
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Astrophysical constraints and insights on extended
relativistic gravity
To cite this article: S Mendoza 2015 J. Phys.: Conf. Ser. 600 012045

 

View the article online for updates and enhancements.

You may also like
Three-layer Authentication in Keystroke
Dynamics using Time based Tool
Namisha Bhasin and Sandhya Tarar

-

Whole-process Risk Identification of Urban
Rainwater Resource Utilization and
Construction of Evaluation Index System
in Loess Plateau Region
Li Qin, Chengxiang Ma and Yunxiao Mu

-

Is the Use of Reference Managers Driven
by Necessity or Policy Pressure?
Ahmad Nurkhin, Muhsin, Ade Rustiana et
al.

-

This content was downloaded from IP address 3.148.113.111 on 15/05/2024 at 10:08

https://doi.org/10.1088/1742-6596/600/1/012045
https://iopscience.iop.org/article/10.1088/1742-6596/1714/1/012030
https://iopscience.iop.org/article/10.1088/1742-6596/1714/1/012030
https://iopscience.iop.org/article/10.1088/1755-1315/687/1/012198
https://iopscience.iop.org/article/10.1088/1755-1315/687/1/012198
https://iopscience.iop.org/article/10.1088/1755-1315/687/1/012198
https://iopscience.iop.org/article/10.1088/1755-1315/687/1/012198
https://iopscience.iop.org/article/10.1088/1742-6596/1387/1/012108
https://iopscience.iop.org/article/10.1088/1742-6596/1387/1/012108
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuOwZNlylDCByxns---5AWXYdN9P2aDDwhJ5b_yQ1A-UHgYU4ftPCil-kkEaElY8hpG6LE3iK6JICIAd8eReMkAbl3VW1KXM3yKRRJiumPBM5QjqybNZ0-U5_RoYi1GKf9SUpD7OFUC2fAXzY-hR-67GgA_sHf5DeAl0_pfoqwzlzchsKgYsgUXhmOxPtvgRe8fvOgzNESWnxSBXtX0kG0aj_Zk7ez6SKPvQNj86b4j6M9pzKUUV2R-yCIFyBWyXQCWLVM7K1inruNfgk4fE6dGtYGjD39oVSasg0YxH1LX2XKmMfnthtg8popYn-mqB6TI13k0ZZhKshbZyh09SEZb9zNoOprr&sig=Cg0ArKJSzBjpS94xgchK&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Astrophysical constraints and insights on extended

relativistic gravity

S. Mendoza

Instituto de Astronomı́a, Universidad Nacional Autónoma de México, A.P. 70-264, Distrito
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Abstract. It is discussed how observations of gravitational lensing at scales of individual,
groups and clusters of galaxies can be understood in terms of non-Newtonian gravitational
interactions with a relativistic structure compatible with the Einstein Equivalence Principle.
This result is derived on very general grounds without knowing the underlying structure of
the gravitational field equations. As such, any developed gravitational theory built to deal with
these astrophysical scales (relevant to MOND phenomenology) needs to reproduce those results.

1. Introduction
In the second decade of the 17th century, the observed residuals of Neptune’s orbit by were
postulated to be due to [1]: (i) the effect of the Sun’s gravity, at such a great distance might
differ from Newton’s description; or (ii) the discrepancies might simply be observational error;
or (iii) perhaps Uranus was being pulled, or perturbed, by an as-yet undiscovered planet. Future
work by Le Verrier and Adams [2] lead to the discovery of Neptune (the baryonic dark matter
perturber of the motion of Uranus). When anomalies on the advance of the perihelium of
Mercury were later observed, Le Verrier postulated the existence of an hypothetical unknown
planet called Vulcan, closer to the sun than Mercury [cf. 3]. Vulcan was never observed and
the relativistic extension made by Einstein when building up his general theory of relativity
showed that almost all of the perihelium’s advance of Mercury came from relativistic corrections
of Newton’s theory of gravity [cf. 4]. The important lessons to learn from these stories are
that: (i) There could be unseen objects that perturbe gravitational orbits and (ii) there may
be cases in which gravity needs to be extended. Note however that, in the previous cases, the
anomalies were tiny as compared to the observed dynamics. As opposed to this, the current
dark matter/energy hypothesis require huge energy corrections in order to leave Einstein’s or
Newton’s field equations untouched. As such, one may be more tempted to search for non-
relativistic and relativistic extensions of gravity.

The flattening of rotation curves in spiral galaxies is usually taken as the basis for either
modifying gravity or incorporating unknown dark non-baryonic matter into dynamics. It has
always been a complicated issue to distinguish between the path to follow, although it is quite
clear that finding dynamical systems with accelerations greater than Milgrom’s acceleration
constant a0 ≈ 10−10m/s2 which require dark matter, will contradict all types of MOdified
Newtonian Dynamics (MOND) proposals. The absence of high accelerated systems requiring
dark matter and the non-experimental detection of the mysterious dark matter particle is a good
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starting point in order to question the validity of gravity on mass and length scales such that
the accelerations induced by the gravitational system on test particles are smaller than a0.

The flattening of rotation curves in spiral galaxies is best described by the Tully-Fisher
relation:

v ∝ M1/4, (1)

where v represents the velocity of a test star about the centre of a galaxy and M is the mass
of that galaxy. This relation is only valid in the outer regions of spiral galaxies and it is well
known that the inner parts are well described by Kepler’s third law, which for circular motions
take the form:

v ∝
√

M/r. (2)

Globular clusters are traditionally considered perfect Newtonian systems since the velocity
dispersion as a function of radius is well modelled with Newtonian gravity. However, recent
observations show flattening profiles of these “rotation curves” in the outer parts. As shown by
[5, 6], this flattening occurs when the equivalent Newtonian acceleration reaches a value ≈ a0.
Furthermore, at these scales, the systems obeys Tully-Fisher scaling (1) for a dispersion velocity
v.

The simplest gravitational system available in astrophysics is a binary star system. Studies
of wide open binaries as a test of Newtonian gravity [7] show that gravity deviates from its
Newtonian behaviour when the accelerations � a0, i.e. for systems with ∼ 1M�, separated by
∼ 1pc.

Many astrophysical and cosmological data can either be explained by unknown dark
matter/energy entities or by a modification to the theory of gravity [e.g. 8–11]. The fact that
the outer parts of globular clusters follow a Tully-Fisher law and that wide open binaries do not
follow Kepler’s third law are unfeasible to explain with the introduction of dark matter.

As such as an starting point one can think that Kepler’s third law is valid at sufficiently
small scales, where the gravitational acceleration a of test particles is a � a0 and that it gets
substituted by the Tully-Fisher law at sufficiently large scales -where a � a0, making gravity
non-scale invariant.

2. The law of gravity
As explained by [12, 13], consider a test particle in circular orbit about a central mass source M .
Using equation (2) and centrifugal balance means that the acceleration a = v2/r = −GM/r2,
where GN is Newton’s gravitational constant. The minus sign is introduced in order to account
for the attractive force of gravity. This calculation was performed by Newton in his Philo-

sophiæNaturalis Principia Mathematica book [14]. If we now assume that there is a scale for
which Kepler’s third law is substituted by the Tully-Fisher law, then using equation (1) and
centrifugal balance it follows that a = v2/r = −GMM1/2/r, where a Modified gravitational
constant GM has been introduced. This relation can be transformed into the basic traditional
MOND with the definition G2

M := a0G to obtain:

a = −
√
a0GM

r
. (3)

Note that GM and/or a0 are as fundamental as Newton’s gravitational constant since they
are applied to different sets of observations at different scales. The purpose of any extended
theory of gravity not dealing with dark matter is to extend equation (3) into a proper theory
at both relativistic and non-relativistic regimes with a transition from the Newtonian to this
modified regime occurring at accelerations ∼ a0.
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3. Relativistic constraints
As noted by [12], a constraint on the PPN γ parameter can be built following the same
procedure as it is done in general relativity [15]. To do so it is only necessary to acknowledge a
curved space-time, where the Einstein Equivalence Principle is valid and where particles follow
geodesic trajectories. In Schwarzschild spherical coordinates, a point mass source M generating
a gravitational field is described by the following line element:

ds2 = gμνdx
μdxν = g00 c

2dt2 + g11dr
2 − r2dΩ2, (4)

for a metric tensor gμν and space-time coordinates xα = (ct, r, θ, ϕ), where t represents time,
r the radial coordinate and the polar and azimuthal angles are given by θ and ϕ respectively,
with an angular displacement dΩ2 := dθ2 + sin2 θ dϕ2 and velocity of light c. The symmetry of
the problem means that the unknown metric components g00 and g11 are functions that depend
on the radial coordinate r only. For non-relativistic particles, we must consider the limit where
the speed of light c → ∞. In this case, the radial component of the geodesic equation is given
by [see e.g. 16]:

1

c2
d2r

dt2
=

1

2
g11

∂g00
∂r

. (5)

In this weak-field slow-motion approximation, a particle bounded to a circular orbit about
the mass M has a centrifugal radial acceleration given by:

d2r

dt2
=

v2

r
, (6)

for a circular tangential velocity v, and so equating this with equation (5) it follows that:

v2

c2r
=

1

2

∂ (2)g00
∂r

. (7)

Substitution of equation (3) in the previous relation yields:

(2)g00 =
2φ

c2
= −2

(v
c

)2
ln

(
r

r�

)
= −2GMM1/2

c2
ln

(
r

r�

)
, (8)

where r� is an arbitrary length and φ is the Newtonian gravitational potential.
Having obtained the (2)g00 component, which determines the non-relativistic motion of

massive particles, we now proceed to obtain the (2)g11 component. In the literature it is
customary to define a new scalar potential ψ as:

(2)g11 = −2ψ

c2
, (9)

in complete analogy with the definition of the Newtonian gravitational potential φ. The
introduction of this potential can be justified considering a more general scenario. Without
requiring spherical symmetry, the spatial part of the metric can be written as gikdx

idxk, with
(0)gkl = δkl being the Minkowskian part. The second order perturbation corrections of gkl could
in principle involve other potentials (and not only φ or ψ). By a suitable choice of coordinates,
one can get rid of the anisotropic contributions at the same perturbation order, which turns
gkl into a diagonal form. Given the isotropy of space, there is no preferred direction and so
(2)gik ∝ δik. It is natural to expect that the leading order O(2) correction must be of the same
order of magnitude as the gravitational potential φ. Accordingly gkl =

(
1 + 2γφ/c2

)
δkl, where

γ is a proportionality constant, and so
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ds2 = g00dt−
(
1 + 2γφ/c2

)
δkldx

kdxl. (10)

Since spherical Schwarzschild coordinates are widely used in astrophysical literature, let us
calculate the metric component g11 in such coordinates.

The conversion to spherical Schwarzschild coordinates is straightforward since:

g11dr
2 + r2dΩ2 =

(
1 + 2γφ/c2

) (
dr̃2 + r̃2dΩ2

)
, (11)

for spherical isotropic coordinates (ct, r̃, θ, ϕ). Substitution of equation (8) in the previous
relation yields:

r = r̃

[
1− γ

(
GMM1/2

c2

)
ln

(
r

r�

)]
, (12)

and so,

dr = dr̃

[
1− GMM1/2

c2
ln

(
r̃

r�

)
− GMM1/2

c2

]
, (13)

at perturbation order O(2). This means that:

ψ = −γGMM1/2, and so (2)g11 = −2γGMM1/2

c2
. (14)

4. Weak gravitational lensing at large scales
As pointed out by [17], recent observations have shown that gravitational lensing on individual,
groups and clusters of galaxies can be modelled with the standard Schwarzschild solution of
general relativity, assuming the existence of a total dark plus baryonic isothermal halo, where
the Tully-Fisher law holds for the baryonic matter. As such, the bending angle of light can be
calculated using the standard lensing equation The result is that this bending angle does not
depend on the impact parameter and scales with the square root of the total baryonic mass.
Under a modified theory of gravity scheme with no dark matter component, the bending angle
has the same value and so, since the time metric component (2)g00 is known from the Tully-Fisher
law as shown in equation (8), then a reconstruction of the spatial metric component (2)g11can
be made [17].

To be more specific, take a static spherically symmetric total matter distribution MT,
assuming the validity of Einstein’s general relativity so that Schwarzschild’s metric holds.
Therefore g00S = −1/g11S and so:

g00S = 1− 2rg
r

= 1− 2GMT(r)

c2r
= 1− 2

(v
c

)2
. (15)

The subscript S identifies the coefficients of the Schwarzschild metric, and MT(r) = v2r/G
refers to the hypothetical isothermal total matter distribution [cf. 18] needed to explain the
observed lensing, when assuming general relativity. From this it follows that the dark matter
hypothesis provides a self-consistent interpretation of observed phenomenology: the same dark
matter halos, which are required to explain the observed rotation curves, have been solved for
by analysing extensive lensing observations.
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From equation (15) it follows that for isothermal total matter halos under Einstein’s general
relativity, the metric coefficient g00S does not depend on the radial coordinate. We can see this
by using the empirical Tully-Fisher relation (1) between the velocity and the total baryonic mass
in the last identity above. With the aid of the lens equation and making approximations to O(2)
it follows that [17]:

g11(r) = −1− 2
(v
c

)2
= −1− 2(GMba0)

1/2

c2
(16)

Thus, any metric theory of gravity where g11 matches the above expression in the regime
where gravitational lenses are observed will accurately reproduce all the observed lensing
phenomenology, with Mb the total baryonic mass of the object in question (galaxies or group
of galaxies), and no hypothetical dark matter assumed to exist. Equations (8) and (16) give
empirical mathematical relations for the metric coefficients at perturbation order O(2) which
reproduce all observed rotation velocity and gravitational lensing phenomenology, without the
inclusion of any dark matter component.

In terms of the non-relativistic scalar potentials φ and ψ defined the above results yield:

φ = −GMM1/2 ln

(
r

r�

)
, ψ = −GMM1/2, and so γ = 1. (17)

As shown by [12], this is an extremely important result meaning that the relativistic structure of
the underlying theory of gravity at individual, groups and cluster of galaxies scales is compatible
with that found in the solar system, where the PPN parameter γ has also a value of one. The
difference however, lies on the fact that the gravitational potential φ appearing in equation (10)
is not the one associated with Kepler’s third law, but the one inferred from the Tully-Fisher law.

5. Discussion
The fact that the PPN parameter γ = 1 serves as a basis for the construction of any extended
theory of gravity based on the Tully-Fisher relation and/or MOND. Theories of gravity built
to account for MOND phenomenology with γ �= 1 are not compatible with weak lensing
observations of individual groups and clusters of galaxies and should be disregarded.

The metric extension of gravity by [19], built with the idea of extending MOND to a
relativistic regime, is an example of a theory of gravity with γ = 1. As explained by (author?)
[13, 20] this proposal can be only applied to systems with a high degree of symmetry. A much
general approach to be published elsewhere is being developed in which this requirement is not
necessary.
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