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Abstract

Cross-linking technology combined with tandem mass spectrometry is a powerful

method that provides a rapid solution to the discovery of protein-protein interactions

and protein structures. We studied the problem of detecting the cross-linked peptides

and cross-linked amino acids from tandem mass spectral data. Our method consists

of two steps: the �rst step �nds two protein subsequences whose mass sum equals a

given mass measured from mass spectrometry; and the second step �nds the best cross-

linked amino acids in these two peptide sequences that are optimally correlated to a

given tandem mass spectrum. We designed fast and space-e�cient algorithms for these

two steps, and implemented and tested them on real experimental data of cross-linked

Hemoglobin proteins.
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1 Introduction

In recent years, more and more genomes of model organisms have been sequenced. Using these

genomic sequences, researchers have been focused on the identi�cation of genes on the genome,

the study of gene regulation and gene regulatory networks, the discovery of signal transduction

pathways, the determination of protein structures, the detection of protein-protein, protein-

DNA, and protein-metabolite interactions, and the elucidation of functions of genes and their

protein products. A method which combines chemical cross-linking of proteins with mass

spectrometry may be useful in discovering protein-protein interactions and solving protein

structures. We focus on new algorithms for interpretation of complex experimental data

generated by this method in this paper.

Traditionally, three-dimensional structures of proteins are solved by x-ray crystallography

and NMR. However, generating an accurate structure that satis�es constraints of experimental

data can be extremely di�cult. There has been some success in other computational methods

to predict structures from energy functions, multiple alignments, and threading. However,

the accuracy and general applicability of these methods lags far behind the rates at which

new protein sequences are being identi�ed. Classical methods of detecting protein-protein

interactions involve complicated biochemical experiments, which are prohibitive to scale up

to determine thousands to millions of interactions among thousands of proteins.

Cross-linking technology combined with mass spectrometry provides an alternative ap-

proach to detecting protein-protein interactions and adding reliable inter-amino acid con-

straints to protein structures. Previous studies of cross-linking have been able to produce low

resolution interatomic distance constraints, which in conjunction with threading, has led to

the determination of three-dimensional structure of a model protein [4]. Similar techniques

can be applied to \dock" the structures of two interacting proteins.

Tandem mass spectrometry plays a powerful role in the identi�cation of cross-linking
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Figure 1: Three cross-link structures: (a) two cross-linked peptides, (b) one decorated peptide,

and (c) one self cross-linked peptide.

sites. Tandem mass spectrometry, combined with high performance liquid chromatography

(HPLC), has been widely used to identify peptides and analyze protein sequences. Pep-

tides, i.e. NH2CHR1CO� NHCHR2CO� � � � � NHCHRnCOOH, resulting from proteolytic digestion of

proteins are separated by HPLC and then analyzed in a mass spectrometer. The latter is

a two step process which consists of measuring the mass-to-charge (m/z) ratio of an ion-

ized peptide (the \parent" ion) and then measuring the m/z of fragmentation products (the

\daughter" ions) of the peptide after collision-induced dissociation (CID). CID produces a

ladder of ions, typically N-terminal \b" ions (NH2CHR1CO� � � � � NHCHRiCO
+) and C-terminal

\y" ions (NH+3 CHRi+1CO� � � � � NHCHRnCOOH), where two consecutive ions di�er by one amino

acid. These ions display a characteristic pattern for that peptide on the tandem mass spec-

trum. Computer programs such as SEQUEST [1] correlate peptide sequences in a protein

database with the tandem mass spectrum, and report all peptides with signi�cant correlation

scores. An alternative approach [2, 3], called de novo peptide sequencing, extracts candidate

peptide sequences from the spectral data before they are validated in a database.

We performed an experiment that �rst chemically cross-linked interacting proteins, then

digested them proteolytically (using, for example, trypsin), and �nally separated and identi�ed

cross-linking sites through HPLC-tandem mass spectrometry. This paper focuses on the

algorithmic solutions to the identi�cation of cross-linked peptides from the tandem mass
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spectral data. Cross-link structures are shown in Figure 1. Figure 1(a) shows an \H-structure"

cross-link where two amino acids in two peptides are connected to a linker by covalent bonds,

Figure 1(b) shows that the linker simply decorates some amino acid of a peptide, Figure 1(b)

shows a self cross-linked peptide where two amino acids on this peptide are connected to a

linker. Our approach to �nding an H-structure cross-link (Figure 1(a)) for a tandem mass

spectrum uses the following three steps:

� Step 1: Given the mass of the parent cross-link molecules measured in mass spectrom-

etry, �nd every pair of peptides whose mass sum (plus the mass of the linker) equals

this mass.

� Step 2: Given a pair of peptides, �nd the cross-linked amino acids that are optimally

correlated to the tandem mass spectral data.

� Step 3 Report the pair of peptides with the maximum correlation score.

For simplicity, assuming that we are given k protein sequences each with n proteolytic

amino acids, we can

� Solve Step 1 in O(kn2 log(kn)) time and O(kn) space.

Proteins with di�erent numbers of proteolytic amino acids can be solved by this algorithm too.

If we are given 2 peptide sequences of m-amino acid length and the tandem mass spectrum

has h mass peaks, we can

� Solve Step 2 in O(m log h) time and O(m+ h) space.

Our paper is organized as follows. Section 2 describes the algorithm to �nd two protein

subsequences whose mass sum equals a given mass. Section 3 further studies the algorithm

of �nding the best cross-links between two peptides. Section 4 reports the implementation of

our algorithms and the test on a Hemoglobin cross-link experimental data.
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2 Identifying two protein subsequences for a mass

There are n(n+1)=2 possible subsequences corresponding to a protein with n proteolytic amino

acids. For example, trypsin cuts a protein sequence right after a lysine(K) or an arginine(R).

The exact place of each cut depends on the distribution of Ks and Rs: if two Ks or Rs are

very close, the �rst one may not be cut. Moreover, local sequence in
uences and modi�cations

may protect some Ks and Rs from being cleaved by trypsin. Therefore, two protein sequences

have O(n4) possible pairs of subsequences.

To speed up the computation, we translate a protein sequence P into an array A of n+ 1

masses, each of which corresponds to a unique subsequence between two adjacent proteolytic

amino acids. For example, P=NRDNKT, when trypsin is used for digestion, is translated into

an array A = (A1; A2; A3) where A1 =the mass for NR, A2 =the mass for DNK and A3 =the

mass for T. Thus any proteolytic subsequence of P has the mass sum equal to the sum of the

elements in the corresponding interval of A. For example, the subsequence DNKT has the

mass of A2 +A3.

Since the mass of the linker is �xed, we focus on �nding two protein subsequences for a

given mass M , which is equivalent to the Subsequence Sum Problem (SSP) de�ned below.

De�nition 1 Subsequence Sum Problem (SSP): Given two positive n-sequences A =

(a1; :::; an) and B = (b1; :::; bn), and a number M , �nd all possible pairs of subsequences,

(ai; :::; aj); 1 � i � j � n, and and (bk; :::; bl); 1 � k � l � n, such that

jX
s=i

as +
lX

t=k

bt = M

2.1 Algorithms for �nding subsequences from one sequence

First, we consider a sequence A and a mass M , and we are asked to �nd a subsequence of A

such that its sum equals M . The following Algorithm Find-A solves this problem.
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Algorithm Find-A(A;M)

1. i = 1, j = 1; # Subsequence: (a1)

2. sum = a1; # sum is the sum of the subsequence

3. While j < n or sum �M # End if j = n and sum < M

4. If sum = M

5 then output(i; j); # Solution: sum = M

6. If sum < M

7. then j = min(j + 1; n), sum = sum+ aj; # Add aj+1 to (ai; : : : ; aj)

8. Else # sum > M or sum = M

9. sum = sum� ai, i = i+ 1. # Delete ai from (ai; : : : ; aj)

Theorem 1 Given a positive number sequence A = (a1; :::; an) and a number M , Algorithm

Find-A �nds all the subsequences (ai; :::; aj); 1 � i � j � n, satisfying

jX

s=i

as = M (1)

in O(n) time and O(n) space.

Proof. At Steps 3-9, either i or j increases by one at each iteration and the iteration will

stop before j > n and i > n. Therefore Algorithm Find-A runs in linear time. We will show

that Algorithm Find-A �nds all the solutions.

Algorithm Find-A �rst considers subsequences starting with a1 (Step 1) and computes

their sums by adding a2; a3; : : : one by one into (a1) (Steps 6 and 7), until the subsequence

(a1; : : : ; aj) satis�es
j�1X
s=1

as < M �

jX
s=1

as: (2)

Since all the numbers are positive, either (a1; : : : ; aj) is a solution (Steps 4 and 5), or there is

no solution for subsequences starting with a1.
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Then Algorithm Find-A looks at subsequences starting with a2 (after Steps 8 and 9). By

Equation 2,
Pj�1

s=2 as < M . Thus, the algorithm starts with the subsequence (a2; :::; aj), adds

aj+1; aj+2; : : : one by one into it, and calculates the sums (Steps 6 and 7). The addition at

Step 7 stops when
j+k�1X
s=2

as < M �

j+kX
s=2

as:

Then, the algorithm checks if a2; :::; aj+k is a solution. As before, either (a2; : : : ; aj+k) is a

solution (Steps 4 and 5), or there is no solution for subsequences starting with a2.

The algorithm repeats this process for subsequences starting with a3; : : : ; an, until every

solution is found. At most one solution corresponds to subsequences starting with ai for

i = 1; 2; : : : ; n, so the total number of solutions is at most n. Algorithm Find-A requires O(n)

space.

2.2 Algorithms for �nding cross-linked subsequences

Following Algorithm Find-A and Theorem 1, we have

Lemma 2 The SSP can be solved in O(n3) time and O(n + p) space, where p is the number

of solutions.

Proof. For every subsequence ai; : : : ; aj of A, Algorithm Find-A �nds all subsequences of

B that satisfy
P

l

t=k bt = M �

Pj

s=i as in O(n) time. There are O(n2) subsequences of A, and

thus SSP can be solved in O(n3) time. This algorithm stores all the solutions in O(p) space

and requires O(n) space for A and B, a total of O(n + p) space.

From Theorem 1 and Lemma 2, there are at most O(n) solutions (subsequences of B ) for

every subsequence of A. Thus,

Corollary 3 The number of solutions for SSP is at most O(n3).

If O(n2) space is allowed, then

7



Lemma 4 The SSP can be solved in O(n2 log n+ p) time and O(n2+ p) space, where p is the

number of solutions.

Proof. We compute the sums of all subsequences of B in O(n2) time and store them into

an array of O(n2) space. Then, the sums are sorted in O(n2 log n) time. For every subsequence

ai; : : : ; aj of A, we can �nd all the subsequences of B that satisfy

lX

t=k

bt =M �

jX

s=i

as

in O(logn + q) time using binary search, where q is the number of solutions. If p is the total

number of solutions, �nding all of them takes O(n2 log n+ p) times and O(n2 + p) space.

Algorithm Find-AB(A;B;M)

1. SA = f(ai; : : : ; aj) j (
Pj

s=i as < M �

Pj+1
s=i as; j < n) or (

Pj

s=i as < M; j = n)g;

2. SB = f(bk); k = 1; : : : ; ng;

3. While (SA 6= ;)

4. Find (ai; : : : ; aj) 2 SA, v =
Pj

s=i as is the maximum sum;

5. For every (bk; : : : ; bl) 2 SB and
P

l

t=k bt < M � v

6. Delete (bk; : : : ; bl) from SB;

7. If (l < n), then add (bk; : : : ; bl+1) into SB;

8. For every (bk; : : : ; bl) 2 SB and
P

l

t=k bt = M � v

9. output i; j; k; l;

10. Delete (ai; : : : ; aj) from SA;

11. If i < j, then add (ai; : : : ; aj�1) into SA.

For every ai, Step 1 �nds the longest subsequence (ai; : : : ; aj) that satis�es
Pj

s=i as < M

for every i. Any subsequence of A to be in a solution must have the sum less than M and be

a pre�x subsequence of some element in SA. Then, Step 2 �nds the shortest subsequences of
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B. Any subsequence of B to be in a solution must be a pre�x supersequence of some element

in SB.

Steps 3-11 check every subsequence of A with sum less than M in decreasing order, and

search its corresponding solutions in B. Step 4 �nds (ai; : : : ; aj) 2 SA with the maximum sum

v. Steps 5-7 delete every element (bk; : : : ; bl) 2 SB that
P

l

t=k bt < M � v and replace by its

immediate pre�x supersequence (bk; : : : ; bl+1). Steps 8-9 �nd every element (bk; : : : ; bl) 2 SB

such that
P

l

t=k bt = M � v in SB, and report the solution (ai; : : : ; aj) and (bk; : : : ; bl). After

�nding all solutions for (ai; : : : ; aj), Step 10 deletes it, and Step 11 adds the immediate pre�x

subsequence (ai; : : : ; aj�1) into SA.

Theorem 5 Algorithm Find-AB solves SSP in O(n2logn+ p log n) time and O(n+ p) space,

where p is the number of solutions.

Proof. Obviously, every output of Algorithm Find-AB is correct and unique. Assume

that (ai; : : : ; aj) and (bk; : : : ; bl) satisfy
Pj

s=i as +
P

l

t=k bt = M . We show that the algorithm

�nds this solution.

Let (ai; : : : ; aj0) 2 SA in Step 1, which is the longest subsequence of A that starts with ai

and has a sum less than M . Because
P

j

s=i as < M , then j � j 0. In Step 4, the algorithm will

check (ai; : : : ; aj0), and also all its pre�x subsequences including (ai; : : : ; aj): : : :, (ai; : : : ; aj0),

: : :, (ai; : : : ; aj0�1), : : :, (ai; : : : ; aj), : : :. On the other hand, every subsequence of B in the

order of : : :, (bk), : : :, (bk; bk+1), : : : are checked in Steps 5, 6 and 7.

Let Step 4 generate a series of v-values: v1; v2; : : : ;. This series is in decreasing order,

because Step 4 always �nds an element in SA with the maximum sum and Steps 8 and 9

replace it by a subsequence with a smaller sum. Step 5 deletes subsequences of B that has

sum less than M � v1, M � v2, : : : at each iteration respectively. Let w =
Pj

s=i as. When the

algorithm is deleting (ai; : : : ; aj) in Step 10, all the subsequences of B with a sum less than

M �w would have been deleted. Thus, (bk; : : : ; bl) is present in SB because
P

l

t=k bt = M �w.
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The algorithm should �nd it and report the solution (ai; : : : ; aj) and (bk; : : : ; bl).

Both SA and SB maintain O(n) elements throughout the algorithm. We store them in a

data structure called a Red-Black Tree [5]. It is a binary tree that allows retrieval, adding and

deletion in O(logn) time while keeps the tree height O(logn) through e�cient tree rotations.

Thus the algorithm requires only O(n + p) space.

In Steps 3-11, every subsequence of A is checked and deleted at most once. Every subse-

quence of B is checked and deleted at most once in Steps 5-9 if it is not in any solution. If a

subsequence is in r � 1 solutions, it will be checked exactly r+1 times. It takes O(logn) time

for every retrieval in Steps 4, 5 and 8, every deletion in Steps 6 and 10, and every adding in

Steps 7 and 11. The total running time is O(n2 log n+ p log n).

Algorithm Find-AB requires basically only O(n) space if the solutions are not stored. It

has an advantage in applications where n is huge, because an O(n2)-space algorithm could

easily blow up the whole virtual memory. Similar algorithms can be applied to solve the SSP

problem with k sequences:

Theorem 6 Given M and k positive n-sequences At = (at1; :::; atn), t = 1 : : : k, �nding all

possible pairs of subsequences of A1, A2, ..., or Ak such that their mass sum equals M takes

O(kn2 log(kn) + p) time and O(kn + p) space, where p is the number of solutions.

In a protein database of k � n size where k � n, Theorem 6 implies that the solutions can

be found in the scale of O(k log k) time.

3 Identifying cross-linked amino acids

3.1 Cross-Linking Structure

Two peptide sequences P = (p1; :::; pm) and Q = (q1; :::; qm) can be cross-linked into an H-

structure shown in Figure 1(a). In Figure 1(a), amino acids p2 and qj are connected by a
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Figure 2: Four fragmentation patterns for a cross-linked molecule in tandem mass spectrom-

etry.

linker introduced by a cross-linking agent. A typical agent, disuccinimidyl glutarate (DSG),

cross-links two lysines to form a Lys-linker-Lys structure. If each peptide sequence has r

(r � m) such amino acids to be cross-linked, there are r2 possible cross-links.

Via tandem mass spectrometry, each cross-linked molecule in Figure 1(a) will result in

one of the four fragmentation patterns shown in Figure 2. In Figure 2(a), the peptide bond

p1�p2 is broken, and the molecule is fragmented into an N-terminal ion, p+1 , and an C-terminal

ion, the H-structure ion on the right. In Figure 2(b), the peptide bond pi � pi+1 is broken,

the molecule is fragmented into an N-terminal ion, the H-structure ion on the left, and a C-

terminal ion, p+
j+1�� � ��pn. Similarly, if a peptide bond of Q is broken, the molecule has two

fragmentation patterns shown in Figure 2(c) and 2(d). Depending on the cross-linking agent

used in the experiment, a linker may contain a peptide bound. If the linker is broken, the

H-structure molecule is cleaved into two peptide ions, each of which has a decoration similar

to the molecule shown in Figure 1(c). Theoretically, there are O(n) ions for cross-linked P and

Q. A tandem mass spectrum is a collection of mass peaks, ideally, each of which corresponds

to some ion in Figure 2.
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3.2 Algorithms for identifying cross-linked amino acids

De�nition 2 Cross-Linked Amino Acids Problem (CLAA): Given an h-mass peak tan-

dem mass spectrum T = (t1; :::; th) of two cross-linked m-amino acid peptides P = (p1; :::; pm)

and Q = (q1; :::; qm), each having r (r � m) amino acids that can be cross-linked, �nd the

cross-linked amino acids that maximize the value of a given scoring function F(P;Q; T ).

There are r2 cross-linked amino acid pairs corresponding to r2 possible cross-link struc-

tures. For every such structure, we can generate a hypothetical tandem mass spectrum,

S = (s1; :::; s4m) from the masses of all the possible fragmented ions in Figure 2. A scoring

function F compares the mass peaks of T with the mass peaks of S, and gives a score based

on how well they are correlated. Generally, F considers a match between two mass peaks ti

of T and sj of S, if jti � sjj � ", where " is the maximum measurement error allowed in an

experiment. The higher the number of matches is, the higher the F -score is.

Now we consider the function F to be the counts of the number of matches. For every

mass peak of S, �nding its match in T takes O(logh) time by binary search. The total number

of matches can be determined in O(m log h) time. Thus, �nding the most-likely cross-linked

amino acids takes a total of O(r2m log h) time. However, there is better way to do it.

Theorem 7 CLAA problem can be solved in O(m log h) time and O(m + h) space if the

scoring function F counts the number of matches.

Proof. Figure 2(a)-(d) shows 4(m � 1) ions for one cross-link, and thus r2 cross-links

have a total of 4(m � 1)r2 ions. However, there are only 8(m� 1) di�erent masses for these

ions. Figure 3 shows two types of N and C-terminal ions after breaking the peptide bond

pi� pi+1. In Figure 3(a), the cross-linked amino acid of P locates after pi, and in Figure 3(b),

the cross-linked amino acid of P locates before pi. The C-terminal ion in Figure 3(a) has a

�xed mass no matter where the cross-link may be located, and so does the N-terminal ion in
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Figure 3: Two types of N and C-terminal ions after breaking the pi � pi+1 peptide bound.

Figure 3(b). Since P and Q together have 2(m � 1) peptide bonds, there are only 8(m � 1)

di�erent masses.

Let M(�; T ) count the match of a mass � with a spectrum T . M(�; T ) = 1 if there is a

match, and 0 otherwise. In the following steps, we can �nd the best cross-link:

1. Calculate ion masses P : (LN

p1
; LC

p1
); : : : ; (LN

pm�1
; LC

pm�1
) for the N and C-terminal ions in

Figure 3(a) corresponding to the breaking of peptide bounds (p1� p2), ..., (pm�1 � pm),

and (RN

p1
; RC

p1
); : : : ; (RN

pm�1
; RC

pm�1
) for the N and C-terminal ions in Figure 3(b).

2. Look up these masses in T for matches: M(LN

pi
; T ),M(LC

pi
; T ),M(RN

pi
; T ), andM(RC

pi
; T ),

for i = 1; :::;m� 1.

3. For every possible cross-linked amino acid pi, calculate scorei =
P

i�1
j=1 (M(LN

pj
; T ) +M(LC

pj
; T ))+

P
m

j=i (M(RN

pj
; T ) +M(RC

pj
; T )). Find the maximum score, scorea, which indicates the

most likely cross-linked amino acid pa.

4. Repeat Steps 1, 2 and 3 and �nd the most likely cross-linked amino acid qb for Q.

5. Report cross-link pa � qb.

In Step 1, it takes O(m) time to calculate (LN

p1
; LC

p1
) and from (LN

p1
; LC

p1
) to (LN

p2
; LC

p2
) takes

only O(1) time for adding and subtracting p2. Thus Step 1 takes O(m) time. The matching

in Step 2 takes O(m log h) time by using binary search. Similarly, it takes O(m) time to
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calculate score1, and only additional O(1) time for score2. Thus, Step 3 takes O(m) time.

Step 4 has similar time complexity. Therefore, �nding the cross-linked amino acids takes a

total of O(m log h) time.

Although Theorem 7 is for the particular function F that counts the number of matches,

this theorem holds for almost every function we generally use, such as the correlation function

which we use in the next section, the convolution function, and so on.

4 Experiments and data analysis

Chemicalmodi�cations and crosslinks were introduced into the human blood protein hemoglobin

(Hb; Sigma, St. Louis, MO) by reaction with disuccinimidyl glutarate (DSG; Pierce, Rock-

ford, IL). Hemoglobin is a four subunit protein consisting of two subunits each of two unique

polypeptide chains, � and �. The approximate molecular weight of each chain is 15,000 dal-

tons. DSG is a homobifunctional crosslinker which creates a link between two separate lysine

residues by inserting a 5-carbon chain between them.

Brie
y, 50 mM Hb was reacted with 5 mM DSG for 1 hour at room temperature in the

presence of 90 mM sodium phosphate pH 7.5 and 10% DMSO. The reaction was stopped by

addition of an equal volume of 1.0 M Tris pH 7.5. An aliquot of this reaction was mixed with

2 volumes of 6M urea and TPCK-treated trypsin (Sigma, St. Louis, MO) was added at a

ratio of 1:125 w/w trypsin to Hb. This mixture was allowed to react at 37 C overnight. 100

ml of the digestion mixture was subject to LC/MS/MS analysis. The sample was loaded onto

a YMC ODS-AQ S3m 120 �A1.0 x 150 mm column (Waters, Milford, MA) and the peptides

were separated by a gradient of 5-80% acetonitrile (0.03% tri
uoroacetic acid and 0.10% acetic

acid as ion pairing reagents). The eluent was directed to a Finnigan LCQ (Thermoquest, San

Jose, CA) ion trap mass spectrometer �tted with an ESI source and operated in positive ion

mode. Signi�cantly ionized peptides were automatically measured for m/z and subjected to
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CID. Data were automatically collected.

The data were analyzed visually and with several in-house algorithms, as well as the

commercial package SEQUEST [1]. For this experiment, we implement the algorithm in

Lemma 4, and calculate the correlation between a pair of sequences S and a tandem mass

spectrum T using the following function:

cor(T; S) =

P
s2S;t2T;M(s;t)=1 h(s) � h(t)qP

s2S h
2(s) �

P
t2T h

2(t)
�

#matches

jSj+ jT j �#matches

where h(t) gives the abundance for the mass peak t, and h(s) is the hypothetical abundance

for the theoretical mass peak s, corresponding to some ion of S.

Several types of modi�cation events were recognized: inter-peptide cross-links (Figure

1(a)), decoration (Figure 1(b)), and internal cross-links (Figure 1(c)). Of speci�c interest to

this work, a crosslink between lysine 82 of both � subunits of Hb was detected. Structurally,

this would correspond to bridging the central channel of the Hb protein. The inter-residue

distance between the two lysines was measured to be 8.18 �A (derived from the PDB �le

1A3N), which is comparable with the 7.7 �A spacer length of DSG [6]. This crosslink was

found in an ion m/z of 1174.35 at z=3, corresponding to a molecular ion of 3521.08. This

mass is equivalent to two molecules of the tryptic peptide 67-VLGAFSDGLAHLDNLK-82

of Hb after being carbamylated (a N-terminal modi�cation of 43 daltons due to urea) and

cross-linked by the glutarate moiety of the DSG. Partial sequence data from this peptide was

observed in the daughter ion spectra which gives credence to the result.

A more detail report will be shown in the full version of this paper.

5 Discussion

The algorithms suggested here do not consider the case of amino acid modi�cations. However,

if a modi�cation such as phosphorylation is known, our algorithms work too. In the real
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experimental data, there are many complications because of noise, multiple charged ions, mass

measurement errors, ions losing a water molecule, internal ions from double fragmentation,

isotopic ions, and so on. All these can a�ect the interpretation and some of them are machine

dependent and some others are experiment dependent. Also, a good scoring function is critical

to judge what is the best interpretation for a tandem mass spectrum. What is the best scoring

function and how to use the abundance information remain unsolved.
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