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Abstract.
The gravity apple tree is a genealogical tree of the gravitation theories developed during 

the past century. The graphic representation is full of information such as guides in heuristic 
principles, names of main proponents, dates and references for original articles (See under 
Supplementary Data for the graphic representation). This visual presentation and its 
particular classification allows a quick synthetic view for a plurality of theories, many of them 
well validated in the Solar System domain. Its diachronic structure organizes information in a 
shape of a tree following similarities through a formal concept analysis. It can be used for 
educational purposes or as a tool for philosophical discussion.

1. Introduction
The quest for the fundamental principles of the physical world its at an exciting moment.
Obscure new phenomena, –commonly explained as dark matter, dark energy and inflation–
has pushed into a crisis the standard paradigm of gravitation: General Relativity and the
Concordance Cosmological Model. The plurality of theories available (some of them well
validated) is a testimony to this critical condition. Nowadays, most professionals are ultra
specialized, so is quite a job for the layperson to form a synthetic view of the hypothesis, concepts
and theories being explored as well as their fruits. The gravity apple tree is a genealogical graphic
representation of gravitational theories that illustrates the bulk of knowledge on this matter over
the past 100 years.

This structured map is full of information. Theories, authors and dates are presented in
green. Models for dark matter and dark energy are presented in orange and principles followed
are in violet. Some selected principles are written in the middle of branches as they allow to
distinguish groups of theories. The timeline grows upwards and radially according to the main
article publication dates, included in the bibliography for completeness.

The theoretical framework of the tree is based on the work of philosopher Mario Bunge [1],
who points out that foundations of physics are not rigid as building blocks, as such would turn
our science into dogma. However, their provisional character does not render them nonexistent
or less fundamental. Acknowledging the organic character of physics as a system of mutually
dependent parts, I will focus on a hierarchical image and an axiomatic approach as it allows one
to design this particular visual representation. I have applied a formal concept analysis that
provides diagrams linked by a similarity criteria, which I then draw as tree branches [See 2].
The classification of theories is based on [3–8].
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1.1. Background
The common early theoretical background is represented as grass, and is that of continuum
mechanics. The formal background consists of logic, semantics, algebra, topology, analysis, and
manifold geometry. The material background consists of protophysics, mainly the theory of
local time and the general systems theory, and some elements of physical geometry [See 1].

The gravity apple tree has its base at the end of the 17th century, with the publication of
Newton’s Principia [9], represented by an apple. This theory, remained (and still does) as a
paradigm for some 200 years, until 1905, when Special Relativity Theory joins the big explosion
of physical knowledge (along with Quantum Theory and Maxwell’s electrodynamics). Ten main
branches emerge when different principles are followed. I will briefly explain them by groups,
according to the agenda on gravitation.

2. Unification of Special Relativity and Gravitation
The Special theory of relativity has two mayor limitations. The first one is that it is restricted
to non accelerated reference frames. The second one is that it does not include Newton’s law in
a self-consistent way. In Newton’s theory gravitational force acts instantaneously; but according
to the relativity theory, nothing can travel faster than light, which has a finite constant value
[See 10, 11]. The birth of the first three branches, identified as the Physical Field branch, the
Scalar Lorentz Covariat branch and the General Relativity branch (which keeps growing as the
main trunk of the tree), represent the quest to solve this problems.

2.1. Physical Field Theories
Henri Poincaré (1904), Hermann Minkowski (1908) and Willem de Sitter (1905) considered
gravitation should propagate with the velocity of light in a retarded way, and gravity to be a
physical field, very much like the Maxwell-Faraday electromagnetic field with action at a distance
in a flat four dimensional space-time [See 12].Their investigations failed to specify a unique result
and the deviations for planetary motions computed by Minkowki were so small that they did
not allow to make a firm decision about the law of gravity in the relativistic regime [See e.g.
13, 14].

The interest to develop the relativistic field theories after the second world war was in
connection with the interactions between gravity and the meson, electromagnetic and pair fields.
This was done mainly in two ways, with its own quantum approaches [15–20][See 14, 21].

2.2. Scalar Lorentz Covariant theories
To avoid action at a distance, the next natural approach was to consider a field law for
gravitation, retaining the Laplacian scalar potential of gravity, extending the Poisson equation
through a time derivative term. This dynamical scalar field, in contrast with a vector field,
has no direction in space. Gunnar Nordstrom [22] propose a metric g constructed from a flat
background metric η and a scalar dynamical field φ: g = f(φ)η. Einstein and Fokker [23] applied
the new methods of absolute differential calculus of Ricci and Levi-Civita to Nordstrom’s theory,
leading to a theory with kinematical effects where gravitational fields would slow clocks and alter
the lengths of rods, concluding that it is actually only conformal to a Minkowsky space-time
with the gravitational potential to be the conformal factor, and the presence of a gravitational
field coincides with deviations of space-time from flatness [See 13, 22, 24–28].

2.3. General Relativity (GR)
Einstein was in a race for discovery. After an initial paper in 1907, from 1912 untill 1916 when he
finally published the complete theory of General Relativity (GR), he published some 25 articles
related to his progress. The development of the theory can be divided into tree parts: (i) The
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understanding of the Strong Equivalence Principle (1907-1908); (ii) The choice of a Riemannian
geometry and of the appropriate metric tensor field for the relativistic Newtonian potential (1912-
1913); (iii) The search for the correct field equations for the metric tensor field (1913-19015).
While working on the patent office, in 1907, Einstein suddenly realized that a falling man would
not feel the difference between gravity and an accelerating force acting upon him. The equality
between acceleration and gravity meant an equality of inertial mass and the gravitational mass.
In Newton’s theory, inertial mass and gravitational mass, even though seem equivalent, are
not supposed to be the same thing. Inertial mass is a property of an isolated body in an
empty universe, while gravitational mass is a property of a system of bodies. Einstein’s strong
version of the Equivalence Principle guided his research for a generalization of the relativity
theory. The next step in his quest was to find a way to express such equivalent condition
in a formal mathematical way where physics laws were the same in accelerated and rotating
reference frames. Einstein struggled for some 5 years until his university friend, mathematician
Marcel Grossmann, suggested the use of the non-euclidean geometry of Bernhard Riemann. He
also adopted differential calculus and the notion of a metric tensor, developed also by Ricci
and Levi-Civita in 1900. The metric tensor is a set of 10 functions of two tangent vectors
defined on a manifold which produces a real number. A Riemannian manifold gives a positive
value to every non-zero vector. Metric tensors are used to define and calculate the length of
curves in the manifold. The Riemannian manifold and the metric tensor form a metric space
with a distance function. Einstein and Grossmann’s (1913) proposal ran into three serious
problems: (i) It violated the principle of causality; (ii) the motion equation did not reduce to
Poisson’s equation for Newtonian gravity; (iii) the field equations violated the conservation of
energy. In the summer of 1915, mathematician David Hilbert invited Einstein to give a series of
lectures at the University of Gottingen. In november 1915 Hilbert sent a postcard to Einstein
in Berlin, explaining he had derived the correct field equations by a variational principle using
a Lagrangian function that was invariant under coordinate transformations. Einstein rushed to
derive his equations the hard way and publish his results in december 1915. He published a
polished complete review with the whole theory in march of 1916, which is the date we consider
in the gravity apple tree [See 10, 29–31].

2.4. Prior Geometry
Scalar Lorentz Covariant theories enter in a much wider group of theories that still contemplate
a flat non-dynamical space-time as background η [See 32–37]These theories with prior geometry
are a subgroup of the metric theories, which is represented by the right and top side branches.
Metric theories postulate that matter follows geodesics responding only to the metric g and not
to any extra field. Extra fields can contribute to the metric’s curvature, and can be generated
by matter, but they cannot interact with it directly. Therefore, g is the only field that enters
the equations of motion. Metric theories were developed during the 50s 60s and 70s, when It
became clear the need for some neutral parameters that allowed comparison between theories
and with experiments in the Solar System. Sir Arthur Eddington (1922) formulated the first
post-newtonian parametrization (PPN). Ken Nordtvedt (1968, 1969), Clifford Will (1971) and
Wei-Tou Ni (1972) have developed 9 new parameters that answer questions such as how much
space curvature is produced by unit rest mass? Or how much gravity is produced by unit of
kinetic energy, of gravitational potential energy, internal energy or by pressure?

3. For a classical unification
The idea to unifying gravity and electromagnetism was first put forward by Poincaré in his
lecture on “New conceptions of matter” (1912). Four branches emerged from this unifying ideas
exploring, mainly, mathematical alternatives to treat symmetries and measuring objects such
as the affine connection and the metric tensor, obtaining much general geometries, and theories

Spanish Relativity Meeting (ERE 2014): almost 100 years after Einstein’s revolution IOP Publishing
Journal of Physics: Conference Series 600 (2015) 012050 doi:10.1088/1742-6596/600/1/012050

3



with gauge invariance, torsion, non-metricity and extra dimensions [38–49] [See 13, 14, 50–54].

4. Generalizations of GR
Metric theories with additional dynamical fields were suggested separately by five groups of
scientists, represented by: Willy Scherrer (1941)[55] a german mathematician working at the
university of Bern; Pascual Jordan (1947) [56], in Princeton; Yves Thiry (1948) [57, 58] in
Paris; and Robert H. Dicke and his Phd student Carl H. Brans (1961), also at Princeton.
Scherrer’s approach came form “wave mechanics”; Jordan’s and Thiry’s group projected Kaluza’s
five dimensional space-time back into the fourth dimension, associating φ with a variable
gravitational “constant” G, according with Eddington’s and Dirac’s Large Numbers Hypothesis
[59, 60]. This hypothesis states that the strength of gravity is inversely proportional to the age
of the universe, and its mass being proportional to the square of the universe’s age implies a a
particular cosmology. [See 61]. Dicke’s and Brans’ theory considered strongly Mach’s Principle,
which basically states that “the inertial forces observed locally in an accelerated laboratory may
be interpreted as gravitational effects having their origin in distant matter accelerated relative
to the laboratory” [62] [See 62, 63].This theory expects to prove only a weak version of the
Equivalence Principle. The formulation presented by [64, 65] is a generalization of the scalar-
tensor theories; Jacob Bekenstein (1977) [66] proposed a Variable Mass Theory (VMT) where
rest masses of elementary particles are allowed to vary in space-time via the scalar field, while
Barker (1978) [67] proposed a constant G. An even greater generalization is that of Hordenski
(1974) [68]. See also [69–71] for vector-tensor theories.

5. Towards quantum gravity
There are two main ways to approach the quantum field theory. One, supposes a fictitious
background space, separating the gravitational field into the sum of two components: the
background and a quantum field. This would be the approach taken by String Theory [72] which
departs from Kaluza’s-Klein Theory. The second one is to reconstruct the Quantum Field Theory
with no background space, where the space itself is quantified. Charles Misner proposed that
calculations could be performed by summing over all possible space-times, applying the ADM
formalism (named after its developers: Richard Arnowitt, Stanley Deser and Charles Misner)
[73]; and along John Wheeler [74] thought space-time must had a foam-like structure at very
small scales . Wheeler and Bryce Dewitt (1967) [75] proposed a wave function over geometries
which expresses the probability of having one space-time geometry rather than another. Loop
quantum gravity is a mathematical description that uses a novel formulation of GR due to Abhay
Ashtekar [76] where the Ashtekar connection field replaces Einstein’s gravitational potential in
terms of elementary quantum excitations called loops [See 77].

6. New Phenomena
The top set of branches is related to the unexplained new phenomena: (i) The homogeneity of
the early universe as interpreted by the measurements of the Cosmic Microwave Background
radiation (CMB) and its supposed transition from a curved into a flat structured universe,
which are commonly explained by invoking an inflationary period. (ii) The present accelerated
expansion of the universe, called dark energy. (iii) The dark matter problem, which refers to
the discrepancies between the predictions of Newton’s laws and the actual dynamics observed
in astronomical systems, as well as the failure of general relativity to explain the observed
gravitational lenses and the structure formation, amongst other anomalies. Besides the top
set of branches that includes the standard model LCDM, the F(R) theories, and the MONDian
theories, we can find other alternative theories at the extremes of the main branches, such as John
Moffat’s Modified Gravity (MOG)[31, 78] better related to Brans-Dicke theory or Mannheim’s
Conformal Gravity, more related to Wey’ls geometry [See 7, 79–81].

Spanish Relativity Meeting (ERE 2014): almost 100 years after Einstein’s revolution IOP Publishing
Journal of Physics: Conference Series 600 (2015) 012050 doi:10.1088/1742-6596/600/1/012050

4



6.1. Dark Matter
A first natural hypothesis to the flat rotational galactic curves was to maintain Newton’s law
valid, as well as Einstein’s GR, and suppose the existence of undetected baryonic matter. This
approach produced a number of models for dark entities such as baryonic MACHO’s which
have been ruled out, since the amount of baryons needed does not match with the early
nucleosynthesis model, the observed abundances of elements and the baryon acoustic oscillations.
Other alternatives are scalar fields, axions, neutrinos, massive neutrinos and other non-baryonic
particles with seemingly ad hoc properties. Hot, warm or cold dark matter models, depending
on velocity, are tested on computer simulations of cosmic and galactic structure expecting to
tune the right properties that match the observations [See e.g. 82–86] The standard model
has given more weight to the very precise data obtained from the CMB and in some sense,
has worked its way down from cosmology towards galactic domains, having here most of its
problems to matching theory and data. Nevertheless, only direct detection and manipulation of
these particles will prove the theory right, since it seems to be almost unfalsifiable [See 81, 87, 88].

6.2. The MONDian Branch
In contrast to the standard model, the top right sided branch emerged from a phenomenological
theory that gave priority to galactic phenomena and supposes the possibility that Newton’s laws
may not be valid at some point. This branch follows the heuristic insights of Mordehai Milgrom’s
Modified Newtonian Dynamics (MOND) where modifications of the inertial or gravitational laws
are solved by the addition of fields [See e.g. 89–96]. The guiding line for MONDiantheories is
the observation that the dynamics depends on the acceleration regime that a particular system
experiences, which depends on the surface density of the system. Below a critical acceleration
known as Milgrom’s fundamental acceleration ∼ 10−10m/s2 [See 97], systems are affected in such
a way that the gravitational acceleration a test particle experiences at such sufficiently large
distance is greater than its Newtonian value [See 98]. Most MONDian theories do not fulfill
the strong version of the equivalence principle; therefore, it is conjectured that gravitational
dynamics of the systems are to be affected by the field of their host system. This external field
effect has not been observed [See 6, 99, 100].

6.3. F(R)
The top middle branch, which explores higher order invariants in the Einstein-Hilbert’s action,
has two clear periods of growth. Only the second one appears in the gravity apple tree for reasons
of space and clarity. Nevertheless, it is interesting to note that as early as 1919, Hermann
Weyl and Arthur Eddington (1923) explored functions of curvature, mainly as a scientific
mathematical curiosity, without any theoretical or experimental reason, but that of a better
understanding. In this same spirit, Einstein explored what is now known as the Palatini variation
of the action, where the metric and the connection are considered independent variables, and so
one can vary the action with respect to both of them. Even though both variational principles
lead to the same equations when the Lagrangian is linear in R, this is not true for functions
of higher order. [See 101]. Motivations started coming in the 1960s when Utiyama showed
that if the Einstein-Hilbert action had higher order curvature invariants with respect to the
Ricci scalar, it could be renormalizable. These corrections seemed to be only relevant for very
strong gravity (near black holes) or at Planck scales as in the early universe. It is in 1980 when
Starobinsky[102] applies this option to model a curvature driven inflation scenario avoiding
singularities. [See 103].

6.4. Extended Gravity (EG)
More recently, extensions to the Lagrangian have been added in order to explain galactic
anomalies without the hypothesis of dark matter. The proposal of Hernández and Mendoza
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has qualitatively described the dynamics of all sort of symmetric galactic systems [104–106],
including dwarf spheroidal galaxies, as well as gravitational lenses and extended binary star
systems [C.f. 107, 108]. Extended gravity is also compatible with the current acceleration of the
universe and provides a good solution for the initial values problem [109–111]. This approach
relates to the F(R) theories since it tries to preserve the same principles of GR such as Einstein’s
Equivalence Principle, the Principle of Relativity, the geodesic motion of particles trough space-
time, but incorporates as basic empirical principles Milgrom’s acceleration constant and a surface
density scale. EG does not necessarily predict the external field effect, though finer comparisons
await a more finished theory including a generalized poisson equation [See 112, 113].

7. Remarks
The gravity apple tree is a visual tool that facilitates reflexions about foundations on physics,
components of theories, and the image of science. With its aid we can easily illustrate progress
and relations between theories; distinguish with different colors metric from non-metric theories,
or use circles to make valid theories stand out from unviable ones; we can use arrows to show
how theories are recycled or merged, and it can be easily illustrated how new objectives and
new phenomena have revitalized most of the paths explored.

This type of visualizations are not intended to confirm facts, but as a learning tool. The
image of the science in question projected by the gravity apple tree may be misleading in some
senses. For example, it does not [yet] reflect how popular theories are. It does not include all the
theories, and for any unintended omissions I apologize. Nevertheless, the image of such plurality
of theories is shocking and invites to some philosophical reflections. Plurality of theories is a
natural scientific way, which is to explore all the possible options available, mostly, just for
scientific spirit. But the image of science provided by such plurality and the fact that many of
these theories can be proved viable in the Solar System takes us to the natural philosophical
question of how to rely on the truthfulness of our theories from a realistic and monistic point
of view. This point of view generally considers this kind of plurality as a crisis and expects
a revolution to happen soon. The key toward the next revolution is not just a new great
hypothesis, or the look for the best method, since, as we have seen, approaches and methods
are plural as well. Crucial experiments may serve to discard some theories, but scientists are
ingenious and will look for ways to go around such problems to save their theories as much as
possible. Simplicity of concepts will always be preferred, as well as the power to unify lower level
principles. Nicholas Maxwell [114] claims that a strategy that always succeeds is to devise neutral
observational terms between competing theories, which can be used to describe phenomena that
constitute crucial experiments. Nature is the inevitable dictator. It constrains our theories
through measurements of phenomena, observations and experiments. In this sense, the PPN
have been with out a doubt the best way to prove a theory valid in the Solar System. Such kind
of formalisms are to be considered for new theories in the low acceleration domain. For example,
according to [115] it is possible to calculate the γ PPN in the MONDian regime, just where the
third law of Kepler is substituted by the Tully-Fisher law. Amazingly, observations of individual
galaxies, galaxy groups and galaxy clusters all imply that γ ∼ 1, much in coincidence with the
observed value in the Solar System where the third law applies. PPN type formalisms are being
currently developed towards comparing theories for the cosmological scenarios. These might be
called the Post Friedmanian Parameters. Many questions have been answered the past century,
and much about curved spaces, acceleration and inertia. The actual question for gravitation is
how matter actually curves space-time. This can only be known by astronomical observations.

8. Acknowledgements
The author acknowledges support granted by the Universidad Nacional Autónoma de México
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