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A Mode]l for Measurement Error for

Ge:ne Expression Arrays

DAVID M. ROCKEl and BLYTHE DURBIN2

ABSTRACT

We introduce a model for me:asurement error in gene expression arrays as a function of
the expression level. This mod(~l, together with analysis methods, data transformations, and
weighting, allows much more precise comparisons of gene expression, and provides guidance
for analysis of background, df:termination of confidence intervals, and preprocessing data
for multivariate analysis.

Key words: cDNA array, micrclarray, oligonucleotide array, statistical analysis.
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J UST AS WITH ANY OTHER ANALY11CAL TECHNOLOGY, measurements of gene expression with cDNA
or oligonucleotide arrays have measurement errors. It is commonly observed (e.g. Chen, Dougherty,

and Bittner, 1997) that the standaI'd deviation of measurements rises proportionately to the expression
level. However, this proportionality cannot continue down to genes that are entirely unexpressed because
that would imply zero measurement error, which is not observed. The model proposed in this paper was
originally developed in the context of instrumental methods of analytical chemistry, but these methods also
exhibit the same kind of behavior rt:ferenced above (Rocke and Lorenzato, 1995). This model resolves the
difficulties by incorporating both tylles of error that are observed in practice into a single model. This model
provides an obvious advantage over existing models by describing the precision of measurements across the
entire usable range. We also discuss the application of the model to detection limits, categorization of genes
as expressed or unexpressed, comparison of expression between conditions on the same gene, construction
of confidence intervals, and transformation and weighting of expression data for use in comparisons and
in multivariate applications such as classification or clustering.

In Section 2, we introduce a model for the statistical variation of measurements of gene expression.
In Section 3, we give some methods of estimation of the parameters of this model from a given data
set. Finally, in Section 4, we discu5;S the important issue of comparison between treatment and control of
expression of a given gene on a slide or across slides.

1 Department of Applied Science, University of California, Davis, 3011 Engineering Unit III, Davis, CA 95616.
2 Department of Statisrics, University of California, Davis, Davis,CA 95616.
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558 ROCKE AND DURBIN

2. THE MODEL

Most measurement technologies require a linear calibration curve to estimate the actual concentration
of an analyte in a sample for a given response. We can incorporate into the linear calibration model the
two types of errors that are observed in most analyses. The two-component model for analytical methods
such as GC/MS is

y = a + .BJLe1/ + EO

where y is the response (such as peak area) at concentration JL, 1/ '" N(O, (11/) and E '" N(O, (1E). Here,
1/ represents the proportional error tllat always exists, but is noticeable at concentrations significantly
above zero, and E represents the additive error that always exists but is noticeable mainly for near-zero
concentrations. The normality of the error terms E and 1/ is assumed for convenience, but this is in practice
often a reasonable assumption. This two-component model approximates a constant standard deviation
for very low concentrations and applroximates a constant relative standard deviation (RSD) for higher
concentrations.l Note that y is the response of the measuring apparatus, for example peak area. This
model was introduced in Rocke and JLorenzato (1995) and has been applied in analytical chemistry and
environmental science (for example, 2:om, Gibbons, and Sonzogni, 1997, 1999).

For gene expression arrays, it is UlllllSUal to have calibration data (that is, samples of known expression
levels); thus, we cannot actually dist::em the expression level in molecular units, but can only do so
relatively. The model then looks like this:

y = a + JLeT/ + ~ (2.2)

where y is the intensity measurement, I.L is the expression level in arbitrary units, and a is the mean
background (mean intensity of unexpressed genes)? Our best estimate of I.L is y -a, the background-
corrected observed intensity. The first error term is EO" ""' N(O, af), which represents the standard deviation
of the background (unexpressed genes,), and the second error term is 17 ""' N(O, a,,), which represents the

proportional error that always exists, but is noticeable mainly for highly expressed genes.

"ar(y) =JL2eO'; (eO'; -1) + u;

(Rocke and Lorenzato, 1995). A derilved quantity will be useful in interpretation of the results.

{e~~~J--=o is the approximate relative standard deviation (RSD) of y for high levels.
Using this derived quantity, we can represent the variance of y as

Var(y) = 1L2 S~ + UE2 (2.4)

We illustrate this with a data set from an experiment on the response of male Swiss Webster mice to
a toxic substance (Bartosiewicz et al., 2000). The treated animal received an intraperitoneal injection of
15mg/kg of .8-naphthoflavone while tl.1e control mouse had an injection of the carrier (com oil) of equal
volume. The two-color spotted cDNA slides were constructed using Molecular Dynamics equipment, with
data from a treated mouse and a control mouse on each slide. Data were replicated usually a total of eight
times per slide (meaning eight spots from the same microplate well were placed on the slide). We use data
from one slide. Figures 1-3 illustrate the phenomena. Figure 1 shows the close linear relationship between
replicate mean and replicate standard deviation at high expression levels. The line shown is the predicted

I The RSD is also often called the coefficient of variation.

2Background is used here for the statistical distribution of overall intensity measurements for genes that are actually
not expressed in the sample. We do not discuss here the image processing issues in which background may refer to
the pixel distribution in areas of the slide in which there is no spot.
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FIG. 1. Standard deviation vs. the mean of replicates for raw expression data. Each point represents the mean

and and-thetrianglegarec"CC"~c,"",,~,~
the treat.l:nent ~urements. The soiidlllie Is"the predictedst3ridard:atVilitl()~uom
parameters fit to the data as described in the text. This does not differ materially on this scale between control and
treatment data.

standard deviation from the model;, the slope of this line at high levels is the relative standard deviation.
Figure 2 shows the approximately c:onstant standard deviation of the natural logarithms of the data above a
log intensity of about 13 or so. Note that when the RSD of the original set of replicates is not too large, the
standard deviation of the natural logarithms is about the same as the RSD of the untransformed data. This
figure also illustrates the vexing phenomenon that the logarithmic transformation, which nicely stabilizes
the variance at high levels, produces highly variable results for low expression levels. The lines show the
predicted standard deviation from the model for control data (solid line) and treatment data (dotted line)
using (4.2). Figure 3 shows the approximately constant variance of the raw data below a measurement

threshold as predicted by the two-(:omponent model.
It is important to realize that most of the variation observed on a cDNA or oligonucleotide array is

caused by variations in 11., the actual expression. Variation within replicated spots at the same level 11.
of true expression is the measurement error that we model, and this is typically much smaller. For our
example, the observed mean intensity varies across genes from about 6,000 units to over 9,000,000 units.
Using the two-component model, the uncertainty in a mean of 9,000,000 units over eight replicates amounts
to a confidence interval of about 7,650,000 to 10,590,000, far smaller than the variability between different
genes. We also conjecture that variation in 11. across individuals or experimental conditions for a fixed gene
also has a two component structure in that the standard deviation at low expression levels is approximately
constant while at high expression levels the RSD is approximately constant. This issue will be addressed

in further work.
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Logarithms of the Data
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FIG. 2. Standard deviation vs. the mean of replicates for natural logarithms of expression data. Each point represents
the mean and standard deviation of eighlt replicates on a slide. The circles are the control measurements and the
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3. ESTIMAllON

A model such as (2.2) cannot be ust~d in practice unless the parameters can be estimated. In this section,
we discuss methods of estimation and necessary characteristics of the data for estimation to be possible.

3.1. Estimation of background using negative controls

The easiest way to estimate the mean a and standard deviation a" of the low level measurements is
from replicate blanks (negative controls). The standard deviation of the negative controls would be used
as the estimate of a". The mean intensity of the negative controls is a suitable estimate of a, the mean
background.

3.2. Estimation of background with replicate measurements

If we have replicated mea,.,urements, but no specific negative controls, we can still estimate the back-
ground mean and variance. According to (2.2), intensity measurements from unexpressed genes will be
normally distributed with mean a and standard deviation (J~. This can be done separately for treatment
and control in a two-color array.

Begin with a small subset of genes with low intensity, such as the 10% of genes with lowest intensity
measurements. Compute the mean i. B of the genes including all replicates and the pooled standard
deviation S B of replicates of these genes that have been replicated. For each replicated gene in this

~
0

"":
0
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Raw Data f:or Low Level Expression (thousands)
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FIG. 3. Standard deviation vs. the mt~an of replicates for raw expression data for low-level expression. Each point
represents the ~and s~devi~riO~Qf eight replic~es?~ aslide,-~ c~ ~the control m~~~,,"",
and the triangles ~tbe tteatlnent mem;uremen~.11ieso1idnfie.1d6ttedilrie)1s atrwO:'esnmatedStiindatd devi~ns"
for low-level data for control (treatmen1:) data. The dash-dotted (dashed) line is the limit beyond which expression is
statistically significant for the control (treatlnent) data.

group, compute the standard deviation Si of the replicates. If there are m replicated genes, pool these
estimates as follows:

m

(n -m)-l Lsf(ni -1)
i=1

SB =

where nj is the number of replicates for gene i and n = L7'=l ni. If there are a large number of such
genes, or many replicates, it may be better to use only those replicated genes whose average expression
is less than x B to determine S B .

2. Define a new subset consisting of genes whose intensity values are in the interval [XB -2SB, XB + 2sB].
Recompute XB and sR.

3. Repeat the previous step until the set of genes does not change.

At the final step, the set of genes should include at least 95% of the unexpressed genes. If one includes
the genes below XB -2SB, this would include about 97.5% of the unexpressed genes. Depending on the
distribution of actual expression levlels, this estimate could be biased up both in the mean and (slightly) in
the standard deviation, because it i~: impossible in principle to distinguish an unexpressed gene from one
with such a low expression level that it is below detection limits. Nonetheless, this estimate should be of
considerable use in screening genes for expression.

The standard deviation of a replicated gene is at least u£, and for genes that are unexpressed or expressed
at very low levels, it will be essentially exactly this. This process cannot lead to the empty set, since at
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least one replicated gene will be inclillded. In practice, the process cannot converge to estimates of a or
0',; that are systematically too small, and since the bias in the standard deviation at low levels is typically
small, the estimates are rarely too larg(~ by much. Furthermore, the solution to which this process converges
does not appear at all to depend on the details of the selection of the initial set, so long as it is fairly
small. These observations have been confirmed by extensive simulations that are omitted here. In the next
section, we present a method of estimating a and 0',; even from unreplicated data.

3.3. Estimation of background witj'zout replication

In the absence of replicated measurements, it is still possible to estimate the mean and variance of
unexpressed genes (background); the following procedure is recommended. This can be done separately
for treatment and control in a two-color array.

1. Begin with a small subset of gene~: with low intensity, such as the 10% of genes with lowest intensity
measurements. Compute the mean iB and standard deviation SB of these genes.

2. Define a new subset consisting of genes whose intensity values are in the interval [i B -2s B, i B + 2s B].
Recompute iB and SR.

3. Repeat the previous step until the !;et of genes does not change.

At the final step, the set of genes should include at least 95% of the unexpressed genes. As before, this
estimate may be biased upwards but nonetheless should be of considerable use in screening genes for
expression. Note that this procedure is less reliable than the one to be used when there are an adequate
number of replicates because the stairldard deviation is taken across genes. If some of these genes are
actually expressed, the standard deviation is elevated by the variation in means, whereas this does not
happen with replicated data.

A variant of this procedure may reciuce the bias somewhat. In this variant, one uses the median of the
expression levels of the subset of genes as the estimate of location and uses MAD/.6745 as the estimate of
SB, where the MAD is the median absolute deviation from the median. This is calculated by subtracting
the median from each expression value in the subset, taking absolute values, and taking the median of the
resultantset6f absolute~eviations.. Tlrisis dotUInentedmdetaili1;l;~andRQC~ (ZOOO);'::;f~',"c

3.4. 

Estimation of the high-level R'SD

The parameter all can be estimated IFrom the standard deviation of the logarithms of high level replicated
measurements in much the same way as the background standard deviation can be estimated from the low
level data. For each replicated gene that is expressed at a high level, compute the standard deviation si of
the logarithms of the replicate estimates [L = y -& of ,/.t. If there are m replicated genes, one then pools

these estimates as follows:

m

(n -m)-1 Lsl(n; -1)
;=1

Sfr =

where ni is the number of replicates for gene i and n = L~=l ni. This method works because for high
expression levels, (2.2) is indistinguislhable from

{i = J.L'

In({L) = In(JL) 1/

which is a constant mean, constant variance model.
There is no method even in principle for estimating measurement error without at least some replication

at high levels since it is impossible from an unreplicated sample to know if an intensity value is high
because the expression is high or because of a positive measurement error. This fact of life should be an
important determinant of experimental design in microarrays.
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3.5. What are "high" and "low" expression?

Given the model, and preliminary estimates of the parameters, we can address the issue of high and low
expression and the variability of genes in each group. The variance of y given by (2.4) can be compared
with the variance of y at low levels. If the ratio is smaller than, say, 0.9, then most of the variance is due
to the additive error component. Thus

~2 <
JL -O.9S~

JL ::::: uE/3S" (3.1)

Thus, one can define "low level" dal:a as ones where the observed expression is smaller than this threshold.

Similarly,

JL2S2rJ > 0.90-; + JL2S~ -

JL2 S; ~ 0.90-£2 + 0.9JL2 S;

2 0.9(1;

JL~~
JL ~ 30-£/81] (3.2)

'~
~

gives a threshold above which the variance is mostly due to the multiplicative component.
An examination of the example data shows that the variance is approximately constant below about

25,000 and~ ~<;;~~~;~~,j$awroximately constant above about 13, Use~fc_~e~ure
given in Sections 3.2 and 3.4 yields parameter estimates as given in Table 1.

Using (3.1), for the control data, the logarithms have approximately constant variance when

JL? 3aE/S1)

JL ? 61,000

corresponding to a signal of 24,800 + 61,000 = 85,800 and a log signal of 11.4. For the treatment data,
the equivalent values are J1. 2: 1l8,'~00, corresponding to a signal of 25,300 + 118,400 = 143,700 and a
log signal of 11.9.

JPARAMETER ESnMATES FOR THE EXAMPLE DATAaTABLE

Parameteir Control Treatment

24,800
4.800

.227

.080
.236

34,300

25,300
9,000

.220

.078

.228

43,300

a
a"
a'l

al]/.fi

aThis show~; the estimates for the treatment and control data sepa-
rately; estimatf's for the combined model are given in Section 4.2. In this
case. r. the number of replicates. is eight. The expression cutoff is the
intensity above which the gene is expressed at a level that is statistically

significantly atlOve zero.

.)17

Expression cutoff
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Using (3.2), the raw control data have approximately constant variance when

JL :5 ufi/3S'1

JL :5 6, 800

corresponding to a signal of 24,800 -t- 6,800 = 31,600. For the treatment data, the equivalent calculation
give J.L :s 13,200, corresponding to a signal of 38,500. In the range 31,600 to 85,800 for controls and 38,500
to 143,700 for treatment, both the variance and the coefficient of variation are changing substantially.

For data with calibration curves, thle most effective estimation method is maximum likelihood, as de-
scribed in Rocke and Lorenzato (19S15). A method of applying maximum likelihood for replicated mi-
croarrays is in development, but the more heuristic methods given here may be satisfactory for many

applications.

3.6. Uncertainty of a single meaSl;!rement

The uncertainty of a single measurement is usually quantified using confidence intervals. There are two
primary approaches to this problem, an exact solution and a normal or lognormal approximation. The
exact solution requires numerical integration and will not be discussed here. Say we would like a 95%
confidence interval for JL based on a single measurement, [i. The approximate method for low values of ii,
using an estimated variance and a normal approximation is

[L :i: 1. 96JV; W

where Var(tL) is estimated using (2.4). For high levels of tL, (those in which the second term in equation
(2.4) dominates), In tL is approximately normally distributed with variance u;. Hence, a 95% confidence
interval for Jl is

(exp(IJIl fi, -

.90011)' 

exp(lnjL + .9001/»'

Note that this interval is symmetric on the log scale, but asymmetric on the original measurement scale.
We can;msouse~-methOdtOgiveConfidenceintervals fordteaverage ofa sen-es{)f rep.iCateiJlea~

surements. For low levels, the average of r measurements will be approximately normally distributed with
standard deviation JVar({1.) / r .For larJ~er values of {1., the average of the natural log of the r measurements
will have approximate standard deviation a'7/.Ii. Confidence intervals can then be constructed as above,
using the appropriate standard deviations.

4. COMJf»ARING EXPRESSION LEVELS

The most common method of comparing gene expression is to examine the ratio of expression for
treatment and control, or its 10garithnl. As we will see below, this procedure is effective when the gene
is expressed at a moderate level or hi!~her in both samples, and less effective when the gene is expressed
only at a low level in one condition or the other. In the extreme case, a gene may not be expressed at all
in the control sample (so that the true expression is zero). In this case, even a large change in expression
is difficult to detect by ratios (since the standard deviation will be extremely large), and such a ratio is
estimating a quantity that is not even 'well defined.

There is not a large previous literature on methods of comparing expression. The most developed
previous treatment is that of Chen et at. (1997). Our approach expands on theirs in several ways-most
importantly, addressing the genes with low expression where the assumption of constant relative standard
deviation cannot hold. We do not rept:at the details of their methods here, but instead refer the reader to
their explication of the issues.

The specific methods we recommend for comparing measurements will depend on whether the measure-
ments (e.g., control and treatment) are statistically independent (measured on different slides, for example)
or share common errors. The second case is particularly represented by two-color arrays in which control
and treatment are measured on the same spot. We first analyze the independent case, which is easier to
explicate.
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4.1. Comparing samples with independent errors

For a gene in which the two samples both have low level measurements, the significance of a difference
can be assessed even when there is only one sample of each using the variance estimate consisting of
the sum of the two separate background variances. Similarly, when the two samples both have high level
measurements for that gene, then we can compare the log expression measurements using a variance
estimate that is the sum of the squares of the high-level RSD's for the two cases. When there are several
independent slides for each gene, a standard t-test on the raw data or the logarithms can be performed,
depending on whether the expression is low or high.

If, however, the data are not obliging enough to conform to the stricture that both samples must have
high expression or both must have low expression, then problems ensue. In general, the most interesting
results will be those in which a gene is significantly expressed under at least one condition. In such a
case, the use of the logarithmic transformation is commonly recommended. We must use a more complex
analysis when the gene may not be expressed at a high level in both conditions. Using the delta method,
it is straightforward to show that

Var(ln((J,)) = Var(ln(y -fx)) ~ a; + a; / JL2, (4.1)

In spite of the many advantages of the logarithmic transfonnation, including stabilization of the variance
for high level data, this transfonnation has several important problems. First, it is not defined for intensity
measurements y .s: a. One would exlJect about half of the unexpressed genes to have intensity measurements
below a, and these low level data ""ill be missing in any analysis using the logarithms of the estimated
expression. Second, the variance 01' data near but still above a will be extremely high. This can make
some log ratios look very large, when they are not even statistically significant. An alternative is to take
logarithms of the intensity values ~~ (or in general In(y + c). In this case, the delta method yields the

following:

y~

This -stiIl1ookstik:e'~'Rtm~evels:~ one of the gtfie~isexp~ssed at a1owlevel,thisvariance can
also be quite high, making comparisons difficult. For example, using the parameter values of our example,
and ignoring for the moment that thf: control and treatment have been measured on the same spot, if a gene
is unexpressed in the treatment, and the actual measured value is 7,000, and if the control is expressed at
a high level, the difference has a sumdard deviation of

~

~:9000)2 + (4800)2 + (.236Y(.uC)2 (4.3)

and the log ratio has a standard deviation of about

(9000)2;(7000)2 + [(4800)2 + (.236)2(JLC)2]/y~ (4.4)

The difference is superior to the log; ratio until Yc reaches about 750,000. The expected t-statistic for the
log ratio does not reach 2 until Yc exceeds 145,000, whereas the expected t-statistic for the difference
reaches 2 at about 28,000. In genenil, differences may be superior to log ratios for estimation and testing
of changes when one of more of tht~ measurements is quite low.

4.2. Two-color arrays

Perhaps a more important case is when the treatment and control measurements are correlated; we
describe the situation when using a two-color array with treatment and control on the same spot. A version
of the two-component model that a(;commodates this structure is

(4.5)yc = ac + JLCeIlS+IIC + ES + EC

YT = aT + JLTeI/S+I/T + ES + ET
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where the subscript S indicates a component of variance due to the spot that is shared by control and
treatment, and C and T are the speci11c control and treatment components of variance, respectively.

At low levels of both treatment and control expression, this is approximately

YC ~ ac + ~s + ~c (4.7)

(4.8)YT ~ aT + fS + fT

a standard-components-of-variance m.Jdel. In this case,

Var(yc) ~ a~~ + a;c

Var(YT) ~ a~~ + a;r

Var(yc -YT) ~ a;c + a;r

(4.9)

(4.10)

(4.11 )

Solution of these equations provides estimates of the variance components, although (as usual for method-
of-moments estimation of variance components) the estimates may be negative, in which case the estimate
is usually taken to be zero. Figure ,~ shows the three estimated variance components for each of the
31 genes (out of 138 total) that had both treatment and control at a low level. From this one might
conclude that the controls at low levels have errors basically due to spot variation and that the treatment
has an additional component of variance. Rough estimates are that the spot standard deviation is about
5,000, the treatment-specific standard deviation is about 7,000, and the control-specific standard deviation
is negligible (meaning that the variaru;e of the control measurement is essentially the spot variance).

Decomposition of Variances of Differences for Lo'vAv,/Low Spots
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[::=~=:==::~~~=~=:=J
L L J

0

0

Spot Variance Control Variance Treatment Variance

FIG. 4. Box plots of the components of variance of the differences of raw expression data when both treatment and
control are exoressed at a low level.
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Similarly, if both treatment and control are expressed at high levels, we have approximately

(4.12)In(yc) ~ In(/LC +ac) + 1/s + 1/c

In(YT) ~ In(/LT + aT) + 1/S + 1/T

and

2 2Var(ln(yc» ~ U'1S + U'1C

2 2Var(ln(YT» ~ U'1S + U'1T

Var(ln(yc) -In(YT)) ~ U;C + U;T

(4.14)

Fi~e 5 shows the components of 'variance when both genes are expressed at a high level (16 out of 138),
implying a large common spot effi~ct. Roughly, the spot standard deviation is about .22, the treatment-
specific standard deviation is about .03 and the control-specific standard deviation is about .06.

For the log ratios of the example data, we have an average standard deviation of .()674 when both genes
are highly expressed, .3429 when neither gene is highly expressed, and .1780 in intermediate cases. The
average standard deviation of replil::ates of the log ratios over all 138 genes is .2173. Since the variance
of measurements depends on the It:vels of treatment and control separately, and not just on the value of
the ratio, great care needs to be tak,en in analyses in which many genes are used, as is commonly the case
in cluster analysis and discrimination. It is perhaps important to note that the log ratio is quite precise for
highly expressed genes. A value of 2(.0674) = .1348 would imply significance, and this corresponds to a
ratio of only 1.14. If one used the overall standard deviation of the log ratios (.2173) to assess significance,

co
~
0

r--~~~T::-~~'" ;~c.;:;;;

=~~

co
q
0

~
0:
0

N
~
0 ' T---'r T '

L 1 ,

0;
0

L L J L 1 J

Treatment VarianceSpot Variance Control Variance

FIG. 5. Box plots of the components of variance of the logarithms of the ratios of expression data when both
treatment and control are expressed at a high level.
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the critical ratio is 1.54, which is much larger. The latter figure is actually an inappropriate mixture of high
and low level behavior, which can be I~asily separated using the two-component model. This suggests that
the repeatability of microarrays may be much better when used appropriately than is commonly thought.

Until better methods of coping with this problem are developed, one measure that should improve
the performance of multivariate techniques is to use weights proportional to the reciprocals of estimated
variances. If the data to be used are log ratios of same-spot data, then the approximate variance using
the two-component model has a complex form. To determine this, we must provide an approximation that
(unlike (4.14)-(4.16» is valid even when one of the measurements is not at a high level. First, we linearize
the two measurements in the form

(4.17).In(yc) ~ In(JLc + ac) + (l1SJLC + l1CJLC + ~s + ~C)/(JLC + ac)

(4.18)In(YT) ~ In(,uT + aT) + (l1S,uT + l1T,uT + ES + ET )/(,uT + aT)

so that approximately

In(YT /YC) ~ In(JLC + ac) -In(JLT + aT)

+ '7S[JLC/(JLC +ac) -JLT/(JLT +aT)]

+ I7CJLC/(JLC +ac) -l7rJLr/(JLr +ar)

+ Es[I/(Jl,C +ac) -1/(Jl,r +ar)]

+ EC!(ILC +ac) -ET/(ILT +aT: (4.19)

and

Var[ln(yZ;qc)J ~ a;$[1:f~4W~;;j;~~~)c:="HTI (JLI,*,,~~>Y
-c-;,.",C'"" "'C""~=""C"'""~c "',e-Ccc

22 '222 2+ a"cJLC/(JLC +ac) +a"TJLT/(JLT +aT)

+ a;S[l/(JLC + ac) -l/(JLT + ar)Y

+ a;C/(JLC + acY + a;T/(JLr+ aTY. (4.20)

Note that if.LLC and .LLT are both large, this reduces to Var[ln(YT/Yc)] ~ a~c + a~T' in agreement with

(4.16).
All of the parameters in the expression above can be estimated from the data (as shown above), so that

a derived weight can be given as the reciprocal of this estimated variance for each log ratio. These can
then be used in a weighted analysis of many different types.

If we assume that the data have been adjusted so that ac = aT, and if we consider the case of testing
the hypothesis of equality, so that we tike .LLT = .LLC for the purpose of estimating the variance, we obtain
the simplified expression

Var[ln(YT /Yc)] ~ [(a;c + a;T)/l-2 + a;C + a;T]/(/l- + at (4.21

This can be used to determine which log ratios are significantly different from zero. Note that the test
using the log ratios for the example data will have a standard deviation of .0674 when .u is large and
will rise to .287 when .u is O. A standard deviation of .1 (corresponding to an approximate CV of 10%)
occurs at .u = 56, 000. Note that this would imply that differences as small as 20% would be statistically
significant at and above this expression level.
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5. CONCLUSION

We have introduced a new model for measurement error in gene expression microarray data that greatly
eases the interpretation and comparison of these data. This model provides a common framework for
determination of background means and standard deviations, for estimation of the measurement error of
single measurements and means of replicates, for comparison of expression data, and for pre-processing
data for multivariate methods.
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