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Abstract 

Decomposing a biological sequence into modular domains is a basic prerequisite to identifY functional 

units in biological molecules. The commonly used segmentation procedures usually have two steps: 

First) collect and align a set of sequences which arc homologous to the target sequence; then parse this 

multiple alignment into several blocks and identify the functionally important ones by using a semi~ 

automatic method; which combines manual analysis and expert knowledge. In this paper) we present 

a novel exploratory approach to parsing and analYlling the above multiple alignment. It is based on 

an flJlaly-sis~of-variance (ANOYA) type decomposition of the sequence information content. Unlike the 

traditional change--point method; our approach takes into account not only the composition biases but 

also the over dispersion effects among the blocks. More generally; our approach provides a better way for 

judbring some important residues in a protein. Our approach tested on the families of ribosomal proteins 

has a promising performance. Some subsets of residues critical to these proteins are found. 

Key words: Information content; multiple alignment; analysis~of~variance; RNA~binding motifS. 

Running head: Analysis of Information Content 

Addre&:> for cOlTe::>pondence: Jian Zhang; EU!-L\NDOfvl; Den Doledl 2; 5GI2 AZ; Eindhoven; The Ne1herland::>. E-mail: 
j",hang@euridice.1ue.nl; FAX: +:J140 247 8190; Phone:+:J140 247 811:J 

1 



1 Introduction 

:0.-1ultiplc sequence alignment has now become a standard tool for finding cOIlserved patterns in a sct of 

biological sequences (scc, e.g.) Durbin ct aI, 1998: Baxcvanis and Ouellette, 1998: Huret and Abdcddaim, 

2000). In the case of Dl\A, such patterns could be binding sites for a protein or cis-regulatory dements (scc, 

e.g.) Hughes ct aI., 2000: Stormo and Fidds, 1998). In proteins, these could be Dl\A- and RSA-binding 

sites (scc, e.g.) Casari, Sander, Valencia, 1995: HofmanIl ct aI., 1999). l;sually a biological sequence is made 

up of several segments of the same or different fUIlctioIls. Since Ilot all of these segments evolve at the 

same rate, a very common situation occurs when some of these segments arc well COIl served across certain 

phylogenetic domains, whereas others are very divergent and full of gaps, such that positional homology 

cannot be precisely determined and multiple substitutions have erased the phylogenetic information. In such 

a situation, it is important to distinguish between conserved and variable regions of an alignment. This gives 

rise to the following generalized segmentation problem. Given 1v (~ 1) sequences, say, AJ " .. ,AN, which 

are aligned as follows: 

(11) 

how can the above matrix be partitioned into several blocks in order to identify some specified common 

patterns in these sequences'? Here aij represents a symbol from the set { A, C, G, T, ---} (i.e.,four bases plus 

the gap) in the D]'\A case, or a symbol from the set {K, R, H, S, T,]'\, Q, D, E, A, V, I, L, M, F, Y, W, C, G, 

P. --- } (i.e., twenty amino acids plus the gap) in the protein case. To avoid confusion, we will call these sets 

the alphabet sets later OIl. :vIon: generally, given a family of unaligned sequences, how can we align them 

so that we can efficiently partition these sequences'? In this paper, focusing on a set of aligned sequences, 

we develop a new global segmentation method based on an Al\OVA type decomposition of the information 

content (IC) of these sequences. The information content of a set of aligned Dl\A fragments without gaps is 

introduced by Berg and von Hippel (1987) and Schneider et al. (1986) as an estimate of average specificity 

of the Dl\A-binding protein directly from a collection of regulatory sites. Here we e"A-tend this concept to 

proteins. A main advantage of our procedure over other e"Aisting methods is that we can obtain not only 

an optimal segmentation, but also the composition biases and dispersions within and among these blocks. 

Then we can identify the important ones through comparing the normalized information contents of these 

blocks. To show this potential, we apply our procedure to the families of ribosomal proteins. 

As our other contribution, we modified the Auger-Lawrence dynamic programming algorithm to solve 

the computational problem with a pol:ynomial time effort (Auger and Lawrence, 1989). Thus we give an 

answer to whether the computation of the Jensen-Shannon divergence based segmentation is l\P -complete 

(Rolluin-Rol,hin et aI., 1998: and Clote and Backofen, 2(00). 
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2 Information content approach 

2.1 General concept 

Here we give a general concept of information content, which is suitable for the multiple alignment in (L 1) 

and for any subset of the columns {I,···) so} called [I, so]. COIlsider a subset of [I, sol, say B. If letting 

k = 1, 2", " 'Uo represent the twenty amino acids ('Uo = 20) or four Dl\A bascs ('Uo = 4), and k = 'Uo + 1 

stands for any gap, the Ie of variation (ICV) for block B (i.c., the columns indexed by B) can be defined as 

ICV(B,q(B)) = L'I:' f(k,j) log, f(k(,:) 
jEH k=l qH ) 

where f(k,j) is the frequency of kin jth column, modified by the root 1v t:)1)C pscudocount: 

f( k,'" = Z(k,j) + VNpo(k) 
JJ ]V +VN 

with Po being the vector of background probabilities (Lawrence ct al., 1993): and q( B) = (qH (1), ... , q 13 ('Uo + 
l))T is the vector of the average alphabet frequencies in block B (i.e., L 'EIl fe j)/IBI where IBI is the 

.J 

number of columns in B). ICV(B, q(B)) describes the variation within block B. To show the composition 

deviation between block B and the whole aligment, we define the following IC of bias (ICB) for B: 

Then we can write the bias-to-variation ratio of block B as 

S(B = IBIICB(B, q([l, so])) 
J ICV(B,q(B)) 

and the normalized information content of block B as 

AICT(B) = ICB(B,q([l,so])) + ICV(B,q(B)/IBI. 

l\ote that AICT(B), a measure of how important block B is, allows one to compare one block to another. 

2.2 AN OVA decomposition 

For any partition of [1, so], say [l,so] = U;"B" B, = [I, + 1,1'+1]' for some integers I, (11 = O,lm+1 = so), 

1 -:: t -:: 1/1 + 1, it is directly to prove that the total information content, ICV([l, so], q([l, so])), admits an 

A"'OVA type decomposition: 

where 

IC ,m) 
IV 

ICV([l, so], q([l, so])) = IC\~') + Icl;n) (2.1) 

m 

IC\;;t)({Bdm) = LICV(B"q(Btl), 
f=1 

m 

IC);n)({Bdm) = LIBtlICB(B"q([l,so])) (2.2) 
f=1 
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and IE! I is the number of columns in B f • 

Like Al\OVA, we have a very simple intuitive interpretation for (2.1): IC};n) is the total Ie difference 

among blocks, while IC~~~I) the total Ie spread within blocks. In the literature, IC~~~i) is often ignored. vVc 

find that it may be useful in showing the possible ovcrdispcI'sioIlS among these blocks (scc the next section). 

As a main application of the above interpretatioIl, we find the following segmentation procedure: 

"Vhen the number of blocks is fixed, the best way to parse the alignment is to choose B f ) 1 :::; t :::; m to 
. I I IC 1·1f I· . . IC,m) II . . . IC,m) maXIIllZC t Ie tota (I crCIlCC, t Hit IS, to maxnIllzc 13 - or cqua y to IIlIIllIIlIZC w -. 

This interpretation also gives a motivation of defining the standardized composition difference between 

two successive blocks, say B f , t = s, s + 1, by 

(2.3) 

vVe can use r(Bij, Bij+1) in (2.3) to test whether the difference between two successive blocks Bij and Bij+1 

is significant. 

There are two issues in the implementation of the above method. One is about the computation. The 

other is about the choice of the number of blocks. vVe discuss these issues in the following two subsections. 

2.3 Algorithm 

Obviously for a fixed number of blocks, say m, there are m!(ijijt m)! ways of parsing. So it is time-consuming 

to use the brutal force optimization. In the case of single Dl\A sequence, Ronuin-Rold;:in et al. (1998) 

and Clote and Backofen (2000) even conjectured that this problem may be l\P-complete. Fortunately, 

we find a variation of the Auger-Lawrence dynamic programming with O(1y a so) computational effort. Set 

IC~;[?,ijol = max{Hdm IC~;n)({Bdm)' Analogously, we define IC~;[?,jl for any 1:::; j:::; so. Then the mechanism 

behind this algorithm is shown by the following recursive forward formulae: 

i + 1) * ICB([i,j],q([l,so])), l-::i<j: 

(24) 

After IC~;[ll,ijol is obtained, the associated partition can be constructed by the standard backforward tracking 

procedure of the dynamic programming. 

Proof of (2.4): It suffices to show by induction on m that for any 1 :::; j :::; so, 

For m = 1, the assertion is obvious. Suppose the assertion is true for m = n. Then we show that it holds 

also for m = n + L To this end, we note that for any partition, say {Bf }n+1, of [1, j], by the assumption for 

HI = n, 

n 

:L IB,IICB(B"q([l,so])) + IBn+lIICB(Bn+l ,q([l,so]))1 
f=1 
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This yields 

ICln+1) < C ln) 
ll[l,jl - 'l,j' 

On the other hand, by definition, there arc 1 = Ii < ... < 1;,+'2 = j such that 

The proof is completed, 

< IC ln+1) 
- 1l[1 'I' ,.1 

2.4 Choice of the number of blocks 

The underlying number of blocks is determined by the complc"Aity of the sequences under investigation. There 

arc several ways for determining such a complc"Aity. One is based OIl the biological knowledge. The others 

arc based OIl certain los8 fUIlctioIls. In the former we first select m using our biological knowledge. TheIl 

we make the optimal Al\OVA type decompositioIls followed by identifying the COIl served blocks. Finally we 

predict their roles. Some training samples and structural information seem useful in choosing m. However 

it is Ilot very reliable because many protein domains arc poorly anIlotated in the current protein sequence 

data bases (sec, e.g. Gracy and Argos, 1998). 

For the loss function based methods, we need to tackle the issue of the possible overdispersion among 

blocks. This is because the alphabet frequencies in some positions of many Dl\A and protein motifs arc 

highly heterogenous. Such a phenomenon can be partially described by an overdispersion factor (sec Lindsey, 

1999). The degree of overdispersion in the model is directly related to the number of blocks in a partition 

and to the complexity of each block. 

To highlight the above point, we consider the following change-point testing model (Li, 2001). l;nder 

the null h:)1JOthesis Ho, the columns in (1.1) have the same alphabet probabilities, say p = (p1,'" ,Pvo+1 )T; 

whereas under the alternative h:)1JOthesis H 1 , we have 'fl/ blocks, Llf' t = 1,"" 'fl/. The columns in these 

blocks have some different alphabet probabilities, say plt) = (pit),··· ,P;!?+l )T, t = 1,"', 'fl/, respectively. 

l;nder Ho, the log-likelihood is of the form 

vO+1 

l(plHol = L Ilk logPk 
k=l 

where Uk is the count of k in the whole alignment. Accordingly, under H 1 , the log-likelihood becomes 

m vo+1 

l(p(1)" .. ,plm)IHd = L L Ilk/) logpk/) 
f=l k=l 

where ui.t) is the count of k in the t-th block. Then the corresponding log-likelihood ratio test statistic can 

be rewritten as 

maxl(plHol = Icl;") 
p 

Thus, compared with the Al\OVA decomposition (2.1), the above testing model completely ignores Ici~~I), 
the variability of individual positions within blocks. This shows why in some cases the above testing model 

is too restricted to extract the main features from these blocks. For example, if we arc looking for the second 
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structures for a family of protein sequences, it is obviously unreasonable to assume the homogeneity of the 

amino acid frequencies across the corresponding region in these sequences. 

In what follows, we introduce two loss function based approaches for choosing the number of blocks. 

Compared with the second approach, the first one has a slightly better performance in terms of IC};n) while 

performing a little worse in terms of resolution. 

A:lethod 1: For several Ct (e.g., 0.2,0.25,0.3,0.4), minimize the following modified Bayesian information 

criterion (BIC) 
IClm) 

Il 1V(t * (m 1) 

with respect to m, where Ct reflects the roughness of the optimal partition. For the ribosomal protein families, 

in most cases using Ct = 0.3 can nearly recover the signatures presented in the data base PROSITE. l\ote 

that this constant is slightly larger than that used by Braun, Braun and :vliiller (2000) in the single Dl\A 

sequence case because of the overdispersion effect. 

A:lethod 2: ';se a resolution criterion (RC) in which we choose B f , 1 :::; t :::; m so that the differences 

between the successive blocks are not less than a prespecified constant Co, i.e., r(Bf' Bf+1) ~ Co, 1:::; t :::; m. 

Here Co shows the roughness of the resulting partition. To adapt the above dynamic programming to this 

new situation, we slightly modify (2.4) by setting 

cl~:) = (ji + 1) dCB([i,j],q([I,so])), l-::i < j: 

''''j = {I: r([I, 1],[1 + U]) ::> (\l}: 

For k::> 1, let 1 = I'k < ... < Ilk+l)k = I be the boundaries of the partition induced by C,'~~l)(\l)' Then for 

k = 2"", m, we iteratively define 

and 

where IClm
) is a modified version of that in Subsection 2.3. 

13[1 ,so] 

How to choose CO'! Observe that without overdispersion, r( B i , Bi+ 1) is appro"Aimately ;t2 distributed 

with a degree of freedom 'Uo for the large blocks, which has the 0.005 quantitle 2.00 when 'Uo = 20. Taking 

the possible overdispersion into account, we set Co = 2C1 for protein sequences where C1 is used to reflect the 

overdispersion effect allowed among the blocks. For instance, in the ribosomal protein case, we can choose 

several values for C1, say 1. 75,2, and 2.25. l\ote that Agalarovet aL (2000) have shown that some ribosomal 

proteins like S18 may have the multiple functions: Rl\A-binding and protein-protein interaction. vVe use 

C1 = 1.65 to find the composition domains for these functions (see Table 3.6). 

In light of the above arguments, we suggest the following strategy in practice: Begin with moderate Ct 

and Co to find functional domains. Then take low Ct and Co to localize functionally important subsets of 

residues within these domains. 
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3 Examples 

In this subsectioIl, we evaluate our approaches OIl the two kinds of ribosomal protein families: small-subunit 

families and large-subunit families, designated Sl, S2, ... , and Ll, L2, ... , respectively. 

Ribosomal proteins, c"A-trcmdy ancient molecules, arc windows into the protein evolution. The recent 

studies showed that there arc some strong similarities between the binding-patterns (or structures) of R,l\A

and Dl\A-binding proteins (scc, c.g., Draper and Rc:ynaldo, 1999). In particular, several binding strategics 

used by Dl\A-binding proteins arc found in those for ribosomal proteins. The key step in finding the R,l\A

binding motifs is to form ribosomal protein families with a certain degree of diversity and homology across 

certain phylogenetic domains. vVong and Zhang (1999) collected all the known ribosomal proteins from 

the following model organisms. Archaebacteria: Archaeoglobus fulgidus, :0.-'Iethanobacterium thermoau

totrophicum, :0.-'Iethanococcus jannaschii, Pyrococcus horikosshii. Eubacteria: Aquifex aeolicus, Bacillus 

subtilis, :0.-'Iycoplasma genitalium, :0.-'Iycoplasma pneumoniae, :0.-'Iycobacterium tuberculosis, Bondia burgdor

feri, Treponema pallidum subsp. pallidum, Chlamydia trachomatis, Escherichia coli, Haemophilus inf1uenzae 

Rd, Helicobacter pylori, S:ynechocystis PCC6803, Thermus thermophilus. Eukaryotes: Saccaromyces cere

visiae, Caenorhabditis elegans, Rat, Drosophila melanogaster. They grouped them into about one hundred 

families by pairwise alignment. The multiple alignments for these families arc available from Jian Zhang. 

The motifs of these protein families arc identified by using the Gibbs motif sampler :0.-'IACAvV (Baxevanis and 

Quellette, 1998) and the iterative masking. According to the current structural or biochemical information 

on some sites of these motifs, they found that almost all the most conserved motifs based on :0.-'IACAvV arc 

located in the putative RSA-binding domains. However it is difficult to determine the boundaries of these 

motifs. Here we first make multiple alignments for all these families by means of CLl;STAL VV with default 

setting (Thompson, Higgins and Gibson, 1994). vVithout loss of generality we usc the uniform background 

probabilities, namely Po = (1/21" ",1/21), because it doesn't affect the optimal partition. Then we ana

lyze these alignments by our new approach. Compared with :0.-'IACAvV, our approach gives not only a better 

boundary resolution but also composition biases and variations for these motifs. As examples, we present 

these analyses for the L2, S15, and S18 families in Tables 3,1 to 3,6, These families have rCB([I, so], Pol 

values of 0.346,0.374 and 0.250, respectively. Some similar results for the other families arc available from 

the author on request. 

In these tables, the 'i and li columns give the indices and right boundaries (i.e., locations of change 

points) of blocks B i , 'i = 1,"', m in the optimal partition. The AJCTi, Si and 'ri columns show the total 

average information content, bias-to-variation ratio and resolution for each block, respectively. Here we write 

ArCTi = ArCT(Bil, Si = S(Bil and Ti = T(Bi' Bi+ll, As pointed out before, ArCTi allows one to compare 

one block to another. Our experience confirms that those blocks with a relatively higher Si arc often very 

divergent and full of gaps or arc singletons, whereas those blocks with a moderate Si ('2 1) or a relatively 

higher AICTi arc often corresponding to some important regions. 

vVe adopt the following procedure for summarizing the information. vVe first classify the blocks with 

Si '2 1 into two groups according to whether they arc gap blocks (i.e., more than half of which arc gaps) or 

not. For example, for the L2 family, we classify blocks 2, 13, 17,27, and 36 in Table 3.2 as gap blocks and 

assign blocks 6, 7, 10, 19, 23, 29, 30, and 31 group a of non-gap blocks. The next step is to classify the blocks 

with Si < L For example, we select those blocks, which have a AICTi value larger than 25% of the highest 

among these blocks, to form group b. vVe call them potentially important blocks for a further analysis. 
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For L2, we usc both :vIethods 2 and L By using :vIethod 2 and the e"Al)erimental results of l\akttgawa et 

al. (1999), we find that in Table 3.1 the conserved blocks 3, 4, 6 arc located in the l\-terminal Rl\A-binding 

domain while the conserved block 8 is in the C-terminal Rl\A-binding domain (Figure 3.1). The functions 

of two conserved blocks 9 and 10 remain to be determined. Table 3.2 further indicates several potentially 

important sub-blocks (sites) within these domains: (1) from positions 75 to 84: (2) from positions 101 to 

116: (3) from positions 181 to 198: (4) from positions 211 to 213: (5) from positions 241 to 251: (6) from 

positions 257 to 276. The blocks in regions (1) to (5) arc the potentially important residue subsets in the 

binding domains just mentioned, while the blocks in region (6) arc the potentially important residue subsets 

for block 10 in Table 3.1. 

[Figure 3.1 here.] 

[Table 3.1 here. 

[Table 3.2 here. 

For S15, from Table 3.3, using :vIethod 2 with Co = 4.5 we identify three potentially important blocks: 

blocks 3, 5, and 7. These blocks arc located in the Rl\A-binding domain. Furthermore, using :vIethod 2 with 

Co = 3.5, we find five very informative subsets of residues in this domain: blocks 6, 16, 18, 20, and 31 in 

Table 3.4 (Figure 3.2). Interestingly, they arc all functionally important because they serve as the S15-rRl\A 

interfaces (sec Agalarov et aL, 2000). 

[Figure 3.2 here.] 

[Table 3.3 here. 

[Table 3.4 here. 

For S18, from Table 3.6, on the basis of the experimental results of Agalarov et al. (2000), we find that 

blocks 7 and 9, which have several hydrophobic positions, arc putative regions for the interactions between 

S6 and S18, while block 8 is the putative region for the Rl\A-binding (Figure 3.3). The role of block 6 has 

not been determined yet although it has the second largest AICTi value. It may be a Rl\A-binding site 

because it has two very conserved hydrophilic positions. 

[Figure 3.3 here.] 

[Table 3.5 here. 

[Table 3.6 here. 

4 Discussions and conclusions 

4.1 Possible extensions 

The concept of information content has been shown to be a very useful objective function for discovering 

regulatory sites or binding motifs in co-regulated genes (sec, e.g., Heumann et aL, 1994). But in other 

settings, we need to exploit some special pattern features. As an example, we modify the above concept for 

the protein coding region recognition by utilizing its nonuniform codon usage feature: each nucleotide has 

its own phase because the probability of appearance of a nucleotide is different in each of the three positions 

of the triplets (sec, e.g., Grantham et aL, 1981). Since this feature is not present in noncoding regions, it 

can be used to distinguish coding from noncoding. To this end, for 'U = 1,2,3, and for [I, sol, we set the 
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phase set 

[l,so1''') = {v: v E [l,so],v 'If mod 3}: 

and let ql") = (ql")(l),··· ,ql")(k))T with 

where 1 :::; k :::; Vo + 1 and 1[1, 80]lv.) 1 is the size of [1, 80]lv.). Then the modified information contents are 

defined as follows: 

ICV([l, so], q([l, soll) 

ICB([l, so], Po) 

where q([l,soll = (q(1)T, q l2)T,qlCl)T)T 

Cl 5.. f(k,j) 
L L Lf(k,J)log2 ql")(k)' 
v.=l jE[l ,$0]("1 k=l 

Cl 5 ql")(k) L L log2 -. -k-' 
,,~1 k~l po( ) 

(4.1) 

Similarly, to establish an Al\OVA decomposition for the modified Ie in (4.1), we consider only those B f 

of the forms [Vi + 1, vr] for some integers Vi and Vr. Let the phase set BFII.) = {v : v E Bf , v -Vi 'U mod 3}, 

and write 
l")(k' 1 L f(k .' q, ) = -,-) ,J) 

IBt I 

where 1 :::; k :::; Vo + 1, 'U = 1,2,3: and modify the summtmds in (2.2) by letting 

ICB(B" q([l, solll ~1b.l")1'0 l")(k)1 " q)".)(k) 
L , L q, 0,,2 (l")(k) 
v.=l k=l 1 

where as (4.1) q(BtJ and q([l,80D denote the vectors of the average alphabet frequencies in the phase sets 

B)"), 'If = 1,2,3 and [l,soJ'''1, 'If = 1,2,3, respectively. Then the decomposition formula (2.1) still holds. 

The problem we investigated in the previous sections can be viewed as that of clustering a set of ordered 

objects (i.e., columns) which are characterized by some probabilistic vectors (i .e., the alphabet frequency 

vectors). vVe will show elsewhere that our method is even useful in building a phylogenetic tree for a set of 

sequences. 

4.2 Relation to the other methods 

For a single Dl\A sequence, our method is equivalent to a generalization of the Jensen-Shannon divergence 

based segmentation method (Oliver et aL, 1999) except that we take into account the possible overdispersion 

effect on the choice of the significance leveL Here the overdispersion means that in reality there is greater 

variability among the columns in (1.1) than would be expected from a statistical model (e.g., product 

multinomial model), because we can not expect each domain to be completely homogeneous. There are 

many different segmentation methods in literature. See the recent review by Braun and :0.-liiller (1998). All 

these methods, though effective in detecting a long pattern (e.g., a coding region), are not very useful for 
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detecting a short pattern like a cis-regulatory element. In order to identify these short patterns, we usually 

need to collect and align a set of similar Dl\A sequences (or fragments) across the different species (Andre 

et aI., 2001). Then these patterns can be found by parsing this multiple alignment. In the case of protein, 

Liu and Lawrence (1999) introduced a Bayesian global segmentation model. However, for other multiple 

alignment procedures (for instance, Clustal VV or profile H:0.-10y'I), there is no general approach to identifying 

several patterns simultaneously. The traditional methods are based on a moving window with iterative 

maskings (Hughes et aI., 2000). The length of a local window or the boundaries of these patterns are often 

determined in an adhoc way. For example, we often need to specify the bandwidth of the Gibbs motif 

sampler (Liu, l\euwald and Lawrence, 1995: Baxevanis and Ouellette)998) using our e"Al)erience. Auger and 

Lawrence (1989) presented a nice discussion on the advantages of global methods over the moving window 

methods. Finally, we note that our method can be integrated into evolutionary trace analysis for identifying 

structual features within a protein (Landgraf et aL, 1999). 

4.3 Conclusions 

vVe have introduced a general concept of information content for a set of aligned sequences. vVe have presented 

an Al\OVA based information content method for predicting functionally important motifs in both Dl\A 

and proteins. A dynamic programming algorithm has been modified for solving the computational problem 

in parsing a multiple alignment. vVe have evaluated our method on the ribosomal protein families. Some new 

motifs related to the interaction between the ribosomal proteins and ribosomal Rl\A have been recovered. 

The major shortcoming of our procedure is the prerequisite of a valid alignment of the input sequences. 

This could be difficult sometimes, especially, for the genomic sequences. Although it seems possible to 

develop some procedure for aligning and parsing the input sequences in an iterative way on the basis of 

certain Al\OVA decompositions of the sequence information content, the computational time for such a task 

turns out prohibitively long. 
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ec 0 1 i f1A VVK CKPTS P-C RRHVVKVVNP ELHK C---------------KPF A PLLEKN SK SCCRN-NNC RITTRH ICCC H 

ye ast ---------------------------------------------f1C R V IRNQ RK CA C-S--- I FTSHTRLRQG A 

ardu ---------------------------------------------f1CKRIISQNRCKCTP---TYRAPSHRYKTD 

ecoli KQAYRIVDFKR-NKDCIPAVVERLEYDPNRSANIALVLYKD-----CERRYILAPKCLKACDQIQS--------

yeast AKLRTLDYAER--HCYIRCIVKQIVHDSCRCAPLAKVVFRDPYKYRLREEIFIANECVHTCQFIYAC-------

arcru AKLLRFK------DEVVAAKVIDIQHDSARNCPVALVKLPD-----CSETYILAVECLCTCDVVYAC--------

aalaaaaaa----- block 4 --aa-------------I 1---- block 6 ----I 

ec 01 i CVD AA IKPCNTLPf1RNI P VC STVHNVEf1KPC KCCQ LARSA CTYVQ I VA RD--C A YVTLRLRSC Ef1RKVEA DCRA T 

yeast -KKASLNVCNVLPLCSVPECTIVSNVEEKPCDRCALARASCNYVIIICHNPDENKTRVRLPSCAKKVISSDARCV 

ardu -DNVEIASCNITYLKNIPECTPVCNIEAQPCDGCKFIRASCTFCFVVSREAD--KVLVQf1PSCKQKWFHPNCRAf1 

1---------------- block 8 aaaaa ------------------------aaa------------

ec 01 i LC EVC NA EHf1LR VLC KA C AA RWRCVR -----PTVRCT A f1NPVDHPHCCCECRNFC --KHPVT ---PWC VQTK CKK 

ye ast IC V IA CCC R VDKP LLKA C RA FHKYRLKRN SWPKTRC VA f1NPVDHPHCCCNHQ H IC KA ST IS R -CA VSC QK AC LI A 

ar d u IC VV A CCC RTDKP FVKA C KKYHKf1K SK AA KWPR VRC VA f1N A VDHPFCCCKHQ HVC KP KTVS R - NA PPC RKVC S I A 

--------------1 

ecoli TRSNKRTDKFIVRRRSK------

yeast ARRTCLLRCSQKTQD--------

arcru ARRTCVRR----------------

aaaaaaaaaaaaaa 

1-- block 10 ----------1 

Figure 3. L f1ultiple alignment ror three representive sequences in the L2 ramily 

and rour important blocks derined in Table 3.1. 'a' 1S used to mark the important 

'a' blocks (sites) derined in Table 3.2. Here ecoli: E.coli; yeast: Saccaromyces 

cere.; arcru: Arch. rulgidus. The same designations are used in Figure 3.2. 

ec 01 i -----------------------------------f1SLSTEA T A KI VS EFCRD AND----------TC ------

ye ast f1C Rf1HSA C KC ISSSA IP YSRNA P A WFKLSSESV IEQ IVKY ARKC L TPSQ I CVLLRDA HC VTQA R V ITC ------

ar d u f1A RI HARRRC KSCS KRI YRDSP PEWVDf1S PEEVEKKVLEL YNEC YEPSflI Cf1 I LRD R YC IPSVKQ VTC -------

1--- block 3 ------1 II 
ec 01 i --------------STEVQ V ALL T A Q I NHLQCHF A EHKKDHHSRRC LLRf1VSQ RRKLLD YLKRKD VA ----R ¥TQ 

yeast NKIf1RILKSNCLAPEIPEDL YYLIKKA VSVRKHLERNRKDKDAKFRLILIESRIHRLAR YYRTVA VLPPNWKYES 

arcru KKIQKILKEHCVEIKYPEDLKALIKKALKLRAHLEVHRKDKHNRRCLQLIEAKIWRLSSYYKEKCVLPADWKYNP 

ecoli LIERLCLRR

yeast ATASALVN-

arcru DRLKIEISK-

block 9 -I 

1-----------------** block 7 ---------**------1 1---

Figure 3.2. f1ultiple alignment ror the three representive sequences in the S15 

ramily and the important blocks derined in Table 3.3. is used to mark the 

important blocks (sites) derined in Table 3.4. 

theth --------------------f1STKN AKPKKEA QRRPSRKA KVKA TLC EFDLRD YRN-VEVLKRFLS ETCK ILPRR 

hpylo -------------------------------f1ERKRYSKRYCKYTEAKISFIDYKD-LDf1LKHTLSERYKIf1PRR 

mgen f1f1 I NKEQ D LN QLETN QEQSVEQ N QTDEKRKP KPNFKRA KKYCRFCA I CQ LR ID FI DD LEA I KRFLS PY AK INPRR 

I--aaaaaaaaaaa 

theth RTCLSCKEQRILAKTIKRARILCLLPFTEKLVRK-------

hpy 10 LTC NS KKWQER VEV A IKRARHf1A LI PY IVDRKKVVDSP FK QH 

mgen ITC NCNf1HQRHV A NA LKRAR YLA L VPF IKD------------

block 2 ***** --I 

Figure 3.3. f1ultiple alignment ror the three representive sequences in the S18 

ramily and the important blocks derined in Table 3.5. * (or a) is used to mark 

important blocks (sites) derined in Table 3.6. Here theth: Thermus thermophilus; 

hpylo: Heli. pylori; mgen: f1. genitalium. 
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Table 3.1 Analysis of IC for L2 by Method 2 ,"vith Co = 4.5 

i I; Ale; s; r; I i I; AleT; s; r; 

I 29 1.094 0.20 7.97 11 151 1.384 5.53 14.6 

~ 45 1.366 6.14 19.9 I 8' 240 1.780 0.11 6.55 

3 77 1.453 0.14 4.60 19 256 1.692 0.24 5.23 

4' 116 1.832 0.15 6.66 I 1O' 280 2.294 0.25 5.66 

Ii 121 1.382 9.97 7.93 III 317 1.335 0.09 6.47 

6' 141 1.833 0.19 12.73 112 324 1.230 4.35 

Gap blocks are in bold type and underlined. 

b The blocks have a AICT; value larger than 1.720 (25 % of the largest 

AICT; among those ,"vith S; < 1). 

Table 3.2 Analysis of IC for L2 by Method 1 ,"vith 0: = 0.2 

i I; AleT; S; r; i I; AleT; S; r; 

I 29 1.094 0.20 7.98 19" 185 1.832 1.73 4.26 

~ 45 1.366 6.15 25.0 20' 198 1.880 0.42 5.11 

3 58 1.378 0.34 5.21 21 204 1.073 0.41 5.22 

4 63 1.330 0.86 4.96 22' 210 1.873 0.74 4.12 

5 75 1.578 0.45 3.32 23" 213 2.230 1.23 3.36 

6" 80 1.654 1.26 5.23 24' 225 1.775 0.36 3.09 

7" 84 1.785 1.67 4.04 25 240 1.631 0.32 4.21 

8 91 1.293 0.39 4.24 26' 251 1.933 0.47 5.82 

9' IOO 1.703 0.43 3.75 27 256 1.152 2.81 6.54 

10" 102 3.170 3.23 3.59 28' 262 2.168 0.58 2.96 

11' 108 2.082 0.68 3.50 29" 267 2.792 un 3.54 

12' 116 1.895 0.49 8.32 30" 271 3.055 1.70 6.19 

13 121 1.384 9.81 11.9 31" 276 2.044 2.66 5.61 

14 125 1.594 0.95 4.78 32 287 1.317 0.28 4.18 

15b 130 2.194 0.89 2.90 33' 292 1.822 0.99 4.96 

16b 141 1.758 0.30 12.6 34 301 1.535 0.34 4.05 

17 151 1.382 5.52 14.5 35 317 1.097 0.39 9.74 

18' 180 1.873 0.24 4.42 36 324 1.230 4.35 

Gap blocks are in bold type and underlined. 

" The non gap blocks ,"vith S; 2: 1. 

b The blocks have a AICT; value larger than 1.643 ( 25% of the largest 

AICT; among those ,"vith S; < 1). 
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Table 3.3 Analy-sis of IC for S15 by Method 2 with Co = 4.5 

i I; AICT; S; r; I i I; AICT; S; r; 

1 15 0.895 1.04 5.03 1ft 89 0.886 1.09 23.7 

2 35 0.756 0.59 14.7 I 7' 142 1.886 0.27 7.11 

3' 56 1.533 0.32 10.2 I~ 146 1.147 2.14 4.73 

4 66 0.832 0.77 7.lO I 9' 160 1.527 0.21 

5" 68 2.870 2.93 11.4 I 
Gap blocks are in bold type and underlined. 

" The non gap blocks ,"vith S; > 1. 

b The blocks have a AICT; value larger than 1.379 (25 % of the largest 

AICT; among those ,"vith S; < 1). 

Table 3.4 Analy-sis of IC for S15 by Method 2 with Co = 3.5 

i I; AICT; S; r; i I; AICT; S; r; 

1 15 0.89 1.04 5.03 19 114 2.13 7.32 12.2 

2 35 0.76 0.59 15.6 20' 115 3.49 00 7.8 

3 55 1.44 0.36 3.6 21 117 1.79 5.39 7.3 

4 57 2.06 1.84 4.2 22 118 2.30 00 10.9 

5 66 0.85 0.79 6.8 23 120 1.79 6.18 8.2 

6' 68 2.87 2.93 24.2 24 121 2.50 00 14.0 

'I 75 un 26.1 3.8 25 123 2.03 8.69 5.0 

8 89 0.83 0.59 10.5 26 125 1.27 5.07 4.3 

9 94 2.03 1.09 4.2 27 127 2.24 2.14 6.7 

lO 99 1.90 1.21 4.3 28 131 1.84 3.74 11.9 

11 101 1.26 3.27 8.6 29 133 2.00 11.9 16.5 

12 102 2.43 00 8.3 30 134 1.13 00 9.5 

13 104 1.25 3.56 7.5 31' 136 2.67 8.73 11.0 

14 105 1.88 00 5.1 32 139 1.26 3.46 6.6 

15 107 1.57 1.87 4.0 33 140 1.67 00 4.4 

16' 109 2.88 2.86 4.6 34 142 1.45 1.99 7.1 

17 III 1.24 3.29 9.6 35 146 1.15 2.14 4.7 

18' 112 2.65 00 10.8 36 160 1.52 0.21 

Gap blocks are in bold type and underlined. 

~ The blocks have a AICT; value larger than 2.62 (25% of the largest 

AICT; among those non gap bloch-s. 
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Table 3.5 Analysis of IC for S18 by Method 2 ,"vith Co = 4.5 

I; AleT; S; r; 

I 31 0.751 1.08 24.50 

2 105 1.828 0.16 15.71 

3 117 0.910 3.27 

Table 3.6 Analysis of IC for S18 by Method 2 ,"vith Co = 3.3 

i I; AleT; S; r; I i I; AleT; S; r; 

1 26 0.790 1.80 13.4 IT 80 2.069 0.26 3.42 

2 34 0.680 0.51 6.90 18 96 1.180 0.43 3.89 

3" 41 1.153 1.98 4.27 I 9'" 101 2.408 1.29 3.81 

4" 45 1.962 1.57 4.05 I 10 105 1.607 0.91 15.4 

5 52 1.223 0.55 4.22 III 117 0.910 3.27 

6' 57 2.268 0.87 4.12 I 
Gap bloch'S are in bold t:Y1)e and underlined. 

" The non gap blocks with S; 2: 1. 

~ The blocks have a AICT; value larger than 1.701 (25% of the largest 

AICT; among those non gap bloch'S. 
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