
Distributed Systems Engineering

A comprehensive distributed shared memory
system that is easy to use and program
To cite this article: J Silcock and A Goscinski 1999 Distrib. Syst. Engng. 6 121

View the article online for updates and enhancements.

You may also like
Using a decellularized splenic matrix as a
3D scaffold for hepatocyte cultivation in
vitro: a preliminary trial
Xing-Long Zheng, Jun-Xi Xiang, Wan-
Quan Wu et al.

-

Structure analysis of direct sampling
method in 3D electromagnetic inverse
problem: near- and far-field configuration
Sangwoo Kang and Marc Lambert

-

An asymptotic DSM theory for high-energy
near-tip bremsstrahlung
D H Jakubassa-Amundsen

-

This content was downloaded from IP address 3.149.230.44 on 24/04/2024 at 05:45

https://doi.org/10.1088/0967-1846/6/4/301
https://iopscience.iop.org/article/10.1088/1748-6041/10/4/045023
https://iopscience.iop.org/article/10.1088/1748-6041/10/4/045023
https://iopscience.iop.org/article/10.1088/1748-6041/10/4/045023
https://iopscience.iop.org/article/10.1088/1748-6041/10/4/045023
https://iopscience.iop.org/article/10.1088/1361-6420/abfe4e
https://iopscience.iop.org/article/10.1088/1361-6420/abfe4e
https://iopscience.iop.org/article/10.1088/1361-6420/abfe4e
https://iopscience.iop.org/article/10.1088/1361-6471/ab871e
https://iopscience.iop.org/article/10.1088/1361-6471/ab871e

Distrib. Syst. Engng6 (1999) 121–128. Printed in the UK PII: S0967-1846(99)06734-0

A comprehensive distributed shared
memory system that is easy to use
and program

J Silcock and A Goscinski

School of Computing and Mathematics, Deakin University, Geelong, Victoria 3217, Australia

E-mail: jackie@deakin.edu.au andang@deakin.edu.au

Received 6 November 1998

Abstract. An analysis of the distributed shared memory (DSM) work carried out by other
researchers shows that it has been able to improve the performance of applications, at the
expense of ease of programming and use. Many implementations require application
programmers to write code to explicitly associate shared variables with synchronization
variables or to label the variables according to their access patterns. Programmers are
required to explicitly initialize parallel applications and, in particular, to create DSM parallel
processes on a number of workstations in the cluster of workstations. The aim of this
research has been to improve the ease of programming and use of a DSM system while not
compromising its performance. RHODOS’ DSM allows programmers to write shared
memory code exploiting their sequential programming skills without the need to learn the
DSM concepts. The placement of DSM within the operating system allows the DSM
environment to be automatically initialized and transparent. The results of running two
applications demonstrate that our DSM, despite paying attention to ease of programming and
use, achieves high performance.

1. Introduction

Programmers would describe distributed shared memory
(DSM) programming as easy if they did not have to learn
a new language, learn the semantics of a DSM system,
declare shared data in a DSM-driven manner or use unfamiliar
synchronization primitives.

A DSM parallel application is made up of two or more
processes running on separate workstations which must be
initialized on them. In existing DSM systems, programmers
are required to decide on the number of workstations that
should be used to execute a parallel application and also
the physical workstations that should be used. This is a
significant load to place upon programmers. Further, this
manual approach can lead to load imbalance, which worsens
when more parallel applications are executed on a cluster of
workstations (COW) and leads to performance degradation.

Since the DSM processes may share memory, sharable
objects must be created and associated with parallel
processes. Synchronization constructs must be initialized in
order to access sharable objects correctly. Barriers, which are
used as the coordination mechanism for parallel processes,
must also be initialized. These initialization operations are
carried out manually by programmers.

An analysis of the existing DSM systems shows that
ease of programming and use for application programmers
are sacrificed for the sake of performance. In DSM research
the major thrust has been to improve the efficiency of the

systems by implementing weaker-consistency models [1].
A new approach is needed. Our aim has been to develop

a DSM system that is easy to use and program and which
is transparent at user level, while maintaining the same high
level of efficiency achieved by other projects. The need for
this integrated approach was also raised in [1].

2. DSM in RHODOS

A DSM system has been developed within the RHODOS
system. RHODOS is a microkernel and client–server-based
distributed operating system [2]. In RHODOS, the system
resources are managed by a set of servers such as the Process,
Space (Memory), and Interprocess Communication (IPC)
Manager. Since shared memory can be viewed as a resource
which requires management, the DSM system has been
integrated into the Space Manager (figure 1).

By placing the DSM system in the Space Manager
of RHODOS we have been able to meet several design
requirements. Firstly, programmers are able to use the shared
memory as though it were physically shared, hence, the ease
of programming requirement is met. Secondly, because the
DSM system is in the operating system itself and is able to
use the low-level operating system functions the transparency
and efficiency requirements can be met.

The DSM system employs release consistency using
the write-update model [3]. Synchronization of DSM

0967-1846/99/040121+08$30.00 © 1999 The British Computer Society, The Institution of Electrical Engineers & IOP Publishing Ltd121

J Silcock and A Goscinski

Figure 1. DSM system integrated into RHODOS.

processes sharing memory takes the form of a semaphore-
type synchronization for mutual exclusion. Barriers are used
to coordinate executing processes.

3. Programming aspects of RHODOS DSM
applications

Here, we present the semantics of initialization in RHODOS’
DSM to show that the primitives used by programmers evoke
and perform operations which are completely invisible to
them, and that programmers are not forced to go beyond their
knowledge of concurrent programming.

Figures 2 and 3 show the codes of the Travelling
Salesman problem (TSP) and Jacobi iteration, respectively,
showing how RHODOS’ DSM supports programmers by
allowing them to initialize parallel processes and shared
data, and program using the same shared memory code that
they would use when programming for a physically shared
memory system.

The start dsm()or dsmparstart() functions return the
address of the block of DSM memory allocated during
the calls. These primitives allow programmers to invoke
process initialization of both parent and child processes.
Programmers indicate the preferred number of processes to
execute the application. The actual number allocated by the
operating system may differ from this number. Programmers
are required to declare the semaphore (semaphore-based
mutual exclusion was selected as the synchronization
method) and barrier (used as the coordination mechanism)
variables. Furthermore, the code shows the simple primitives
required for the initialization of the parallel processes.

Figures 2 and 3 show that programmers do not have to
use any knowledge of DSM. They can solely concentrate on
the application; the only requirement is the placement of the

initialization primitives and barriers which practically results
from parallelization of the application.

4. Automatic initialization of the RHODOS DSM
system

Parallel execution of a program means that there is a
sequential process, which at one stage of execution forms
a set of parallel processes (children of the parent process)
[4]. These processes must be initialized on selected
workstations. The processes may share memory which
means that sharable objects must be created and associated
with parallel processes. Furthermore, semaphores and
barriers, in RHODOS, must also be initialized. Here we
show that these operations are performed automatically.

When an application using RHODOS’ DSM starts to
execute, the parent process initializes the DSM system with
a single primitive (figures 2 and 3) which initially requests
the memory server to allocate a block of memory for the
globally shared memory. When the block has been created
the memory server attaches it to the parent process.

4.1. DSM space creation

The shared object used for DSM is a space, the logical
memory unit in RHODOS. Spaces are made up of one or more
pages. Hence, the unit of granularity used in RHODOS DSM
is a page. The resource model of a DSM process contains a
DSM space as well as stack, data and text spaces [5]. The
DSM spaces on all workstations are identical in size and
position.

122

A comprehensive DSM system

Figure 2. Pseudocode for the TSP.

4.2. DSM parallel process initialization

The parent process initializes the DSM system with a single
primitive, shown in figure 4.

This is followed by the instantiation of the child
processes. These processes can be instantiated explicitly
by the user on each workstation. However, we considered
this to be an irksome burden for programmers. Thus,
these processes are initialized automatically by the operating
system, using the code shown in figure 5, that concurrently
creates them directly on the selected workstations from a
single executable image on disk (remoteprocesscreate())
[6].

The decision regarding the workstations on which
to create the child processes is important for relieving
programmers of the operating system oriented activities, the
speed of execution of the application and the functioning of
the whole operating system. While the user indicates the
maximum number of processes to execute an application,
the operating system makes the final decision based on
the current system load. The Global Scheduler in
RHODOS collects the system load information from all
workstations. The Parent’s Execution Manager contacts the
Global Scheduler which, based on system load information,
returns remote workstation names to the Execution Manager,
that creates a single child process from an executable image
on disk on each of these remote workstations.

4.3. Shared data initialization

The values for the variables in the shared data space have to be
initialized before computation can commence. In RHODOS
DSM each child process initializes the shared variables in the
DSM space independently. This initialization is carried out
by the code in the child process which either reads the data
from a file or assigns values in the code.

4.4. DSM system initialization semantics

Figure 6 shows the sequence of messages surrounding the
automatic initialization of the DSM system to the point where
the semaphores and barriers are initialized. Depicted on the
source and remote workstations are the parent process and the
child process to be created on the remote workstation, and the
Execution Manager, Global Scheduler and Space Manager.
The DSM space itself is shown attached to the user processes.
When a parallel application using DSM starts to execute
the parent process initializes the DSM system. Shared data
initialization and DSM child process creation are performed
in the following steps:

The parent process executes astart dsm() library call
(figure 4) which requests (message 1) the Space Manager to
allocate a memory block for the DSM space.

• The Space Manager creates the space using the
spacecreate()call, which creates a space at a specified
base address.

123

J Silcock and A Goscinski

Figure 3. Basic pseudocode for the Jacobi algorithm.

Figure 4. DSM initialization code for the parent process.

• The start dsm()call sendsmessage 2to the Execution
Manager requesting parallel initialization.
• The Execution Manager requests (message 3) the

number and location of idle or lightly loaded
workstations from the Global Scheduler. The Global
Scheduler returns the addresses of these workstations to
the Execution Manager.
• The Execution Manager requests (message 4) the

Execution Managers on specified workstations to create
a single child process on each of them. The child
processes are created from the executable image on disk.
• The parent process’ Execution Manager is informed

(message 5) when the creation of the child processes
is completed.
• The Execution Manager sendsmessage 6to the parent

process, containing the number and ids of processes

successfully created.

• The child processes each execute adsmparstart() call
(figure 5) that causes the process to block waiting for
message 7from the parent process with the name of the
parent process’ DSM space.

• The child process passes (message 8) control to the Space
Manager which sendsmessage 9to the parent process’
Space Manager requesting the DSM space’s details.

• The Space Manager sends (message 10) the base address
of the space and size for the DSM space and the number
of participating processes.

• Message 11from the Space Manager passes control back
to the child process. When the space information is
received the DSM space is created and attached to the
child process.

124

A comprehensive DSM system

Figure 5. DSM initialization code for the child process.

Figure 6. Semantics of automatic initialization on RHODOS.

The followed-up semaphore and barrier initialization is
carried out by library calls made from thestart dsm()and
dsmparstart() functions. The semaphores and barriers are
declared as an array of names in the parent and child processes
as shown in figures 4 and 5. Programmers pass the number
of semaphores and barriers required to thestart dsm()and
dsmparstart() functions and thesemandbarrier variables
are populated during the function calls.

4.5. Initialization of process data

At this stage each of the DSM processes, parent and child
processes, initializes its global and local variables. This
is achieved by each process assigning values to the shared
variables independently either by reading data from a file
or by assigning values entered by programmers so that the
DSM spaces attached to parent and child processes are all
consistent. The DSM processes synchronize at the end of
this initialization phase, usingdsmbarrier(), before starting
execution of the application.

5. Performance of test applications

The objective of this section is to demonstrate that the
proposed DSM system provides high performance, using
the results of our tests which measure the speed-up of
two applications. The RHODOS DSM system runs on
Sun 3/50 workstations, connected by a 10 Mbps Ethernet.
The granularity of the shared memory is an 8 K page.
The experiments were carried out using from one to eight
workstations.

5.1. The TSP

In the computation of TSP (figure 2) the major bottleneck
is access to the priority queue. Processes must wait for the
semaphore before accessing the queue itself. This semaphore
is not released until new tours have been put back onto the
queue.

In order to make the results of the performance study
of TSP within the RHODOS DSM environment and Munin
and TreadMarks environments comparable we also used an
18-city tour. The speed-up results are shown in figure 7. The
speed-up for eight workstations is 6.85.

125

J Silcock and A Goscinski

Figure 7. Speed-up for TSP using RHODOS DSM for an 18-city tour.

5.2. The Jacobi algorithm

The Jacobi algorithm (figure 3) is based on a form of
successive over-relaxation. Synchronization is supported
exclusively through barriers which may make the network
become a bottleneck with a large number of processes, since
all processes will reach the barrier at roughly the same time
and will be distributing their updates simultaneously. This
would explain the drop off in performance as the number of
processes increases. As this implementation of DSM requires
a large amount of memory to store copies of pages while
they are being updated and the available memory on our
workstations was limited, a matrix size of 60× 1024 was
used. Other implementations used matrices of 2048× 2048.
The speed-up results are shown in figure 8. The speed-up for
eight workstations is 5.2.

6. Related work

Here we report on the work of other researchers on DSM
systems paying attention to whether they are easy to program
and use. The DSM systems we discuss are Munin,
Midway and TreadMarks, selected because they use similar
consistency models to RHODOS DSM. Furthermore, when
we carried out our performance tests on RHODOS DSM
[7] we used the application code written by the researchers
who developed Munin: a version of TSP used in [8] was
obtained from the ftp site at Rice University and TreadMarks:
a version of Jacobi was obtained from Keleher [9]. We were
able to see the input required by programmers when running
these systems and compared it with the input required by
programmers using RHODOS DSM.

Munin [10] is an object-based DSM which has multiple
consistency protocols and runs on top of the V operating
system. Munin and RHODOS show a speed-up for TSP of
approximately 6.8 and 6.85, respectively. The initialization

stage of an application using Munin requires programmers to
define the number of workstations to be used. The names
of the workstations are read from a file containing a list
of workstations which has been created by programmers.
Having identified the workstations on which the application
will run, programmers must create both a thread and initialize
the shared data on each of these workstations, and create the
synchronization barriers [10].

TreadMarks is a DSM system implemented on top of
Unix. Programmers are required to have substantial input
into the initialization of DSM processes by either entering
the number of workstations and their names as command-line
arguments or creating a workstation list file which contains
a list of the workstations that comprise the COW and may be
used for parallel applications [11]. Tests were carried out on
TSP and Jacobi; both achieved speed-ups of approximately
7. Our speed-up for TSP is 6.85 and that for Jacobi is 5.2.
However, it is difficult to compare these results with those for
our DSM system because the COW used for the TreadMarks
tests was considerably faster than the one used for our tests.
Their COW consisted of eight DECstation-5000/240, each
with a Fore ATM interface and connected to a Fore ATM
switch with an aggregate throughput of 1.2 Gbps [12].

In existing DSM systems ease of programming is
largely ignored with programmers being expected to go to
extraordinary lengths in order to extract the best execution
performance. Midway [13] uses entry consistency and
requires programmers not only to label shared variables
but also to associate these variables with synchronization
constructs. Munin [10] requires programmers to use
different consistency protocols for variables according to
their memory access patterns. These approaches clearly
require programmers to gain additional skills and to have
an insight into the implementation of the DSM system and
a deeper than usual insight into the data access patterns

126

A comprehensive DSM system

Figure 8. Speed-up for Jacobi on a matrix of 60× 1024 elements.

of the application they are running in order to use the
DSM successfully. The only known transparent approach
to the sequential consistency problem able to improve
the execution performance of the DSM-based application
is presented in [14]. This approach does not require
programmer’s annotations to associate shared data objects
with synchronization operations. Furthermore, consistency
scopes are not defined by programmers. However,
programmers must still be involved in the coding of the
initialization of processes, data, synchronization primitives
and virtual computer definitions.

While it is difficult to quantify ease of programming
and use, these systems clearly require programmers to
have significant input into and intimate knowledge of the
implementation of the DSM system and knowledge of the
network on which these systems work as well as the load on
individual workstations.

7. Conclusions

In this paper we have demonstrated that it is possible
to develop a comprehensive DSM system which allows
programmers to use knowledge of sequential programming
where only barrier-based synchronization of parallel
processes is needed and is easy to use, and which still
provides high performance, comparable to or even better
than other DSM systems. Operating-system-based DSM
makes operations transparent and nearly completely reduces
the involvement of programmers beyond classical activities
needed to deal with shared memory.

The automatic initialization of the RHODOS DSM
processes provides users with a convenient environment and
extends the operating system by giving it control over the load
on the individual workstations in the COW. Programmers
using RHODOS DSM are relieved from the operating-
system-oriented activities to locate and schedule processes

to the least loaded or idle workstations in the COW and to
balance the load of the system. Furthermore, they are able to
initialize the DSM system and parallel processes through the
use of a single, simple library call. Being able to use DSM
with a single library call makes RHODOS DSM transparent,
easy to program and easy to use. Moreover, the performance
of RHODOS DSM, as shown in this paper, is good.

Thus, we can conclude that DSM, when implemented
within a distributed operating system, is one of the
most promising approaches to parallelism management
and guarantees huge performance improvements with the
minimum of involvement of programmers.

Acknowledgments

The authors wish to express their gratitude to the anonymous
referees and the editors for their constructive comments and
suggestions. This work was partly supported by the Small
ARC grant 0504003157.

References

[1] Iftode L and Singh J 1999 Shared virtual memory: progress
and challengesProc. IEEE87498–507

[2] De Paoli D, Goscinski A, Hobbs M and Joyce P 1996
Performance comparison of process migration with
remote process creation and execution in RHODOSInt.
Conf. on Distributed Computer Systems (ICDCS-96)
(Hong Kong)(Piscataway, NJ: IEEE) pp 554–61

[3] Silcock J and Goscinski A 1997 Update-based distributed
shared memory integrated into RHODOS’ memory
managementThe 3rd Int. Conf. on Algorithms and
Architecture for Parallel Processing (ICA3PP’97)
(Melbourne)(Piscataway, NJ: IEEE) pp 239–52

[4] Goscinski A 1997 Parallel processing on clusters of
workstationsIEEE Singapore Conf. on Networks (SICON
‘97) (Singapore)(Piscataway, NJ: IEEE) pp 427–54

127

J Silcock and A Goscinski

[5] De Paoli D, Hobbs M and Goscinski A 1995 The RHODOS
microkernel, kernel servers and their cooperationIEEE 1st
Int. Conf. on Algorithms and Architectures for Parallel
Processing (ICA3PP’95) (Brisbane)(Piscataway, NJ:
IEEE) pp 345–54

[6] Hobbs M and Goscinski A 1997 Supporting parallel
processing on the RHODOS cluster of workstations1997
Int. Symp. on Parallel Architectures, Algorithms and
Networks (Taipei)pp 261–7

[7] Silcock J and Goscinski A 1997 Performance studies of
distributed shared memory embedded in the RHODOS
operating systemThe 4th Australasian Conf. on Parallel
and Real-Time Systems (PART ‘97) (Newcastle)pp 356–67

[8] Amza C, Cox A, Dwarkadas S, Keleher P, Lu H, Rajamony
R, Yu W and Zwaenepoel W 1996 Treadmarks: shared
memory computing on networks of workstationsIEEE
Comput.2918–28

[9] Keleher P 1996 Private communication
[10] Carter J 1993 Efficient distributed shared memory based on

multi-protocol release consistencyPhD DissertationRice
University

[11] ParallelTools, LLC 1994Concurrent Programming with
TreadMarks

[12] Keleher P, Cox A, Dwarkadas S and Zwaenepoel W 1994
TreadMarks: distributed shared memory on standard
workstations and operating systemsThe 1994 Winter
Usenix Conf.pp 115–31

[13] Bershad B, Zekauskas M and Sawdon W 1993 The midway
distributed shared memory systemThe IEEE COMPCON
Conf.(Piscataway, NJ: IEEE) pp 528–37

[14] Sun C, Huang Z, LeI W and Sattar A 1998 Toward
transparent selective sequential consistency in distributed
shared memory systemsThe Int. Conf. of Distributed
Computing Systems (ICDCS’98) (Amsterdam)pp 572–81

128

