objects

xp andx.. Assume that; updatesr, and theny,, and sends
the updated value af, to s;. If only a version vector is used,

s; will increment its entry twice when it performs the two
updates. When; receives the updated valuexgf it will not

be able to know if the two updates were bothxtoor if one

was to an object that; does not store. In the former casg,

has to wait for the previous update to arrive whereas such an

update will never arrive in the latter case becays#oes not
store a copy of the updated object. To be able to distinguish

between these cases, the updates to different objects have t

be recorded separately which requires a matrix structure for
tracking the causality information.

Let O = {x1,x2, ..., x,,} be the set of related objects
across which consistency needs to be provided &ng
{s1, 52, ..., s,} be the set of all nodes that are permanent or
potential servers for atleast one objecinC M;[1..m, 1..n]
is the causality matrixt managed by a nogen S. Its
meaning is the following one:

CM;[a, j] = number of updates ta, issued by ;
and known bys;.

It is important to note tha€ M;[a, j] remains equal to zero
whens; ¢ PermanentServers(x) U Potential Servers(x)
(those entries of the matrix can be saved; this can allow a
compact representation of the matrix). If fqr, the nodes;

is a permanent server or a potential server with a copy, then
the rowC M;[a, *] represents the ‘version’ vector of the copy
of x, currently owned by;.

4.2. Mechanism for propagating updates

To maintain consistency of object copies, a node has to
systematically add new values of objects that it stores. Such

for it, updates tor, need to be sent to its permanent servers.
On the other hand, a potential server fQronly needs to
receive updates tq, whenit hasits copy and eveninthis case,
the updates may not be sent if the server fetches consistent
values when it needs them.

A new value of objectx, received at serves; also
brings new causality information based on when the value
was written. As indicated in section 3.3, some of the object
copies existing at; could become inconsistent according to
this causality information. I§; is a permanent server for a
Set of objects, it needs to maintain their copies and hence
must wait for causally preceding updates to arrive before
may not receive
updates for objects for which it is a potential server, it is
not correct to wait for those updates. Our protocol handles
this problem by removing overwritten copies of such objects
when it processes the updated value ofSince how updates
are propagated and processed constitute the most important
parts of the protocol, we describe them in detail.

Updates from potential members to permanent members.
When a potential membes; for x, has its copy and
updatesx, with a new valuenewval,, it increments
by one the entryCM,[a, j] and sends the message
gewvalue(a,new/alu,CIVI“) to the permanent member
attachedto; (x,). Matrix value CM“ is the current value
of C M; and constitutes the causal timestamp of this update.

Let us now consider how a node (member of
PermanentServers(x)) handles a messagrewvalue(a,
new val,, CM“) which is received from the nodg (by
construction,s; belongs toprovider_for;(x,)). Then,s;
broadcasts the messagpdate(j,a,newal,, CM*) to all
the members (including itself) dfermanent Servers(x).

Updates from permanent members to permanent
members.  When a permanent membes; for x,
updates its copy with a new valumewval,, it
increments by one the enti§M;[a, i] and broadcasts the
messagelipdate(i,a,newal,, C M?) to all the members of
PermanentServers(x) (including itself). As in the previous
case, this ensures all permanent serversfarill receive the
updatemessage informing them that the nogdas written

a new value for,,. How a permanent server processes this
message is described in the next section.

Updates from permanent members to potential members.
Two nodes that are potential servers for an ohjgaio not
communicate directly as far ag is concerned. Updates of

values can be received in messages that are sent to propagalg, are disseminated to them from permanent servers.dfo

new values of an object that is written by a server, or a
potential server could request an object copy when it does

1 The causality matrix has entries for only those nodes that are a potential or

permanent server for at least one object in a group of related objects. Entries
are not kept for nodes that are clients only. We assume that pure clients do

not directly communicate with each other and hence causality information
is not propagated by communication between clients.
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do this dissemination two different mechanisms are possible
according to the access pattern of the object at the potential
server.

o In the pushbased approach a permanent server npde
that receives ampdatemessage for, systematically
forwards this message to the nodes included in
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provider_for;(x,) which are currently accessing a copy
of x,. This is desirable when the potential servers
attached te; frequently use the new values of the object.
In the pull-based approach a nosiethat is a permanent
server forx, does not forward update messages to
members ofprovider for;(x,). It is up to a potential
servers; to send a request to the permanent server node
attachedto;(x,) to get a more up-to-date value ©f.
This could provide better performancesif accesses
x, infrequently and hence does not want to process all
updates to,.

Both mechanisms can coexist. Some objects can be

o First, for all the objects;, for which s; is a permanent
server §;€ PermanentServers()), s; has to delay the
update of the local copy of, in order to avoid violation

of CC for x;,. This is expressed by statement (S1)
(figure 3).
e Second, for all the objectst, such thats; €

Potential Servers(¥) and presen{x.) = yes s; can
immediately invalidate their local copies if those copies
can violate CC (due to the copy af, being updated
with the new value contained in the message). This is
expressed by statement (S2) (figure 3).

The causality relations currently known by (they

updated with the push-based approach while others are@re described byCM;) and those piggybacked by the

updated with the pull-based approach.

4.3. To wait or to invalidate

messagen (namely, C M), allow a formal description of

updatemessage processing as described in figure 3. The
delay statement delays the processing of the concerned
message until some conditions are satisfied; those conditions

Consistency checks are based on vector comparisons. A(conditionsC1, C2,C3 andC4 in statements (S1) and (S2))

vector is actually a row of a causality matrix: the vector
CM1[b, ] designates théth row of CM1 (i.e., a version
vector associated with a value of objeg). The following
three comparison operators are usgeéter than or equal
greater thanandconcurrent respectively):

o (CM1[b,x] > CM2[b, %))
CM2[b, k])

o (CM1[b,x] > ( CM2[b,*]) ( (CM1[b, %]
CM2[b, «]) and (CM1[b, ¥] # CM2[b, *]) )

o (CMI1[b, %] || CM2[b,x]) = ( —~(CM1[b,*] >
CM2[b, ¥]) and —~(CM2[b, ¥] > CM1[b, %]) ).

= (Vk : CM1[bk] >

= >

The reader can check that from these definitions we have:
o —(CM2[b,x] = CM1[b,x]) = ((CM1[b,%] >
(CM2[b, x]) or (CM1[b, ] || CM2[b, %]) ).

In our implementation these vector comparisons have the
following meanings. Let us consider two updatesxpf
timestamped” M1 andC M2, respectively.

e CM1[p,*] > CM2[b,«] means that the value of
x, associated with the timestampM2 is causally
overwritten by the value associated with the timestamp
CM1.

CM1[b,*] || CM2[b,«] means that the value of
xp associated with the timestampM?2 and the one
associated with the timestanip/ 1 have been produced
by two concurrent updates.

—(CM2[b,*] > CM1[b, x]) means that the value of
xp associated with timestam@M?2 is either causally
overwritten (i.e.,CM1[b,*] > CM2[b,«]) by or
concurrent (i.e.,CM1[b, ] || CM2[b, x]) with the
update that produces the value with timestatiy 1.

Let us consider a node that receives a message
= update(j,a,newval,, CM*). The previous section has

are on the value of M;. When the processing of aipdate
message is delayed, othgydatemessages can be processed
if their conditions are satisfied. (Lines of comment are
preceded by %.)

Statement (S1) ensures that all updates that causally
precede the value af, in m (i.e., precede the write operation
that produced this value) and that concern objects for which
s; is a permanent server are processed befare This
guarantees CC for objects for whighis a permanent server.

If s; is a potential server far, and the received value af,

is causally overwritten according to the informationGin;
(see the tes€ M;[a, x] > CM“[a, *]), it is discarded and
no processing is necessary. This is possible becaused
not process all updates to objects for which it is a potential
server. As the received value foy has been defined by,

the following simpler test, namelg M;[a, j] > CM[a, j],

can be usedinstead6M;[a, *] > CM“[a, x]to determine

if this new value is causally overwritten.

Basically statement (S2) is similar to statement (S1). It
ensures that causal consistency is not violated for objects for
whichs; is a potential server. Let us consider an objedor
which s; is a potential server. lf; was a permanent server
forit, s; should wait until all causally preceding updates have
been applied to its copy of, (see conditionC2). Ass; is
only a potential server fox,, it does not have to wait for
these updates to arrive; the price it has to pay to ensure CC
is only to invalidate its current copy af., so the condition
C4 follows. The statement (S2) uses a very conservative
policy (conditionC4) to delete local copies of objects. Aless
conservative policy could be used by replacirggby the less
constrained conditio€'4’ whereC4' is (present(x.) = yes
and CM“[c, ¥x] > CM;[c, *]).

Statement (S3) updates the control and data context of
s; according to the messagereceived.

It is interesting to note that in the particular case where
there are no potential servers for any object (e, € O :

described how this message is forwarded to other nodes. ThisPotential Servers(x) = ¢), the second part of the statement

section describes hosy processes this message. Note that
in such arupdatemessagg is the identity of the node that
produced the updated value contained in the message.

(S1) and the statement (S2) disappear; the resulting protocol
becomes similar to the one used in the Isis system [2]
for delivering causally ordered messages across overlapping

The problem that has to be solved has been mentionedgroups (the seermanentServers(x) constituting the group

at the end of section 3.3. Informally:

associated withy,).
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when s; receives update(j, a,new_val,, CM*?)

begin
% (S1) Delay Part: ensures causality of updates on objects for which
% si is a permanent server is not violated

case

s; € Permanent_Servers(z,) then
delay the processing until (C1 and C2) where
% C1 states that all updates to z, that causally precede this one have been
% locally reported.
Clis ((CMifa,j]+1 = CM?%a,j]) and (Vk # j: CM;[a, k] > CM®[a,k]) )
% (2 states that all updates on all objects z, distinct from z, and for which
% s; is a permanent server, that causally precede this update have been locally
% reported (these updates are revealed by the vector CM?[b, #]).
C2is (Vzp : (zp # 2, and s; € Permanent.Servers(zy)): (CM;[b,*] > CM®[b, *]) )

s; € Potential_Servers(z,) then

if (CMi[a,*] > CM®[a, ]) then exit fi;
% When a potential server s; for an object , receives a value new.val, that it
% knows is causally overwritten (this is revealed by the vector comparison)
% it does not consider it. The exit statement terminates the processing
% of the message. In the other case the processing continues.
delay the processing until (C3) where
% C3 expresses (similarly to C2) that all causally preceding updates on objects
%  zp, for which s; is a permanent server, have been locally reported.
C3is ( Vzp : (s; € Permanent_Servers(zy)): (CM;[b,x] > CM®[b,*]) )

end case;

% (S2) Invalidation Part: ensures causality of updates on objects for which
% si s a potential server is not violated
V.. T, # ¢, and (s; € Potential_Servers(z.)):
do % (4 expresses that the current copy of z. owned by s; is obsolete or
% concurrent as revealed by the causal timestamp CM?, so it is deleted.
C4 is (presenti(z;) = yes and ~(CM;[c,*] > CM%[c, ]);
if C4 then present; (z.) := no fi; /* Local copy of z. is invalidated */
od;

% (S3) Update Part (of the context of s;)
Install the new value new_value, of z,;
if s; € Potential_Servers(z,) then present;(z,) := yes fi;
last writer;(z,) := 7;
Y(b, k) : CM;[b, k] := maz(CM;b, k], CM*[b, k]) od;
end

Figure 3. Processing of anpdatemessage by node.

4.4. Creation and deletion of objects to s; when a push policy is used.

] When a nods; € Potential Servers{,) wants to create
The proceduresreacandpeleteare used by potential servers 5 paw copyt, it uses the following procedure.

of objects to add or remove a copy of an object. The simplest

procedure is the deletion of a copy of an objecby one of procedure creaida);
its potential servers;: begin lets; beattachedto; (x,);
sendrequest(ayo s;,
procedure pelet{a); wait update(lastwritey, a,
begin present(x,) := no; new val,, CM*) and
deallocate the local copy af;; execute statements (S1), (S2) and (S3)
inform attachedto; (x,) that the copy (described in section 4.3)
has been deleted end

end

The last line allows the nodsttachedto;(x,) to update
its data structures so it no longer disseminates updates of
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T Whens; does not have a copy of, this creation can be initiated by itself,
by a client that requests it to remotely accessor by the underlying load
balancing mechanism. Whenphas a copy of,, the create procedure can
be executed whes) wants to get a more recent valuexgt
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The permanent servey; that receives a request for across messages that are sentto different groups. The control
a copy of objectx, sends back the following message: information required by the Isis CBCAST implementation in

update(lastwriter;(x,),a,current value ok,, CM;). this case is the same as the matrix used by our protocol. Thisis
due to the fact that vector timestamps for each such group will
4.5. Creation and deletion of service instances be included in messages and stored at member nodes. The

) protocol we developed exploits the fact that object values can
The protocol presents a set of mechanisms: how to createpe overwritten and hence it does not require that messages
and delete service instances to improve performance, andcontaining values of all updates to an object be received by
how to disseminate updated v'allues to potentlgl Servers usinghe opject's potential servers. Thus, our protocol allows a
apullorpushmechanism. Policies that determine when thesesgtential server to control the update propagation rate based
mechanisms should be used can have significant impact oy, the communication resources available and the timeliness
the. overall performance of the system.. For example, ONe yequirements for propagating new object values.
policy should monitor access patterns in the system. If it tpe creation and deletion of service instances at potential
detects that there are lot of access requests and a SeIViC€arvers will result inview changevhen CBCAST is used
instance does not exist in a neighbourhood, one should beView changes are costly because strong consistency (called

_created ata lp()jothentlal _Ser_\f/_er_ The CLeatljog of such a SEVeliew synchronous communication) is required for the control
instance could have significant overhead because copies o bject that corresponds to group membership. In our

EEe Objtec? tlhatlmple%ent ﬂ:ﬁ SeQ{'CF‘; m_ust be dtrtr;\]nsmlttedtto rotocol, we can separate the cases when view changes
€ potential server. Thus, the object Size€ and the expecte appen due to creation and deletion of service instances at

ir;\ugwbei(;i(;f |nv\\//(k)]cit|tonsrof tthe servrl\(jie mil;lSttb(r:th betcon5|tdenrtied| potential servers, which are driven by performance concerns,
serv?acr noge Ff thcé ?)t?’ift itz(tae iscelar Seaa;’g iwoastpgfeit i: from view changes that are triggered by failures. In the
’ J 9 former case, which is addressed in this paper, we can

read _only, sucha _state can _be saved Ipcally across myltlplemake the view changédight-weightoperations (they require
creation and deletion operations to avoid the transmission of L L .
. . . o communication with just one permanent server). This is
the entire object state each time the service is created. . :
e S . possible because our protocol makes use of the read/write
A similar policy is necessary to decide when a push or a - .
) : : . semantics of objects and employs both pull and push styles
pull mechanism needs to be used to disseminate new objec o .
of communication to ensure CC. Thus, potential servers can

values to potential servers that have copies of an object. . . .
. . .miss some updates when view change is not synchronous but
Such a policy needs to monitor access patterns to detect if . . .
still can pull a consistent value of the object when they need

a potential server node frequently has to fetch new object .
to access it.

copies. If this is the case, the permanent server from which oth lated ks that explore impl i e
the potential server creates its copy should push new values it er refated works that explore implementations o

receives to the potential server. On the other hand, ifaserverar? d_escn]t(:)ed n [1_' 10]. They do(I) not explore clreatlon ‘_"‘Ed
accesses an object infrequently and several updates may bge etion of server instances and most protocols are either

performed between consecutive accesses, it is desirable tha?u” or push-based. Thus,hthey include a pa:tlcular p?h_cy
not all updates be sent to the server. In this case, if latency 0" Propagating updates whereas our protocol can exploit a

of a pull operation can be tolerated, better performance canPolicy that makes use of both, according to service access

be achieved if the potential server pulls an object copy from Patterns.

a permanent server when it needs to access the object. Of

course, a hybrid policy, which makes use of both pull and g conclusion

push mechanisms is what will be used in a system where

different client neighbourhoods have widely varying access This paper focused on developing implementations of
patterns. Our protocol makes it possible to use such a hybriddistributed services when service instances can be created and

policy. deleted dynamically. We investigated CC as the consistency
criterion for such services; moreover an efficient protocol that
5. Comparison with related work implements it has been developed. Three types of nodes have

been identified, namely, permanent server, potential server

We have presented a protocol for maintaining CC among and client. The state of a service is encapsulated in an object
replicated copies of objects that implement a set of related which is replicated on a certain number of permanent servers.
services. As mentioned earlier, several papers have presenteBotential servers of a service can also have a copy of its state
implementations of CC. In this section, we compare our but these copies are not permanent (they can be created and
protocol with these implementations. deleted dynamically according to performance or locality

The Isis system [2] (and others that include Horus motivations). A client node can access a service but does
[12], Transis [3], Totem [8], Psynch [9])T provides causally not manage an instance of it. Our protocol makes replication
ordered group communication which can be used to maintain of objects transparent to users as they perceive a causally
CCamong replicated objects. To maintain consistency acrossconsistent set of services. The proposed protocol is novel in
multiple related objects, causal ordering has to be guaranteedhat it allows the system to adapt to service request patterns
T It is important to note that these systems also put strong emphasis onby dynamlca”y creating and deleting service instances at
reliability and hence address failures. Since we do not address fault- POtential servers. It could also use both pull- and push-based
tolerance in this paper, the comparison with these systems is not complete. mechanisms for propagating updates to objects.
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tolerance issues. In the long term execution of the system, it

We are now pursuing this work by addressing fault-

(4]

is also desirable to add new permanent servers and to delete

existing ones. Such membership changes can also be induced[5
by failures. The reliability of the permanent servers of a

service, which constitute a group, can be addressed using
concepts and techniques described in [3, 8,9, 12].
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