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ABSTRACT

The determination of a list of differentially expressed genes is a basic objective in many
cDNA microarray experiments. We present a statistical approach that allows direct control
over the percentage of false positives in such a list and, under certain reasonable assump-
tions, improves on existing methods with respect to the percentage of false negatives. The
method accommodates a wide variety of experimental designs and can simultaneously as-
sess signi� cant differences between multiple types of biological samples. Two interconnected
mixed linear models are central to the method and provide a � exible means to properly
account for variability both across and within genes. The mixed model also provides a con-
venient framework for evaluating the statistical power of any particular experimental design
and thus enables a researcher to a priori select an appropriate number of replicates. We also
suggest some basic graphics for visualizing lists of signi� cant genes. Analyses of published
experiments studying human cancer and yeast cells illustrate the results.
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INTRODUCTION

Microarrays are becoming increasingly more common laboratory tools for studying simul-
taneous changes in expression across a large number of genes. Image data from the arrays lead

to gene-speci� c numerical intensities representing relative expression levels, and these in turn form the
input to computational analysis designed to assess signi� cance and relationships across biological samples.
This paper presents a general statistical method for analyzing these intensity measurements derived from
a potentially large and diverse number of microarray experiments. Our primary goal is to statistically infer
signi� cant expression differences in a way that optimally controls both false positives (genes declared to
be differentially expressed which in reality are not) and false negatives (genes truly differentially expressed
but not declared as such).
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The importance of assessing statistical signi� cance cannot be overstressed. Simple rules that eliminate
genes with less than two- or three-fold expression changes completely miss very biologically important
genes that have a small fold change, but which are highly signi� cant statistically because they can be
measured with high precision as a result of replication. Conversely, many genes that have a large fold
change in one array may also exhibit high variability across multiple arrays and thus possess little to no
statistical signi� cance. Proper determination of signi� cance prevents researchers from “chasing noise” and
helps them appropriately distinguish between important biological changes and chance variation (Wittes
and Friedman, 1999).

Recent work of Tanaka et al. (2000) illustrates the danger of false positives and false negatives when
looking strictly at fold change. They investigated placenta and embryo differences in 15K genes measured in
triplicate on microarrays producing one observation per spot. Their Fig. 2 depicts how both kinds of errors
can be committed when raw fold changes are used as the sole criterion. Unfortunately, the replication and
basic t-test they used to assess signi� cance is seldom seen in the cDNA microarray literature. The methods
we present provide a direct generalization of simple t-tests to more complex cDNA data sets including
those arising from � ipped and multiple dye experiments and those designed to detect interactions between
treatments.

Our proposed methodology is complementary to various popular clustering methods (refer to Eisen
et al., 1998; Tamayo et al., 1999; Claverie, 1999; Hastie et al., 2000; Dudoit et al., 2001a; Lazzeroni and
Owen, 2000; Kerr and Churchill, 2001a). Investigators can use it as a precursor to clustering to make sure
the inputs are statistically meaningful, or it can be used after clustering to explore and validate implied
associations. There is also the interesting possibility of clustering on signi� cance measures such as negative
log p-values and on measures of variability instead of on normalized log expression ratios.

Replication of spot measurements either within or between arrays is essential in our approach, as
signi� cance levels for each gene are determined on the basis of distinct estimates of intragene variability.
This is in contrast to the interesting single-array methods of Chen et al. (1997) Newton et al. (2000),
Sapir and Churchill (2000), Hughes et al. (2000), and Rocke and Durbin (2001), who accommodate
gene heterogeneity via different global distributional assumptions across all measurements on an array.
The importance of replication has been nicely illustrated in recent work by Lee et al. (2000), who � t
a normal linear mixture model to single-channel data from one slide. They recommend a minimum of
three replicates, and although our linear models are of a different form (note “mixture” is different from
“mixed”), we concur in this recommendation and describe a method for determining precisely how many
replicates are required to achieve desired measures of selectivity and sensitivity.

Our methods are also related to recent ground-breaking work by Kerr et al. (2001) and Dudoit et al.
(2001b). The former propose a general analysis of variance (ANOVA) model for the logs of original � uo-
rescence measurements, never explicitly forming log ratios. The latter recommend a nonlinear smoothing
algorithm for the normalization of log ratios and then permutation-based t-statistics for testing the signif-
icance of each gene, the p-values for which are suitably adjusted for multiplicity. In addition to its novel
features, our approach incorporates and extends some of the best aspects of both of these papers, making
a few simplifying assumptions and generalizing other ones. The result is a � exible, uni� ed, and practical
approach for assessing gene signi� cance that can be implemented using commercially available software.
Our hope is that researchers will adopt this approach as a basic “workhorse” method for the determination
of signi� cant genes.

RESULTS

Our approach centers around two interconnected ANOVA models, the “normalization” model and the
“gene” model. Both are similar to the overall ANOVA model of Kerr et al. (2001) in that they model
the logarithms of the original � uorescence measurements, not log ratio values. The normalization model
accounts for experiment-wide systematic effects that could bias inferences made on the data from the
individual genes. The residuals from this model represent normalized values and are the input data for the
gene models. The gene models are � t separately to the normalized data from each gene, allowing inferences
to be made using separate estimates of variability. Dudoit et al. (2001b) incorporate such heterogeneity in
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their t-statistics and recommend this extension to gene-by-gene ANOVA models in their discussion. The
two separate models provide a conceptually and computationally ef� cient means to analyze the data. We
now present results of the approach applied to two publicly available data sets.

Yeast data

The Saccharomyces cerevisiae swi/snf mutation study of Sudarsanam et al. (2000) investigates mutants
deleted for a gene encoding one conserved (Snf2) or one unconserved (Swi1) component, each in either
rich or minimal media. The four experimental conditions are arrayed in triplicate, and data are available at
http://genome-www.stanford.edu/swisnf as ScanAlyze � les (Eisen et al., 1998). The same wild-type strain is
used as a reference sample in all twelve arrays and is labeled with Cy5 in channel 2, while the experimental
strains are labeled with Cy3 in channel 1.

Let ygij be the base-2 logarithm of the background-corrected measurement from gene g (g D 1; : : : ;

6917), treatment i (i D 1; : : : ; 5), and array j (j D 1; : : : ; 12). “Treatment”here signi� es the type of cDNA
sample (snf 2-rich, snf 2-mini, swi1-rich, swi1-mini, wild-type). The 6,917 values for g were determined
from unique values of the NAME column in the ScanAlyze � les, with blanks replaced by values from the
TYPE column. Note we are not forming ratios, but letting the two observations for each gene on each
array be indexed by treatment. This scheme assumes no replication of spots within an array, although this
could easily be accommodated by adding an additional subscript.

Our normalization model for this example is

ygij D ¹ C Ti C Aj C .T A/ij C ²gij ;

where ¹ represents an overall mean value, T is the main effect for treatments, A is the main effect for arrays,
T A is the interaction effect of arrays and treatments, and ² is stochastic error. This normalization model
can be viewed as a modi� ed segment of the global ANOVA model of Kerr et al. (2001). Modi� cations
include the use of base-2 logarithms instead of the natural base and the addition of the T A effect to
model channels. The latter is usually necessary because of the arbitrary manual intensity scaling done with
programs like ScanAlyze (Eisen et al., 1998). Also, we include no main effect for dyes since wild-type
was always labeled with Cy5 and therefore the treatment effect T is already accounting for differences
between dyes. See the Discussion for disadvantages of this protocol and recommended alternatives.

Let rgij denote the residuals from this model, computed by subtracting the � tted values for the effects
from the ygij values. Our gene model is then

rgij D Gg C .GT /gi C .GA/gj C °gij :

All effects are indexed by g and are assumed to serve similar roles to those from the normalization model,
but at the gene level. The GA term models the effects for each spot and is the same as the array by gene
interaction effect in Kerr et al. (2001). It is crucial to the model, as it serves to account for the insidious
spot-to-spot variability inherent in spotted microarray data. The inclusion of this effect allows us to extract
appropriate information about the treatment effects and obviates the need to form ratios.

We make standard stochastic assumptions about the preceding linear models. In particular, the effects
Aj , .T A/ij , ²gij , .GA/gj , and °gij are all assumed to be normally distributed random variables with zero
means and variance components ¾ 2

A, ¾ 2
T A, ¾ 2

² , ¾ 2
GAg

, ¾ 2
°g

, respectively. These random effects are assumed to
be independent both across their indices and with each other, and note the GA and ° effects have different
variances across the gene index g (heterogeneity). The remaining terms in the models are assumed to be
� xed effects, and thus both models are mixed models. We exploit these standard mixed-model normality
assumptions by using the method of restricted maximum likelihood (REML) to estimate the variance
components (refer to Searle et al., 1993, and Littell et al., 1996, for detailed formulas and descriptions).
REML also produces estimates of all effects in the model along with appropriate standard errors.

The estimates of primary interest are those of the .GT /gi effects, which measure the treatment effects
for each gene. We test for differences between these effects by using mixed-model-based t-tests of all
possible pairwise comparisons within a gene. Although more sophisticated methods exist (Littell et al.,

http://genome-www.stanford.edu/swisnf
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1996), for simplicity and ease of interpretation we set the degrees of freedom (DF) for the t-tests equal to
the DF for error from the gene model. This is derived from the DF column in a standard ANOVA table:

Source DF

Intercept 1
Spots 11
Treatments 4
Error 8

Total 24

The t-tests are all therefore based on eight degrees of freedom and will likely provide reasonable statistical
performance. (Error degrees of freedom of three or less typically result in high statistical uncertainty and
few signi� cant differences.) Note that the ANOVA table and error degrees of freedom do not tell the entire
story about the performance of a particular design. Equally critical is the replication structure within the
design. For example, here the � rst four treatment values are replicated three times each (corresponding to
the three experiments under each condition) and the � fth value (wild-type) is replicated on all twelve arrays.
This design produces much more informative inferences about wild-type than the other four conditions
simply because it is observed more often.

For each of the 6,917 genes (actually, open reading frames, or ORFs) on the arrays, we construct
the ten hypotheses tests corresponding to all possible pairwise differences between the � ve sample types
(snf 2-rich, snf 2-mini, swi1-rich, swi1-mini, wild-type). To adjust for the multiple testing problem (see
Methods), we set our p-value cutoff at the Bonferroni value of 0.05/(6917 £ 10) D 1e-6.14 to assure an
experimentwise false positive rate of 0.05. Figure 1A is a signi� cance plot of the p-values passing the
stringent Bonferroni criterion. The x-axis is log2 of estimated fold change and the y-axis negative log10 of
the corresponding p-value. The �gure includes signi� cant p-values for all ten tests for all genes in order to
provide a general impression of the results. Of the 13 genes listed in Tables 1 and 2 of Sudarsanam et al.
(2000), only three appear in Fig. 1A: PHO5 (not labeled, ¡log10(p)D1.6), SAG1, and ALPHA1 (same as
MAT®1).

Figure 1B reveals an interesting discovery we made while analyzing these data. In this plot, the different
gene models are determined by sorting the data by their actual gene name, not their ORF name as in
Fig. 1A. This produces 7,031 distinct genes instead of 6,917, and results are basically identical except for
two genes: ASP3 and ALPHA1. ASP3 has four subunits associated with it in the data set and is therefore

FIG. 1. Gene signi� cance results for yeast data. A. Signi� cance plot of all signi� cant pairwise differences from the
snf/swi yeast mutant study of Sudarsanam et al. (2000). A few of the points are labeled by their ORF name. B. Same
as A, but using gene name as the grouping category instead of ORF name. The signi� cance levels of certain tests from
two genes, ASP3 and ALPHA1, increase dramatically because they represent pooled data from four and two ORFs,
respectively (note the change in scale of the y-axis).



ASSESSING GENE SIGNIFICANCE 629

analyzed in four separate groups for the analysis pictured in Fig. 1A. However, the four groups of data are
pooled for the analysis in Fig. 1B, resulting in much higher speci� city and signi� cance values for several
of the tests associated with ASP3. This can be attributed both to the decrease in estimated standard errors
and to the increase in degrees of freedom for the mixed-model t-tests, going from 7 in Fig. 1A to 40 in
Fig. 1B. Likewise, ALPHA1 has two subunits, and the degrees of freedom change from 11 in Fig. 1A to
27 in Fig. 1B. In fact, the two subunit analyses did not pass the strict signi� cance criterion used to create
Fig. 1A and thus do not appear in the plot.

Lymphoma data

Alizadeh et al. (2000) conduct an extensive microarray investigation of distinct types of diffuse large
B-cell lymphoma (DLBCL) and present a clustering analysis of 96 normal and malignant lymphocyte
samples. ScanAlyze � les (Eisen et al., 1998) and other supplemental material are available at http://llmpp.
nih.gov/lymphoma. Part of this work focuses on discovery of two DLBCL subtypes, evidenced by a deep
dendrogram split within the 52 separate DLBCL tissue samples studied. The subtypes are also born out
by associations with additional survival and clinical risk data. An intriguing feature of the results is that
the leaves for germinal center B-cells (GCB) and germinal center centroblasts (GCC) occur directly in the
middle of one of the DLBCL branches (refer to their Fig. 3).

We investigated the indicated associations with GCB by testing for statistical signi� cance between
it and the � rst ten DLBCL samples. As controls, we also tested differences of GCB with GCC and
with the reference sample prepared from a pool of mRNAs isolated from nine different lymphoma cell
lines. The � nal data set we analyzed consists of base-2 logarithms of background-subtracted � uorescence
measurements from 18 arrays, each of which has the reference sample in channel 1 labeled with Cy3
and one of (DLBCL01-DLBCL10,GCB, GCC) in channel 2 labeled with Cy5. Fortunately, two replicated
arrays are available for DLBCL02, DLBCL05, DLBCL07, DLBLC09, DLBCL10, and GCB, while the
others have only one array of data. After identifying 14,428 distinct clones by match-merging available
text � les, we � t the same normalization and gene models as used for the yeast data and tested all possible
differences with GCB. Had the data been complete, this would have resulted in 14,428 £ 12 D 173,136
signi� cance tests, but since roughly 40% of the comparisons are not estimable, the procedure resulted in
98,527 p-values.

Figure 2A plots these p-values and illustrates the substantial difference signi� cance testing can make
versus cutoffs made strictly on the basis of fold change. The two vertical reference lines indicate 4-fold
cutoffs for either repression or induction and the horizontal line at p D 10¡5 shows the cutoff for a false
positive rate of 1 in 100,000 tests. These reference lines divide the plot into six meaningful sectors. Points
in the lower middle sector have low signi� cance and low fold change, and both methods agree that the
corresponding changes are not signi� cant. Likewise, points in the upper left and right sectors have high
signi� cance and high fold change, and both approaches concur on signi� cant differential expression. The
243 points in the upper middle sector represent potential false negatives when using the simple cutoff
method.

Dramatic differences lie in the lower left and right sectors of Fig. 2A. The 4,521 points in these two
sectors all represent likely false positives when using a simple 4-fold cutoff rule. A simple response to
this situation would be to increase the cutoff, but this still leaves a very large number of potential false
positives and greatly increases the number of possible false negatives. Our contention is that the important,
signi� cantly expressed genes are those above the horizontal line, and that using this as a selection rule
will result in much better sensitivity and selectivity than simple fold-change rules.

Figure 2B shows how signi� cance is related to an estimate of intragene variability. Note how the
variability estimates differ by several orders of magnitude and that genes with the smallest amount of
variation are not necessarily the most signi� cant. The heterogeneity of the variances explains why a single
cutoff value will not work well for all genes; for some it will be too large while simultaneously too small
for others. Our approach effectively determines a unique cutoff for each gene based upon the amount of
variability it displays.

Figure 2C illustrates that the estimates of log2 fold change from our approach are not exactly the same
as those obtained by simple differences of standard log2 ratios. The vertical axis represents differences of
log2 ratios of the DLBCL01-DLBCL10, GCC samples and the log2 ratio values for GCB, where ratios are
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FIG. 2. Gene signi� cance results for lymphoma data. A. Signi� cance plot for a subset of the lymphoma data of
Alizadeh et al. (2000). Plotted on the vertical axis is ¡log10(p-value) for contrasts of the germinal center B-cell line
with cell lines for ten diffuse large B-cell lymphoma samples, germinal center centroblasts, and the reference sample.
Horizontal reference line at 5 represents a false positive rate of 1 in 100,000 tests. The horizontal axis is log2 of
estimated fold change, suitably adjusted for other systematic and random effects in the experiment. Vertical reference
lines represent 4-fold changes. B. Same as A, but horizontal axis is log2 of the estimated gene standard deviation.
C. Horizontal axis is the same as A, and vertical axis is the estimate of fold change obtained by simple differences of
log2 ratios with the reference sample.

taken in the usual fashion with respect to the reference sample on the same spot. Differences of averages
are used when there is replication and data from each array are normalized to have mean zero prior to
the calculations. The horizontal axis represents the corresponding quantity obtained from the mixed model
approach. Although the correlation is strong (0.92), the discrepancies are due primarily to the fact that the
mixed model averages across all reference sample values whereas the simple approach uses only those
reference sample observations corresponding to the desired difference.

Table 1 explores the relationships of the signi� cance tests with the dendrogram analysis of Alizadeh et al.
(2000). Shown is a comparison between the dendrogram distance of the samples from GCB (difference
in leaf position numbers) and the number of signi� cantly different genes. A very stringent rate of 1 in
10 million is used here to strictly control the likely number of false positives. The table reveals a general
agreement between the two procedures, but with some order changes for larger distances. The number and
identity of the signi� cantly different genes provides speci� c quantitative information to accompany the
dendrogram. In all, 219 different genes exhibit signi� cant differential expression in one or more cell lines,
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Table 1. Dendrogram and Signi� cance Comparisona

Sample Dendrogram depth No of sig diff genes

DLBCL03 7 39
DLBCL10 5 59
DLBCL01 2 32
DLBCL08 2 37
GCB 0 0
GCC 1 3
DLBCL04 2 24
DLBCL09 4 47
DLBCL05 9 73
DLBCL07 9 66
DLBCL02 9 103
DLBCL06 9 55
reference n/a 123

aComparison of dendrogram results from Figure 3 of Alizadeh et al. (2000)
to those from mixed model signi� cance testing. The second column is the
number of splits the sample is away from GCB, and the third column lists the
number of signi� cantly different genes. To assure a strict experimentwise false
positive rate of 0.05, the Bonferroni’s cutoff of 1e-6.3 was used in determining
signi� cance.

and this number represents the likely portion of the whole sampled genome involved in class or subtype
differences of the kind considered here.

Our analysis allows researchers to determine precisely which genes are most likely driving basic pat-
terns observed in the dendrogram and which ones are “Cy5 herrings.” For this subset of data, the most
signi� cantly repressed genes are immunoglobulin gamma 3 heavy, kappa light and j chains, early growth
response protein 1, and B-lymphocyte CR2-receptor, whereas those genes showing a large but statistically
nonsigni� cant negative log fold change include FUSE binding protein 2, OX-40, acute-phase response
factor, and several with unknown functions. On the induction side, the most signi� cant genes from our
analysis are cathespin-b, natural killer cell protein 4, src-like adapter protein, and unknown UG Hs.201975
and 161905 whereas potential false positives are ferritin heavy chain, glataminase-2, Exodus-2, and certain
osteonectin comparisons.

How many replicates?

The yeast data example illustrates how increasing the number of replications can increase the statistical
power of an analysis. To demonstrate how this can be quanti� ed in practice, we perform some prospective
calculations based on the lymphoma data design. Recall that in this data set half of the 12 arrays are
replicated twice. Using the technique described in Methods, we compute power for mixed-model t-tests
conducted from this experimental design, as well as for larger designs that include up to 10 replications on
half of the arrays. Table 2 shows the increase in ANOVA degrees of freedom as the number of replications
increases.

Figure 3 displays power contour plots for the contrast comparing one of the replicated DLBCL samples
with GCB, which is also replicated. Figure 3A assumes a false positive rate of 1 in 200,000, a spot variance
of 1, and a residual variance of 0.25. The latter two values are greater than the average value for all of the
genes, although the intraspot correlation of 0.8 they produce is the modal value. Under these conditions,
even 10 replicates are not enough to detect a 2-fold change with 15% power. Dividing each of the variance
components by 4 results in a substantial gain in power, as shown in Fig. 3B. In this case, nine replicates
will detect a 2-fold change with 85% power. Figure 3C shows how the plot in 3B changes when the false
positive rate is reduced by an order of magnitude. Here only seven replicates are needed to detect a 2-fold
change with 85% power under a false positive rate of 1 in 20,000.

Figure 3D displays results from different experimental designs that are based on the same number
of microarrays as the previous designs but no longer include a reference sample. In these designs, the
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Table 2. Degrees of Freedom for Power Calculationsa

Replications

Source 2 4 6 8 10

Intercept 1 1 1 1 1
Spots 17 29 41 53 65
Treatments 12 12 12 12 12
Error 6 18 30 42 54
Total 36 60 84 108 132

aANOVA degrees of freedom for designs based on a subset of data from
Alizadeh et al. (2000). Replications indicates the number of times half of
the 12 arrays are repeated experimentally.

replicated samples are paired with each other in a circular fashion as described by Kerr and Churchill
(2001b). Figure 3D shows the substantial increase in power that can result by using a more ef� cient design
than the standard reference sample design. Note that even though the error degrees of freedom for these
designs is only one greater than the values shown in Table 2, several more replications are included for
each point and so the estimated standard errors are roughly 40% smaller. Only 4 replicates are required in
this situation to detect a 2-fold change with 85% power assuming a false positive rate of 1 in 20,000.

DISCUSSION

Although most current cDNA experiments waste half of their observations on a reference sample, our
linear modeling approach provides a way to properly analyze data from a much wider class of designs
which make better use of resources. A nice alternative design is the aforementioned circular one described
by Kerr and Churchill (2000b). Regardless of experimental design choice, we recommend that important
comparisons be “connected” in the design; that is, there is an unbroken series of other samples between
them that have been arrayed together. The reference sample design satis� es this criterion by using the
reference sample to connect all other samples, whereas the circular design satis� es it sequentially.

A dye effect is not included in our example models because such an effect is completely confounded
with treatment differences unless one employs a “� ipped � uor” design. We encourage the use of such
designs, as do Kerr and Churchill (2000b). They discuss this effect and mention at least one extreme case
in which it was real. (We have also witnessed it in certain arrays processed at the NIEHS Microarray
Center.) A signi� cant dye effect in the gene model is disturbing in that it indicates that dyes are behaving
differently at the gene level beyond that already accounted at an overall level by the normalization model.
Conducting experiments in which the dyes are � ipped allows one to check for such an effect and properly
adjust for it when it is present.

While the preceding examples were selected to be prototypical, researchers are free to select whatever
effects they deem appropriate in constructing both the normalization and gene models. Systematic effects
such as pin position and grid location can be included if desired, and some effects may be intentionally
omitted to avoid subtracting out true signal (Lazaridis et al., 2000). Also, in time-course experiments, one
may wish to replace the general treatment effects T with polynomial, trigonometric, or theoretically derived
basis functions to more ef� ciently model the data. Such � exibility places a fair degree of responsibility
on the analyst to carefully formulate models appropriate for the cDNA microarray experiment under
consideration.

Several reviewers expressed a concern about the statistical assumptions connecting the normalization
and gene models. In particular, the residuals from the normalization model are correlated by construction,
and yet they are modeled with independent errors in the gene models. While this concern is valid, we
argue that it makes little to no difference in practice. Speci� cally, for experiments with no missing data,
the effects � tted by the normalization and gene models are orthogonal, and so results from the two-model
approach should be equivalent or at least very similar to those from one large ANOVA model like that
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FIG. 3. Statistical power plots. Contour plots of statistical power (1 minus the false negative rate) for experimental
designs based on the lymphoma example (see the text for description). The three curves in each plot represent powers
of 0.85 (top), 0.50 (middle), and 0.15 (bottom). The horizontal axis is true log2 fold-change when comparing GCB to
a DLCBL sample, both of which are assumed to have been replicated on multiple arrays. The dashed reference line
represents a 2-fold change, and the vertical axis is the number of replications. A. False-positive rate D 1 in 200,000,
spot variance D 1, residual variance D 0.25. B. False-positive rate D 1 in 200,000, spot variance D 0.25, residual
variance D 0.0625. C. False-positive rate D 1 in 20,000, spot variance D 0.25, residual variance D 0.0625. D. Same
as C., but using a circular design with no reference sample.

proposed by Kerr et al. (2001). In addition, effects from the normalization model are estimated with much
higher precision than those in the gene model because they are averaged across many more observations,
and so the normalization effects can effectively be treated as constants when constructing the data for the
gene models.

The heterogeneity in the gene models allows genes to exhibit different degrees of variability, an as-
sumption which is reasonable given the wide variety of known gene functions. Distinct gene-by-gene
variance estimates also provide statistically appropriate backdrops by which to assess the signi� cance of
corresponding .GT /gi differences and may be of interest in their own right as measures of gene capacity
and heritability. Heterogeneous gene variance estimates have been exploited for t-like statistics in Golub
et al. (1999), Dudoit et al. (2001b), and Westfall et al. (2001).
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While heterogeneity is appealing, the normality assumptions in both the normalization and gene models
are subject to criticism. In fact, the aforementioned authors, along with Kerr et al. (2001), recommend
various resampling-based simulation approaches to circumvent this assumption. In contrast, we suggest
that classical statistical procedures based on the assumption of normally distributed errors (e.g., t- and
F-tests) will serve microarray analysts well in a large majority of cases. Based upon our experience with
a variety of cDNA data sets, assuming normality on the log scale is usually reasonable. However, we do
recommend performing standard graphical and statistical checks of this assumption using residuals from
the gene models. Normality-based statistical models have been used successfully in nearly all branches
of science for decades (Cochran and Cox, 1957; Snedecor and Cochran, 1980; Searle et al., 1993; Steel
et al., 1997; Federer and Wol�nger, 1998).

Linear mixed models can also

² accommodate experiments with missing values for various spots.
² be used with arbitrary methods of background correction.
² handle designs with more than two dyes.
² be applied to data from other kinds of expression data, including those from oligonucleotide chips,

SAGE, and EST-counting.
² determine signi� cant genes for class-wide distinctions (e.g., the DLBCL, FL, and CLL classes in Al-

izadeh et al., 2000).
² be used to construct genome-wide quantitative summary measures (Klus et al., 2000) and similarity

pro� les (Hughes et al., 2000).

We plan to expound on the details of these points in future publications.

METHODS

Software

We used the Mixed Procedure (SAS Institute Inc., 2000) to perform both the normalization and gene
model � ts. The gene models are the most computationally intensive portion of the analysis, as a separate
REML optimization problem must be solved for each gene. For example, the approximately 7,000 gene
models for the yeast data require around four minutes to run on a 400 MHz Pentium II with 128 MB RAM.
Although the models are � t sequentially in this instance, the method is highly amenable to parallelization
and so is scalable to much larger problems. Example SAS code is available at http://brooks.statgen.ncsu.
edu/ggibson/Pubs.htm .

The multiple testing problem

Since there are typically thousands of genes in a microarray experiment, the issues of multiple testing
and multiple comparisons arise. For example, individual tests carried out at the 5% level will falsely reject
a true null hypothesis in 1 out of 20 cases on average, and so the chance of numerous false positives is
extremely high when carrying out thousands of tests at this level. Dudoit et al. (2001b) provide a nice
review of the relevant issues and recommend a resampling-based solution.

As with all traditional statistical hypothesis testing methods, researchers can directly control the false-
positive rate ® by selecting it a priori and then using it to determine a cutoff for signi� cant p-values. In
Fig. 2, ® D 1e ¡ 5, corresponding to a false-positive rate of 1 in 100,000. Alternatively, one can control
the false-positive rate over the entire experiment by considering the total number of tests performed. The
simplest such adjustment is Bonferonni’s method, which sets the cutoff equal to the desired experimentwise
false-positive rate divided by the number of tests. For the lymphoma example, a Bonferroni cutoff of 1e-
6.3, or about 1 in 2 million, is required to achieve an experimentwise false-positive rate of 0.05. Such a
stringent criterion may seem extreme, but results of Westfall et al. (2000) suggest that it is not excessively
conservative in spite of known dependencies among genes. More complex methods, such as the resampling
methods described by Dudoit et al. (2001b) and Westfall et al. (2000), have been derived only for simple
experimental designs.

http://brooks.statgen.ncsu.edu/ggibson/Pubs.htm
http://brooks.statgen.ncsu.edu/ggibson/Pubs.htm
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Statistical power

Specifying an appropriately sized experimental design is critical for assuring that the statistical tests
employed in the analysis have power suf� cient to detect biologically meaningful differences. “Power” here
refers to the probability of declaring statistical signi� cance when a true difference exists, or, equivalently,
one minus the probability of a false negative. To determine power, one needs to know the

² experimental design,
² proposed model for analyzing data from the design,
² approximate values for the model parameters,
² hypotheses (contrasts) to be tested,
² desired false positive rate.

The mixed model is well-suited for the determination of statistical power, and we propose the following
four-step method that employs analytical formulas based on Muller et al. (1992).

1. Specify an exemplary data set corresponding to the proposed experimental design for the gene model.
The actual values of the log intensity measurements are unimportant except that they should exhibit
enough noise to be able to successfully � t the gene model.

2. Specify the variance components for the proposed gene model and � t the gene model to the exemplary
data while holding the variance components at their speci� ed values.

3. From the model output, determine the standard errors of the contrasts of interest. These standard errors
are functions of the experimental design and the variance components.

4. Using the computed standard errors, the desired false positive rate, and approximate values for the
expected contrasts, compute power based on the noncentral t-distribution.

This method can be applied for any suitable experimental design over a grid of values for the variance
components, false-positive rates, and the contrasts.
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