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Abstract. The cost of employing software fault tolerance techniques in distributed systems
is strongly related to the type of failures to be tolerated. For example, in terms of the amount
of redundancy required and execution time, tolerating a processor crash is much cheaper than
tolerating arbitrary (or Byzantine) failures. This paper describes an approach to constructing
configurable services for distributed systems that allows easy customization of the type of
failures to tolerate. Using this approach, it is possible to configure custom services across a
spectrum of possibilities, from a very efficient but unreliable server group that does not
tolerate any failures, to a less efficient but reliable group that tolerates crash, omission,
timing, or arbitrary failures. The approach is based on building configurable services as
collections of software modules called micro-protocols. Each micro-protocol implements a
different semantic property or property variant, and interacts with other micro-protocols
using an event-driven model provided by a runtime system. In addition to facilitating the
choice of failure model, the approach allows service properties such as message ordering and
delivery atomicity to be customized for each application.

1. Introduction

Distributed architectures are increasingly used to construct
systems that must continue to operate despite failures such as
processor crashes. Unfortunately, providingfault tolerance
of this type can be expensive. For example, one strategy is to
replicate the application on multiple independent machines
and then operate them in logical synchrony using the state
machine approach [1]. This requires not only redundant
hardware, but also sophisticated underlying software such as
group atomic multicast [2,3] to keep the states of the replicas
synchronized.

One factor determining the cost of providing fault
tolerance in distributed systems is the type and number of
failures to be tolerated. Typically, the type of faults to
be tolerated is expressed in terms offailure modelsthat
range from relatively benign crash or omission failures to
arbitrary (or Byzantine [4]) failures. In terms of the amount
of redundancy required and execution time, tolerating a
processor crash is much cheaper than tolerating Byzantine
failures. Furthermore, the cost is determined not only by
the failure model, but in many cases also by the number or
frequency of the failures expected to occur. For example, a
simple replication scheme intended to toleratencrash failures
requiresn + 1 replicas.

Any realistic system can, in principle, exhibit failures
in any of the failure models but, typically, failures in the
more benign classes are more frequent than severe failures.
Thus, the choice of failure model for a particular task should

† Present address: Compaq Computer Corporation, 19333 Vallco Pkwy,
Cupertino, CA 95014, USA.

be based on the frequency of different types of failures in
the given execution environment, as well as the criticality
of the task. The tradeoff, of course, is that making stronger
assumptions about failures improves the performance of the
system, but lessens the degree of fault coverage provided by
the system and thus the reliability of the task [5].

This paper describes an approach to constructing
configurable services for distributed systems that allows easy
customization of the type of failures to be tolerated. For
example, using our approach, it is possible to configure
custom services such as communication services across a
spectrum of possibilities, from a very efficient but unreliable
service that does not tolerate any failures, to a less efficient
but reliable service that tolerates crash, omission, timing,
or arbitrary failures. The approach is based on building
configurable services using software modules calledmicro-
protocols. Each micro-protocol implements a different
semantic property or property variant, and interacts with other
micro-protocols using an event-driven model provided by
a runtime system. The net result is an enhanced ability to
explicitly manage the tradeoff between the level of reliability
and cost. As an example, we apply the approach to a group
remote procedure call (GRPC) service that can be used by a
client to transmit a request to a group of replicated servers.
In addition to facilitating the choice of failure model, our
approach allows GRPC service properties such as message
ordering and delivery atomicity to be customized for each
application.
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2. Customizing fault tolerance

2.1. Assumptions

We consider a distributed system model in which multiple
hosts with no shared memory are connected by a
communication network. We assume the underlying
communication service is similar to one provided by the
UDP protocol in a typical Ethernet or Internet environment.
That is, we assume that communication is unreliable and
unordered, and that the end-to-end transmission latency is
typically predictable, but that some messages may be delayed
beyond this point due to collisions or network congestion.
Hosts can only interact by sending and receiving messages
through this communication network. Hosts may fail in
arbitrary ways consistent with the assumed failure model,
but we assume that the communication network does not
experience permanent failures. Among other things, this
implies that partitions are not considered.

Given this model, a faulty host can only affect other
hosts by not sending a message when it should, by sending
a message when it should not, or by sending an incorrect
message. A faulty host may exhibit the incorrect behaviour
only to a subset of the other hosts.

These kinds of incorrect behaviours can easily be
mapped to traditional failure model definitions, including
crash, omission, timing, value and Byzantine:

• Crash. A host may permanently halt and hence, fail to
send messages. If a host is in the process of sending a
message when it crashes, some of the intended receivers
may not receive the message.
• Omission.A host may repeatedly and irregularly fail to

send a message to all or some of the intended receivers,
or fail to receive messages.
• Timing. A host may send a message earlier or later than

expected. The network delaying a message longer than
expected may result in a host appearing to have a late
timing failure.
• Value. A host may send a message with incorrect

contents. We assume, however, that if a value faulty
host sends a multicast message, all receivers will receive
the same message contents, i.e. we assume value failures
are symmetric [6].
• Byzantine.A host may do anything. This means that in

addition to failures of the value and timing type, a faulty
host may deliberately attempt to confuse other hosts
by sending different versions of a message to different
receivers or by impersonating another host.

2.2. Implementation approach

Our approach to providing configurable fault tolerance is
based on implementing distributed services using Cactus
[7, 8]. In Cactus, services are implemented ascomposite
protocols constructed from fine-grain software modules
called micro-protocols. Each micro-protocol implements a
well-defined property or functional component of a service.
A customized service variant is configured by combining the
micro-protocols that implement the desired properties and
functionality. The goal of this paper is to demonstrate that the

Cactus model can easily be used to construct micro-protocol
suites from which various composite protocols tolerating
different classes of failures can be configured.

The Cactus model supports configurability by providing
mechanisms—events and shared variables—that maximize
the independence between micro-protocols. In this model, a
micro-protocol is structured as a collection ofevent handlers
that are bound to events signalling state changes of interest,
e.g. ‘message arrival from the network’. When an event
occurs, all event handlers bound to that event are executed.
Due to the event mechanisms, micro-protocols can cooperate
without directly invoking methods or operations on one
another, which makes them more independent. Execution
of handlers is atomic with respect to concurrency, i.e. each
handler is executed to completion before execution of the
next handler is started. Such atomicity eliminates most
concurrency control problems associated with access to
shared variables.

Event handler binding, event detection, and invocation
are implemented by the Cactus runtime system, which is
linked with selected micro-protocols to form a composite
protocol implementing the custom service. The two primary
event-handling operations arebind(), which specifies a
handler to be executed when a specified event occurs, and
raise(), which raises a specified event with either blocking
or non-blocking invocation semantics. Certain events are also
raised implicitly by the Cactus runtime system, such as the
message arrival event above. Other operations are available
for creating and deleting events, stopping event execution,
cancelling a delayed event, and unbinding event handlers
from events.

Cactus has been implemented on the OSF/RI MK 7.3
Mach operating system and CORDS [9], a variant of thex-
kernel system for building network software [10]. On this
platform, each composite protocol exports the same external
uniform protocol interface (UPI) as CORDS protocols, which
allows them to be combined transparently with CORDS
protocols such as IP or UDP to form the protocol stack.
Communication between CORDS protocols is based on a
push/pop paradigm, where a higher-level protocol pushes a
message to a lower-level protocol and a lower-level protocol
pops a message to a higher-level protocol.

2.3. Providing fault tolerance

The focus of this paper is on constructing configurable
distributed services that can exploit existing algorithms for
tolerating different classes of failures. The ideal would be
to encapsulate such algorithms as ‘fault tolerance modules’
that could be combined with any distributed service S to
automatically create a version of S that could tolerate a
selected failure type. While feasible in certain cases [11,12],
our goal is instead to provide fault tolerance modules—
implemented as Cactus micro-protocols—that are specific to
a given service such as atomic multicast [2, 3], group RPC
(GRPC) [13, 14], group membership [15, 16], or distributed
transactions [17].

The semantic differences between distributed services
are the main motivation for constructing service-specific
micro-protocols. For example, in GRPC, a non-faulty server
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is expected to send a reply message, but no such requirement
exists for asynchronous primitives such as atomic multicast.
This means that the definition of correct behaviour—and thus
the definition of faulty behaviour—is service specific. As the
result, a micro-protocol whose role is to add fault tolerance
to a given service must be constructed with the semantics of
that service in mind.

Semantic variations between versions of the same
service also affect what fault tolerance modules must do.
For example, if a multicast service is designed to provide
atomic delivery of messages to all members of a group, a
fault tolerance module must handle the case when a message
only reaches a subset of intended destinations because the
sending host fails while transmitting the message. However,
if the multicast does not provide atomic delivery, a fault
tolerance module does not need to address such an incomplete
transmission. Finally, depending on the specifics of the
service, it may be possible to reduce the cost of fault tolerance
by piggybacking fault tolerance information on application
messages.

In our approach, a distributed service is implemented as
a composite protocol configured from bothservice micro-
protocols and fault tolerance micro-protocols. Service
micro-protocols provide the basic functionality of the service
and can be written independently of the failure model.
Fault tolerance micro-protocols add tolerance to failures
and are specific to a given failure model. Fault tolerance
micro-protocols are implemented as collections of event
handlers bound to particular events used by the service
micro-protocols. These events would typically include those
indicating the arrival of a message from lower-level protocols,
as well as the imminent departure of a message from the
composite protocol to the next lower level. Thebind()
operation has an ordering argument that is used to ensure that
handlers in the fault tolerance micro-protocols are executed
before or after handlers in the service micro-protocols when
necessary. This allows, for example, messages from hosts
declared faulty to be filtered out. Thus, the event mechanism
allows execution of fault tolerance micro-protocols to be
transparently interleaved with service micro-protocols as
required.

2.4. Fault tolerance micro-protocols

In general, fault tolerance micro-protocols must prevent a
faulty host from interfering with the operation of non-faulty
hosts. The different failure models dictate what type of
interference is to be tolerated. For the crash failure model,
a faulty host fails to send a message when it should, which
may cause a non-faulty host to wait forever for a message.
Thus, a fault tolerance module designed for this type of failure
must ensure that any such wait is eventually terminated.
For example, in a group-oriented service such as atomic
multicast, this can be done by removing the faulty host from
the membership. A crash failure can be suspected if no
messages are received from a host within a given time period.
No agreement between hosts is necessary since crash failures
are eventually detected by all other hosts.

Omission failures can be divided into send and receive
omission failures. Send omission failures are different from

crash failures, since a faulty host may continue to send
messages after it becomes faulty. Detecting that messages
are missing from a sequence is naturally service specific, but
for many services, it can be based on the use of consecutive
message sequence numbers. Agreement between hosts is
required to distribute local omission detections, since a faulty
host may fail to send a message only to some hosts, and thus,
all hosts may not locally detect the failure.

Omission to receive failures are more difficult to handle,
since a faulty host may mistake the symptoms for send
omission failures of other hosts. Thus, distribution of the
detection information is not enough and a majority vote is
required. In this case, a host can locally onlysuspectthe
failure of another host until the agreement is completed. A
host may suspect its own receive omission failure if it does
not receive messages from any other host or if other hosts
repeatedly disagree with its local detection.

Timing failures can be similarly divided into early and
late timing failures. The concept of a message being early or
late is even more service specific than omissions; that is, no
standard mechanism such as sequence numbers can be used
to detect timing failures. Late timing failures can often be
detected by setting a local timer event to fire at the time when
a message should arrive. If the message arrives by this time,
the timer event is cancelled; otherwise, the event handler
declares the expected sender of the message to be faulty.
Agreement on late timing failures is similar to agreement on
send omission failures, i.e. it is sufficient to distribute the
local detection information. However, a host with an early
timing failure may suspect the failure of other hosts, so an
agreement phase similar to that for receive omission failures
is required.

Note that a longer than expected transmission time of
the underlying communication service may cause failure
detection mechanisms to falsely detect host failures of any
of the above types. The probability of such false detections
can be reduced by allowing a longer transmission time before
a failure is suspected, by using retransmissions, and by using
agreement algorithms. Nevertheless, a false detection may
still occur and must be dealt with by forcing the given
host to simulate failure and recovery to rejoin the group.
Such false detections can be minimized by calibrating the
timeout values and number of retransmissions for the network
environment used. Note that, although maintaining such
group membership in an asynchronous system is theoretically
impossible [18], practical systems have demonstrated that
such heuristics result in operational systems.

All of the above fault tolerance micro-protocols deal
with failures in the time domain, meaning that only one is
configured into any given service. However, failures in the
value domain are orthogonal, so value failure micro-protocols
could be used together with any of the above. Detecting
value failures is completely service specific. For example,
it may be based on inspecting the format of a message or
the range of the values if there is some known range of
reasonable values. Or, if the service involves replication
such as GRPC, the responses from different hosts can be
compared to detect value failures. These types of checks can
be implemented easily by a micro-protocol that intercepts
and checks messages before they get to the service micro-
protocols.

105



M A Hiltunen et al

There is no clear-cut boundary between value and
arbitrary failures, so typically a value failure micro-protocol
would handle a fixed set of value failures, with more extensive
failures handled by a micro-protocol dealing with arbitrary
failures if desired. An additional possibility raised with
arbitrary failures is that a faulty host may try to impersonate
another host. Thus, the arbitrary failure micro-protocols
add message authentication, i.e. all messages are signed
using RSA encryption and the signature is checked at the
receiver before the message is forwarded to the service
micro-protocols. Byzantine agreement rather than simple
voting algorithms is required to agree on host failures.
Message atomicity guarantees must also be implemented
using Byzantine algorithms.

3. Customizable GRPC service

As an example of how to apply the above principles to a
specific distributed service, we present a customizable GRPC
service that clients use to access a group of servers. We
assume servers maintain data that can be queried and updated,
with the consistency requirements for the data depending on
the application. Host recovery is not considered.

The basic assumptions about the execution environment
are the same as in section 2. We assume a server group ofN

servers and an arbitrary number of clients, where all servers
are assumed to agree on the server group membership, but
the clients are not required to have complete server group
information.

3.1. GRPC properties

The GRPC service may be customized to guarantee the
following properties.

• Synchronous.The client is blocked until a response is
received or the call is terminated as unsuccessful.

• Asynchronous.The client is not blocked and the result
of the call is returned to the client application using an
upcall to a designated client procedure.

• Unique. Each call is executed at each server no more
than one time.

• FIFO. The calls sent by a given client are processed in
the same order by all servers.

• Atomicity. All correct servers will execute the same set
of calls. This property is guaranteed even if a client does
not send a request to all servers in the group.

• Total order.All correct servers execute the same calls in
the same order.

Total order guarantees that all the correct servers have a
consistent state provided that their initial states are consistent.

No guarantees are made concerning faulty clients or
servers, except that if a correct server processes a call from
a faulty client, all correct servers will process this call if
atomicity is guaranteed and all correct servers will process it
in a consistent order if total order is guaranteed.

3.2. GRPC failure models

The definitions of faulty behaviour for each failure model
in section 2 can be refined since hosts now have specific
roles as servers or clients, and the communication patterns
are more restricted. For example, a server is omission faulty if
it does not provide a reply to a client or if it fails to send any
of the periodic messages exchanged between servers. The
definition of a value faulty host depends on the semantics of
the GRPC. For example, if the state of the servers is supposed
to be identical, a server is value faulty if its reply to a call
differs from the other replies.

The goal of the GRPC service is to guarantee that correct
clients receive a correct result to their calls given, at most,M

faulty servers.

3.3. Algorithms

This section outlines the algorithms employed to implement
the different options and properties of GRPC.

3.3.1. Communication algorithms. Multicast is
implemented as multiple point-to-point UDP transmissions.
A host establishes and maintains the state of logicallinks
with the hosts with which it wishes to communicate. For
example, a client creates a link to each server by using
the server’s known IP address and UDP port, and a server
creates a link with a client by recording the client’s IP
address and UDP port when it receives the first request.
Links between servers are established for ensuring atomicity,
total order and similar properties. Since the underlying
communication service provides unreliable UDP semantics,
the GRPC service includes a reliability component that uses a
modified version of the sliding window protocol on each link
to provide reliable but unordered delivery of messages. Hosts
timeout and retransmit messages a fixed number of times;
when this value is exceeded, the host raises a host failure
event, notifying other micro-protocols of the suspected
failure. Each link is bi-directional and acknowledgements
are piggybacked on data messages whenever possible.

3.3.2. Fault tolerance algorithms. The following
algorithms are used to handle failures within the different
failure classes. Both servers and clients maintain server
group membership information. As per our assumptions, the
servers must agree on the membership, while each client only
maintains its own approximation. Each server is given the
initial group membership at startup, and uses failure detection
and agreement algorithms to agree on a new membership
when failures occur. A client detects that a server is faulty
when it fails to receive a response, which may be either a
reply or an acknowledgement. The server is declared faulty
locally in this case and subsequent requests will not be sent
to that server.

Crash, omission, and timing failures are detected by
observing the communication from other hosts. In particular,
a host is considered failed if it does not acknowledge a
message after a fixed number of retransmissions or if a
server fails to send a response or forward a request within a
certain time period. Note that the same detection mechanism
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works for omission and timing failures because it is message
specific: i.e., if there is any message that is not acknowledged
on time or sent on time, the responsible host is considered
faulty.

Although local detection of these failures is similar,
the agreement phase varies depending on the failure model.
Crash failures do not require any agreement phase, since each
host will eventually detect the failure independently. Send
omission and late timing failures require the local detection
information to be shared between servers. This is done by
piggybacking the information on regular messages, which
ensures that all non-faulty servers eventually agree on the
failure.

Receive omissions and early timing failures require
agreement since a faulty host may suspect correct hosts due to
a missing message or a fast local clock. Thus, when a failure
is detected, the host is declared suspect. Information about
the suspected failure is included in the messages exchanged
by servers and when a sufficient number of servers suspect the
host, it is declared faulty. The sufficient number in this case
isM + 1, whereM is the maximum number of faulty hosts.
Thus, even if theM faulty hosts have a receive omission or
early timing failure and suspect some non-faulty hostX, the
non-faulty hostX will not be removed from the membership
since it will not be suspected byM +1 hosts. Naturally, since
theM faulty hosts may also be crash faulty,M must be small
enough to ensure there will beM+1 votes from correct hosts.
Thus,M must be less thanN/2.

Our design does not provide a predefined algorithm
for detecting value failures. This is because the intended
uses of the GRPC may vary, from accessing completely
identical replicated servers to parallel access of non-identical
servers. Also, the data types of the requests and responses are
naturally application specific. However, our design allows
the client application to specify a voting function that is used
to combine the responses. The voting function may employ
techniques such as majority voting, range checks, and other
application-specific sanity checks. The voting function may
also raise events to notify the composite protocol about server
failures.

Byzantine failures require a voting protocol based on
Byzantine agreement. Since we use authenticated messages,
no additional redundancy is required compared with receive
omission and early timing failures. That is,M + 1 votes are
required, whereM is less thanN/2.

3.3.3. Service property algorithms. The implementation
of the basic GRPC properties is all based on well known
algorithms. Synchronous calls are implemented by blocking
the client thread on a private semaphore until the call is
completed. Note, however, that the decision on when a call
is completed depends on the failure model. Asynchronous
calls return immediately, and the eventual result is delivered
to the client using an upcall. Unique execution is based on
identifying each request with a (client-id, sequence number)
pair, except in the Byzantine case, where a client-id, sequence
number, and the actual data bytes are used to uniquely identify
a client request. The latter is necessary to guard against
a faulty client sending different byte sequences with the
same client-id and sequence number to different servers.

Finally, FIFO message ordering is implemented by each
server queuing client requests until all calls with lower
sequence numbers from the same client are received. If an
expected call is not received within a specified period of time,
the client is declared faulty. In this case, all calls from that
client are removed from the queue.

The atomicity algorithm in the non-Byzantine case is
flexible and allows customization of the tradeoff between
message overhead and the worst-case latency of the GRPC
request. In our approach, each server maintains aserver
list (SL), with a pointer to indicate the next server to which
message information will be sent. Each server also maintains
anidentifier list(IL) containing the unique identifiers for the
requests that it has received. When a new request is received,
its identifier is added to the IL and the list is sent to the nextk

servers in the SL. The pointer in the SL is then incremented
byk. On receiving the IL, a server checks if it has received all
the requests it contains; if not, it asks the sender to forward
the missing requests. A server removes a request from its IL
after a list containing the request has been sent to all servers
at least once.

The tradeoff between overhead and latency is determined
by the value chosen fork. If k = 1, each server transmits
one extra message and thus, the cost of atomicity is O(N). In
contrast, ifk = N −1, each server multicasts the IL at a cost
of O(N2), but servers are able to detect and retrieve missing
messages more quickly. Naturally, the cost of atomicity can
be reduced further by sending the list to the nextk servers
only after some numberj of new requests have been received.

The algorithm for total order in the non-Byzantine case
builds on the atomicity algorithm. One of the servers is
elected as a coordinator to order all requests. The order
is propagated to all the servers in the IL messages: i.e.,
for each request, the list contains the unique identifier and
the specified order. Since a request cannot be processed
before the order is received, the standard slowly propagating
atomicity algorithm would cause too much delay. Thus, the
coordinator always sends the IL message to all the servers.
A coordinator failure is handled by a multiphase algorithm in
which the process with the next highest IP number becomes
the new coordinator. It collects information from all other
servers to determine the last request ordered by the previous
coordinator, and then resumes normal processing.

The above total ordering algorithm does not guarantee
FIFO ordering. Thus, if FIFO and total order are both
required, an additional FIFO algorithm is used. The only
difference with the regular FIFO algorithm is that the FIFO
queue now contains totally ordered requests.

The algorithms used for Byzantine failures are based
on Byzantine agreement with signed messages [4], in which
multiple rounds of message exchange are used. In each
round, each server sends a message to all the other servers
containing a set of requests. The specific algorithm involves
grouping consecutive rounds together into ablock, which is
defined asM + 1 rounds. In each round, each server signs
and forwards the requests it receives to all other servers. Any
request received from a client during a block is queued and
handled in the next block. When a server receives a forwarded
request from another server, it signs and forwards it to all
servers that have not signed the request. AfterM + 1 rounds,
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Figure 1. Client micro-protocols.

at least one non-faulty server has seen the message and hence,
forwarded it to all servers. Then, the processing of the next
block is started. If included, a total order micro-protocol
orders the requests in each block after it is completed. Since
all requests in a block are seen by all servers by the end of
the block, a local deterministic ordering is sufficient.

For every set of requests, there is an exchange of
messages between every pair of servers, meaning that the
algorithm uses O(N2) messages. The latency may be high,
however, since every request has to wait for an entire block
to be processed before being serviced by any server. Also,
RSA signing and verification take considerable time, adding
to the latency.

4. Implementation

The implementation of the configurable GRPC uses Cactus,
where micro-protocols are used to implement each of the
different logical algorithms described in section 3.3.

4.1. Client micro-protocols

Some micro-protocols are used on both clients and servers,
but the set on the client is smaller and, thus, simpler as a
starting point. Figure 1 represents these micro-protocols and
how they interact using Cactus events. Compulsory micro-
protocols are represented by solid boxes and optional ones
with dashed boxes. The numbered arrows represent events,
with single-headed arrows representing non-blocking events
and double-headed arrows representing blocking events. In
either case, the micro-protocols pointed to by the solid head
service the event, i.e. they have an event handler bound
for the event. Finally, A, B, and C denote interactions
between CORDS protocols, with A being a message pop,
B being a message push, and C being a synchronous call.
Note that the custom interfaces at the top and bottom of
the composite protocol translate the interaction with other
CORDS protocols into events.

As indicated by the figure, the client has only two
compulsory and two optional micro-protocols. The RNET
micro-protocol implements the reliable communication using
a sliding window protocol. It unpacks the message
headers and removes piggybacked acknowledgments before

Figure 2. Server micro-protocols.

forwarding the message to other micro-protocols using
appropriate events. If it suspects a failure of a server based
on a delayed or missing response, it raises a failure event. If a
server failure is declared, the micro-protocol stops accepting
its messages. The ACCEPT micro-protocol implements the
synchronous and asynchronous call variations. It sends the
client request to all servers and collects responses until a
required number is received. At this point, the response is
returned to the client. The micro-protocol keeps track of
functioning servers, so that it knows when every non-faulty
server has responded and thus, the call is completed.

The optional CRASH micro-protocol waits for sus-
pect failure events raised by other micro-protocols, and raises
either a serverfailed event or clientfailed event depending on
the role of the failed site. The optional RSA micro-protocol
signs messages and verifies message signatures using the
RSA algorithm.

4.2. Server micro-protocols

The server micro-protocols and their interactions are
presented in figure 2. Some of the micro-protocols—RNET,
RSA, and CRASH—and events are identical to those on the
client, but a number of new micro-protocols and events are
introduced.

The figure indicates that each configuration of the
service must have either BASIC or FIFO micro-protocols.
The BASIC micro-protocol simply forwards requests to
the application level server, matches responses to requests,
and returns responses to the client through the RNET
micro-protocol. The FIFO micro-protocol implements FIFO
ordering on top of totally ordered or non-ordered messages,
maintaining the necessary queues and other data structures
as described in section 3.3. It also raises the suspectfailure
event if a missing message is not received within a specified
period of time, and has handlers for the client and server
failure events so that it can clear any data structures for the
failed hosts. Note that FIFO only requires reliability, i.e. the
presence of RNET in the configuration. When ATOMIC or
TOTAL is included in addition to FIFO, they simply intercept
the event requestpopped, and FIFO will get the message to be
ordered through either event atomicpopped or totalpopped.
Due to the flexible event mechanisms, FIFO actually uses
one event handler to handle all three different events.
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The optional ATOMIC, TOTAL, and BYZATOMIC
micro-protocols implement atomicity and total ordering for
non-Byzantine and Byzantine failures using the algorithms
described in section 3.3. In particular, the ATOMIC micro-
protocol maintains the list of request identifiers and sends it
out at the desired frequency. It also requests retransmissions
if it detects that a message is missing based on a request
list it received, and handles retransmission requests from
other servers. The TOTAL micro-protocol implements
coordinator-based total ordering, including dealing with
coordinator failures. It relies on ATOMIC to ensure that all
servers will receive the same set of requests. The details are
omitted here for brevity.

The BYZ ATOMIC micro-protocol implements the
basic Byzantine agreement algorithm using authentication,
collecting requests in a queue to wait for the beginning of
the block in which this set of requests are processed. Note
that all requests forwarded by other servers must be checked
for authenticity—each forwarded request is signed by all the
servers that have forwarded the request. In every round,
a server forwards each of the messages it received in the
previous round to all servers that have not yet signed the
message.

Interactions between micro-protocols are implemented
using events. If any of ATOMIC, TOTAL, or BYZATOMIC
are included in a configuration, they have their event handlers
bound to the event requestpopped before the handlers of
BASIC or FIFO, so that they can stop the event and prevent
BASIC or FIFO from seeing these messages. Later, when
all the required properties are satisfied for the messages,
these micro-protocols notify BASIC or FIFO using different
events. However, if none of these three are in a configuration,
the requestpopped event will notify BASIC or FIFO, which
will then deliver the request to the application-level server.

The server micro-protocol suite includes two more
optional failure-handling micro-protocols, FDISTRIBUTE
and FVOTE. F DISTRIBUTE handles send omission and
late timing failures. It converts local failure detections—
i.e. the suspectfailure event—into an agreed membership
change event serverfailed or clientfailed. It also distributes
the local failure detection information by piggybacking it
on the request identifier messages. The piggybacking is
done when pushid list is raised. It also extracts any failure
information from the request identifier messages at the
receiver and raises the appropriate failure events.

F VOTE implements the voting required for receive
omission, early timing, and Byzantine failures by also
piggybacking the local suspicion information and raising
the appropriate events when at leastM + 1 hosts suspect
a failure. Note that in the Byzantine case, the suspicion
information is piggybacked with the client request messages
in the agreement protocol. As a result, no host can send
conflicting detection information to other hosts undetected.

4.3. Performance

The configurable GRPC service allows a tradeoff between
the number of failures that can be tolerated and the service
response time. While crash failures are relatively inexpensive
to tolerate, the cost of fault tolerance increases as the more
inclusive failure models are used. To measure this relative

cost, as well as the cost of the various service properties, we
tested the service on a cluster of Pentium PCs running the MK
7.3 operating system and connected by a 10 Mb Ethernet. As
a reference point, the UDP and IP roundtrip times on this
platform are around 1.15 ms and 1.12 ms, respectively.

Table 1 presents execution times for representative
configurations of the GRPC service. These values are
average response times in milliseconds from tests with
clients executing synchronous RPC calls on a server group
consisting of one to three servers depending on the failure
model. The number of servers was chosen so that one
failure of the given type could be tolerated. The average
response time for one GRPC call is calculated by dividing
the total time required to make 1000 consecutive synchronous
RPC calls by 1000, except in the Byzantine case where the
average was calculated for ten requests. Each configuration
includes the RNET micro-protocol and either BASIC or
FIFO micro-protocols. Therefore, every configuration that
does not mention the FIFO property has the BASIC micro-
protocol. Total ordering is either provided by a combination
of TOTAL and ATOMIC or BYZ ATOMIC for the Byzantine
case.

The most important aspect of this table is the relative
costs. A number of observations, most of which are not
surprising considering the algorithms used, can be made
from these numbers. The response time naturally increases
with the number of clients because of the extra load on the
servers. As far as properties are concerned, the cost of adding
FIFO is insignificant. On the other hand, atomicity and total
ordering, which builds on atomicity, increase the response
time considerably. This is to be expected because FIFO does
not introduce extra messages, while atomicity and total order
require a message exchange between servers. Those cases
where adding an extra property appears to reduce response
time by a small amount are attributable to experimental
variation rather than any underlying differences.

As far as the failure models are concerned, the tests
indicate a definite increase in response time as the complexity
of the failure model increases. In the case of crash, omission,
and timing failures, this is mostly due to the increased number
of server replicas required to tolerate the failures. The cost
difference is more substantial when considering complex
properties such as atomicity and total order. This follows
because these properties require communication between
servers and as a result, are more sensitive to the number of
servers required. Note also that these numbers only reflect
normal operation, not the overhead incurred when dealing
with failures. In these cases, the cost of the failure detection
or suspicion mechanism is the same regardless of the failure
model, while the cost of the agreement or voting algorithm
will typically vary.

The cost of tolerating Byzantine failures is large
compared with any of the other failure models. The cost
is partially due to the overhead of signing messages using
RSA and partially due to the cost incurred by multiple
rounds of message passing. We used an existing software
implementation of RSA based on 512-bit keys. The None
and FIFO columns only include the cost of authentication,
since if atomicity is not required, the Byzantine agreement
protocol is not executed. The Atomic and Total columns
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Table 1. Average response time (in ms).

Properties

FIFO + Total +
Failure model Clients Servers None FIFO Atomic atomic Total FIFO

None 1 1 3.3 3.3 3.5 3.5 3.6 3.6
2 1 5.1 5.1 5.6 5.6 5.9 6.0

Crash 1 2 4.2 4.2 5.7 5.6 6.2 6.4
2 2 5.1 5.1 10.9 10.4 13.4 13.0

Send omission 1 2 4.2 4.1 5.8 5.7 6.6 6.5
or late timing 2 2 5.1 5.0 10.7 11.0 13.8 13.5

Receive omission 1 3 5.2 5.3 7.1 7.2 10.5 10.2
or early timing

Byzantine 1 3 1993 2181 18 923 18 923 18 924 18 924

include the rounds algorithms and since the goal is to tolerate
a single failure, the algorithm requires two rounds. The
rounds algorithm is synchronous: that is, the second round
only starts after the first round is completed. A timeout is
used to terminate a round to ensure progress if all servers do
not reply. In this test, the timeout was set to 8000 ms. This
number is determined by estimating how long it takes for a
host to complete a round, including encrypting and sending
its set of messages and decrypting all the sets of messages
it receives. If the round timeout is set too small, hosts may
unnecessarily be suspected of failures.

We also measured the corresponding times for
asynchronous calls. They were consistently lower—up to
30% less—than the corresponding synchronous call times.
This is because asynchronous calls allow a client to issue a
number of concurrent RPC calls and thus, increase the overlap
between computation and communication. When the number
of clients increases, however, the servers become saturated
and the benefit of asynchronous calls is considerably reduced.

5. Related work

Related work on fault-tolerant distributed services is
extensive. Most implementations of distributed services
such as atomic multicast, membership, GRPC, synchronized
clocks, and transactions tolerate at least crash failures, and
some tolerate more complex failures. Typically, however,
each service can only tolerate a single class of failures and is
not configurable. Moreover, each implementation typically
provides a different API, and relies on a specific hardware
and software configuration.

Closer to the idea of customizing failure models is the
family of group multicast protocols in [3], which has one
protocol each for crash, omission, timing, and arbitrary
failures. Another example of such a family is the set of
group multicast protocols described in [19] that adapt to
crash, omission, and arbitrary failures, respectively. These
protocols are not configurable in the same sense as our
approach, however. In particular, rather than customizing
one protocol, the user must select from a related collection
of protocols.

Other work dealing with multiple failure models is that
on hybrid fault models [6,20,21]. The basic idea is to detect
a range of different types of failures at the same time by

using multiple failure detection techniques. This approach
allows the system to tolerate a larger number of failures
than traditional Byzantine algorithms, since simpler failures
that require less redundancy can be distinguished from true
Byzantine failures. Some algorithms designed for hybrid
fault models, in particular [21], allow specification of the
maximum number of faults to be tolerated for each different
fault model. Although such an algorithm could exhibit
comparable flexibility to our approach with respect to choice
of failure model, our approach allows greater optimization of
the algorithm used in each situation, since each failure model
has a micro-protocol of its own.

A number of object-oriented systems support customiza-
tion of fault tolerance by allowing techniques such as repli-
cation, checkpointing, and checksum error detection to be
configured into an object using reflection [11,12,22,23]. Al-
though these systems support customization of fault tolerance
in terms of techniques, they do not directly address the issues
of customizing the failure model to be tolerated. Indeed, most
existing work in this area appears to focus only on tolerating
crash failures.

Other work on GRPC services has focused on
customizing service properties other than fault tolerance.
The event-driven model described in this paper has been
used to construct GRPC services with customizable service
properties such as ordering, uniqueness, orphan handling,
and bounded termination [24, 25], but no support for
customization of the failure model. An approach for RPC
customization based on specification languages is presented
in [26]. Finally, thex-kernel has been used to construct highly
modular, but not configurable, RPC services [27].

6. Conclusions

The choice of a failure model is a key factor in determining
the performance of a system, as well as its fault coverage.
The approach presented in this paper makes it easy to
construct customized services that can tolerate a given class
of failures. It is based on separating the implementation
of service properties and fault tolerance guarantees to the
greatest extent possible using fine-grain micro-protocols and
the event-based programming style in the Cactus system.
We demonstrated the viability of the approach by presenting
the design and implementation of a group RPC service that
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supports multiple classes of failures. Performance results
verify the cost incurred by using a more inclusive failure
model, even when failures do not occur.

Future work will concentrate in a number of areas. One
is applying this approach to other distributed services, such
as a secure communication service [28] and a distributed file
system. Another is investigating techniques to reduce the cost
of fault tolerance by using runtime adaptation to dynamically
change the class of failures being tolerated [19]. Finally, we
also intend to analyse other quality of service tradeoffs that
arise in distributed computing systems designed to provide
fault-tolerance, real-time [8], and security guarantees.
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