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ABSTRACT

This work shows how to decrease the complexity of modeling � exibility in proteins by reduc-
ing the number of dimensions necessary to model important macromolecular motions such as
the induced-� t process. Induced � t occurs during the binding of a protein to other proteins,
nucleic acids, or small molecules (ligands) and is a critical part of protein function. It is now
widely accepted that conformational changes of proteins can affect their ability to bind other
molecules and that any progress in modeling protein motion and � exibility will contribute
to the understanding of key biological functions. However, modeling protein � exibility has
proven a very dif� cult task. Experimental laboratory methods, such as x-ray crystallogra-
phy, produce rather limited information, while computational methods such as molecular
dynamics are too slow for routine use with large systems. In this work, we show how to use
the principal component analysis method, a dimensionality reduction technique, to trans-
form the original high-dimensional representation of protein motion into a lower dimensional
representation that captures the dominant modes of motions of proteins. For a medium-sized
protein, this corresponds to reducing a problem with a few thousand degrees of freedom
to one with less than � fty. Although there is inevitably some loss in accuracy, we show
that we can obtain conformations that have been observed in laboratory experiments, start-
ing from different initial conformations and working in a drastically reduced search space.

Key words: dimensionality reduction, principal component analysis, protein motion, protein
� exibility.

1. INTRODUCTION

The functions of proteins can be as varied as enzymatic catalysis, mechanical support, immune
protection, and generation and transmission of nerve impulses, among many others. Today there is

a large body of knowledge available on protein structure and function as a result of several decades of
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intense research by scientists worldwide. This amount of information is expected to grow at an even faster
pace in the coming years due to new efforts in large-scale proteomics and structural genomics projects. In
order to make the best use of the exponential increase in the amount of data available, it is imperative that
we develop automated methods for extracting relevant information from large amounts of protein structural
data. The focus of this paper is on how to obtain a reduced representation of protein � exibility from raw
protein structural data.

Protein � exibility is a crucial aspect of the relation between protein structure and function. Proteins
change their three-dimensional shapes when binding or unbinding to other molecules. Calmodulin is a
representative example. This protein mediates a large number of cellular functions including ion channels,
protein synthesis, gene regulation, cell motility, and secretion (Van Eldik and Watterson, 1998). Calmodulin
is constituted by two large domains connected by a tether. This protein functions by binding to other
proteins, and during this process it undergoes a drastic conformational rearrangement. When the protein
binds one of its targets, the tether bends over its length, and the two calcium-binding domains reorient
with respect to each other as shown in Fig. 1. Many other proteins undergo conformational rearrangements
during the course of their function (Gerstein and Krebs, 1998).

Modeling protein � exibility computationally will be a major bene� t to most aspects of biomolecular
modeling, and we can envision several applications for our work. Currently used methods in pharmaceutical
drug development use information about the 3D structure of a protein in order to � nd candidate drugs.
One of the steps commonly used in the drug design process is to computationally screen large databases
of small chemical compounds in search for those that complement the shape of an active site of a target
protein. This latter step is known as molecular docking (Martin and Willett, 1998). Candidate drugs bind
to the target protein, disrupting its function and leading to a desired pharmaceutical activity. However,
during binding, some proteins undergo conformational changes in a process known as induced � t, which
allows for higher interaction energy between the two molecules. This experimental fact is ignored by
most current docking programs due to the computational complexity of explicitly modeling all the degrees
of freedom of a protein (Muegge and Rarey, 2001; Teodoro et al., 2001). Modeling proteins as rigid
structures limits the effectiveness of currently used molecular docking methods. Using the approximation
described in this paper, it will be possible to include protein � exibility in the drug design process in
a computationally ef� cient way. A second potential application of our work is to model conformational
changes that occur during protein–protein and protein–DNA/RNA interactions. Most current methods for
studying these interactions are also limited in accuracy and applicability because the proteins involved are
modeled as rigid.

FIG. 1. Conformations of calmodulin. The unbound form shown on the left bends the ®-helix connecting its two
main domains when it binds to a target (not shown). The � nal bound conformation is on the right.
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Current structural biology experimental methods are restricted in the amount of information they can
provide regarding protein motions because they were designed mainly to determine the three-dimensional
static representation of a molecule. The two most common methods in use today are protein x-ray crystal-
lography (Rhodes, 1993) and nuclear magnetic resonance (NMR) (Wüthrich, 1986). The output of these
techniques is a set of fx; y; zg coordinate values for each atom in a protein. Neither of these methods is able
to provide us with a full description, at atomic resolution, of the structural changes that proteins undergo in
a timescale relevant to their function. Such information would be ideal to understand and model proteins.
The alternative to experimental methods is to use computational methods based on classical (Brooks et al.,
1988) or quantum mechanics (Gogonea et al., 2001) to approximate protein � exibility. However, these
computations are prohibitively expensive and are not suitable for potential target applications such as the
ones described in the previous paragraph. One of the reasons why the above computational methods are
expensive is that they try to simulate all possible motions of the protein based on physical laws. For the case
of molecular dynamics, the timestep for the numerical integration of such simulations needs to be small
(in the order of femtoseconds), while relevant motions occur in a much longer timescale (microseconds
to milliseconds). It is unrealistic to expect that one could routinely use molecular dynamics or quantum
mechanics methods to simulate large conformational rearrangements of molecules. A medium-sized protein
can have as many as several thousand atoms, and each atom can move along three degrees of freedom.
Even when considering more restricted versions of protein � exibility that take into account only internal
torsional degrees of freedom, or restrict the degrees of freedom to take only a set of discrete values,
exploring the conformational space of these proteins is still a formidable combinatorial search problem
(Finn and Kavraki, 1999).

The solution presented in this work addresses the high-dimensionality problem by transforming the basis
of representation of molecular motion. Whereas in the standard representation all degrees of freedom (the
fx; y; zg values for each atom) of the molecule were of equal importance, in the new representation the new
degrees of freedom will be linear combinations of the original variables in such way that some degrees
of freedom are signi� cantly more representative of protein � exibility than others. As a result, we can
approximate the total molecular � exibility by truncating the new basis of representation and considering
only the most signi� cant degrees of freedom. The remaining degrees of freedom can be disregarded,
resulting in only a small inaccuracy in the molecular representation. Transformed degrees of freedom will
no longer be single atom movements along the Cartesian axes but collective motions affecting the entire
con� guration of the protein. The main tradeoff of this method is that there is some loss of information due
to truncation (of the new basis), but this factor is outweighed by the ability to effectively model protein
� exibility in a subspace of largely reduced dimensionality. We also show that there is inevitably some loss
of accuracy, but the results are acceptable, consistent with experimental laboratory results, and help shed
light on the mechanisms of biomolecular processes.

In this paper, we describe how starting from initial coordinate information from different data sources
we apply the principal component analysis method of dimensionality reduction and obtain a new structural
representation using collective degrees of freedom. In Section 2, we give some background on the most
commonly used techniques of dimensionality reduction and some previously published applications of these
in simulating and analyzing protein conformations. In Section 3, we explain how to apply the singular
value decomposition method to perform the dimensionality reduction, while in Section 4 we describe
the general methodology used to obtain the input data. In Section 5, we present the results we obtained
from the dimensionality reduction of data for two protein systems of signi� cant pharmaceutical relevance.
Finally, in Section 6, we present our conclusions and discuss directions for future work.

2. BACKGROUND

Dimensionality-reduction techniques aim to determine the underlying true dimensionality of a discrete
sampling X of an n-dimensional space. That is, if X is embedded in a subspace of dimensionality m,
where m < n, then we can � nd a mapping F : X ! Y such that Y ½ B and B is an m-dimensional
manifold. Dimensionality reduction methods can be divided into two types: linear and nonlinear. The
two most commonly used linear methods to � nd such mappings are multidimensional scaling (MDS) and
principal component analysis (PCA).
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MDS encompasses a variety of multivariate data analysis techniques that were originally developed in
mathematical psychology (Kruskal, 1964; Shepard, 1962) to search for a low-dimensional representation
of high-dimensional data. The search is carried out such that the distances between the objects in the lower
dimensional space match as well as possible, under some similarity measure between points in the original
high-dimensional space.

PCA is a widely used technique for dimensionality reduction. This method, which was � rst proposed
by Pearson (1901) and further developed by Hotelling (1933), involves a mathematical procedure that
transforms the original high-dimensional set of (possibly) correlated variables into a reduced set of un-
correlated variables called principal components. These are linear combinations of the original values in
which the � rst principal component accounts for most of the variance in the original data, and each sub-
sequent component accounts for as much of the remaining variance as possible. Note that if the similarity
measure of MDS corresponds to the Euclidean distances then the results of MDS are equivalent to PCA.
The MDS and PCA dimensionality reduction methods are fast to compute, simple to implement, and since
their optimizations do not involve local minima, they are guaranteed to discover the dimensionality of a
discrete sample of data on a linear subspace of the original space.

One of the limitations of methods such as MDS and PCA is that their effectiveness is limited by
the fact that they are globally linear methods. As a result, if the original data is inherently nonlinear,
these methods will represent the true reduced manifold in a subspace of higher dimension than necessary
in order to cover nonlinearity. To overcome this limitation, several methods for nonlinear dimensionality
reduction have been proposed in recent years. Among these are principal curves (Hastie and Stuetzle, 1989;
Tibshirani, 1992), multilayer auto-associative neural networks (Kramer, 1991), local PCA (Kambhatla and
Leen, 1997), and generative topographic mapping (Bishop et al., 1998). More recently, Tenenbaum et al.
(2000) proposed the isomap method and Roweis and Saul (2000) proposed the locally linear embedding
method. The main advantage of the last two methods is that the optimization procedure used to � nd the
low-dimensional embedding of the data does not involve local minima. In general, the main disadvantages
of nonlinear versus linear dimensionality reduction methods are increased computational cost, dif� culty
of implementation, and problematic convergence. The development of new methods for dimensionality
reduction is an active research area.

The application of dimensionality reduction methods, namely PCA, to macromolecular structural data
was � rst described by Garcia (1992) in order to identify high-amplitude modes of � uctuations in macro-
molecular dynamics simulations. It as also been used to identify and study protein conformational substates
(Caves et al., 1998; Kitao and Go, 1999; Romo et al., 1995) as a possible method to extend the timescale
of molecular dynamics simulations (Amadei et al., 1993; Amadei et al., 1996) and as a method to per-
form conformational sampling (de Groot et al., 1996a, 1996b). The validity of the method has also been
established by comparison with laboratory experimentally derived data (de Groot et al., 1998; van Aalten
et al., 1997). An alternative approach to determine collective modes for proteins uses normal mode analysis
(Go et al., 1983; Levitt et al., 1985; Levy and Karplus, 1979) and can also serve as a basis for modeling
the � exibility of large molecules (Zacharias and Sklenar, 1999). Normal modes analysis is a direct way to
analyze vibrational motions. To determine the vibrational motions of a molecular system, the eigenvalues
and the eigenvectors of a mass-weighted matrix of the second derivatives of the potential function are
computed. The eigenvectors correspond to collective motions of the molecule, and the eigenvalues are
proportional to the squares of the vibrational frequencies. The PCA approach described in this article
avoids some of the limitations of normal modes, such as lack of solvent modeling, assumption that the
potential energy varies quadratically, and existence of multiple energy minima during large conformational
transitions. In contrast to previously published work, we focus on the interpretation of the principal com-
ponents as biologically relevant motions and on how combinations of a reduced number of these motions
can approximate alternative conformations of the protein.

3. PCA OF CONFORMATIONAL DATA

Method

In this paper, we focus our analysis on the application of PCA to protein structural data. For our
study, we chose PCA as the dimensionality reduction technique because it is very well established and
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ef� cient algorithms with guaranteed convergence for its computation are readily available. PCA has the
advantage over other available methods that the principal components have a direct physical interpretation.
As explained later, PCA expresses a new basis for protein motion in terms of the left singular vectors
of the matrix of conformational data. The left singular vectors with largest singular values correspond to
the principal components. When the principal components are mapped back to the protein structure under
investigation, they relate to actual protein movements, also known as modes of motion. It is now possible
to de� ne a lower dimensional subspace of protein motion spanned by the principal components and use
these to project the initial high-dimensional data onto this subspace. The inverse operation can also be
carried out, and it is possible to recover the high-dimensional space with minimal reconstruction error.
By contrast, recovering the high-dimensional representation is not readily achievable when using MDS
because the de� nition of the low-dimensional subspace is implicit in the projection and is not de� ned
directly by the left singular vectors as is the case for PCA. The quality of the dimensionality reduction
obtained using PCA can be seen as an upper bound on how much we can reduce the representation of
conformational � exibility in proteins. The reason for this is that PCA is a linear dimensionality reduction
technique and protein motion is in general nonlinear (Garcia, 1992). Hence, it should be possible to obtain
an even lower dimensional representation using nonlinear methods. However, we wanted to test the overall
approach before proceeding to more expensive methods. For nonlinear methods, the inverse mapping needs
to be obtained using, for example, a neural network approach, but the feasibility and ef� ciency of these
mappings has not been tested so far. There is active research in this area and our work will bene� t from
any progress.

In PCA, principal components are determined so that the � rst principal component PC.1/ is a linear
combination of the initial variables Aj , with j D 1; 2; : : : ; n. That is,

PC.1/ D w.1/1A1 C w.1/2A2 C ¢ ¢ ¢ C w.1/nAn;

where the weights w.1/1; w.1/2; : : : ; w.1/n have been chosen to maximize the ratio of variance of PC.1/ to
the total variation, under the constraint

nX

jD1

.w.1/j /2 D 1:

Other principal components PC.p/ are similarly linear combinations of the observed variables which are
uncorrelated with PC.1/; : : : ; PC.p¡1/ and account for most of the remaining total variation. Although it
is possible to determine as many principal components as the number of original variables, this method
is typically used to determine the smallest number of uncorrelated principal components that explain a
large percentage of the total variation in the data. The exact number of principal components chosen is
application dependent and constitutes a truncated basis of representation.

Conformational data

The data used as input for PCA is in the form of several atomic displacement vectors corresponding
to different structural conformations which together constitute a vector set. We will call this set the con-
formational vector set. Each vector in the conformational vector set has dimension 3N , where N is the
number of atoms in the protein being studied and is of the form [x1; y1; z1; x2; y2; z2; : : : ; xN ; yN ; zN ],
where [xi ; yi; zi ] corresponds to Cartesian coordinate information for the ith atom. The � rst step in the
generation of the atomic displacement vectors is to determine the average protein vector for each confor-
mational vector set. This is achieved by � rst removing the translational and rotational degrees of freedom
from the considered molecule by doing a rigid least squares � t (Kabsch, 1976) of all the structures to one
of the structures in the vector set and then averaging the values for each of the 3N degrees of freedom.
The resulting average structure vector is then subtracted from all other structures in the conformational
vector set to compute the � nal atomic displacement vectors.
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Singular valve decomposition (SVD)

In this work, we use the singular value decomposition (SVD) as an ef� cient computational method to
calculate the principal components (Romo, 1998). The SVD of a matrix, A, is de� ned as

A D U6VT;

where U and V are orthonormal matrices and 6 is a nonnegative diagonal matrix whose diagonal elements
are the singular values of A. The columns of matrices U and V are called the left and right singular
vectors, respectively. The square of each singular value corresponds to the variance of the data in A along
its corresponding left singular vector, and the trace of 6 is the total variance in A. For our purposes,
matrix A is constructed by the column-wise concatenation of the elements of a conformational vector set.
If there are m conformations of size 3N in the vector set, this results in a matrix of size 3N £ m. The left
singular vectors of the SVD of A are equivalent to the principal components (Romo, 1998) and will span
the space sampled by the original data. The right singular vectors are projections of the original data along
the principal components. The right singular vectors also provide useful molecular information by helping
to identify preferred protein conformations (Romo et al., 1995; Teodoro et al., 2000). For this paper, we
construct A using the conformational vector sets of Section 4. The SVD of matrix A was computed using
the ARPACK library (Lehoucq et al., 1998). ARPACK is a collection of Fortran77 subroutines designed
to solve large-scale eigenvalue problems. It is based upon an algorithmic variant of the Arnoldi process
called the Implicitly Restarted Arnoldi Method (Lehoucq and Sorensen, 1996).

4. OBTAINING CONFORMATIONAL DATA

Ideally, the input data for dimensionality reduction would come from an accurate experimental technique
that would permit the determination of the 3D structure at atomic resolution as it changes as a function of
time. Using such a technique, we could collect a large number of samples at short time intervals (picosecond
to nanosecond intervals). Unfortunately, such an experimental technique is not currently available. In order
to perform the dimensionality reduction, we need to obtain as much data as possible about the protein
system being studied from all available sources. The most common data sources are the experimental
laboratory methods of x-ray crystallography and NMR, and force � eld based computational sampling
methods such as molecular dynamics. Of these, the laboratory methods generate less data but do it with a
greater accuracy.

X-ray crystallography

The most established and accurate method of determining the structure of a protein is protein x-ray
crystallography (Rhodes, 1993). This technique is based on the collection of diffraction data generated
by exposing a protein crystal to an x-ray beam. The experimental diffraction data is then computationally
processed to yield a three-dimensional representation of the electron cloud of the molecule under study.
Using these electron maps, it is then possible to accurately determine the spatial position of protein atoms
in a process called � tting. The � nal outcome of the structural determination process is a single set of
coordinates of all atoms in the molecule. The main limitation of this experimental technique is that it is
necessary to obtain protein crystals in order to collect experimental data. Unfortunately, generating protein
crystals is a very lengthy and laborious process which is not always successful. For example, membrane
proteins, which are extremely important biologically, are notoriously dif� cult to crystallize, and very few
structures of this class of proteins have been determined to date (Byrne and Iwata, 2002).

X-ray crystallography is sensitive to the experimental conditionsunder which it is performed, and changes
of these conditions change the result. However, this a priori disadvantage can be sometimes bene� cial.
For example, by determining the structure of a protein in the presence of different inhibitors, we can
determine different binding modes for potential drug candidates and observe how the protein is able to
adapt to different molecules. For a number of interesting molecules, there are several structures available,
and our analysis can be performed directly on the conformational vector set de� ned collectively by the
experimental structures. This constitutes an advantage since no errors are introduced by the approximations
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used in current computational methods. One example of such a protein is HIV-1 protease. For this system,
there are several publicly available structures of the protein bound to widely different inhibitors. This is
possible because the binding site of this protease is very � exible and is able to change its shape in order to
complement the three-dimensional shape of the smaller molecules that bind to it (ligands). By analyzing
the conformational data using a dimensionality reduction method such as PCA, we are able to reduce the
overwhelming amount of information obtained from dozens of different structures to a small set of motions
that summarize how the protein is able to adjust the shape of its binding site.

Nuclear magnetic resonance (NMR)

The second most common method of determining the structure of a protein is NMR (Wüthrich, 1986).
This method uses a spectroscopy approach to collect the experimental data necessary for structure determi-
nation. The most important data obtained is a set of NOE (nuclear Overhauser effect) intensities produced
by dipolar relaxation from neighboring spin systems. This intensity is inversely proportional to the distance
between the spin systems, and as such it is possible to collect a series of distance constraints between
atoms which enable the determination of the three-dimensional structure of a protein by solving a distance
geometry problem (Guntert et al., 1991).

This method is in general not as accurate as x-ray crystallography, and its use is limited to small and
medium-sized proteins. However, it provides useful information about protein dynamics directly and avoids
some of the problems of x-ray crystallography, such as protein crystallization. Another advantage of using
NMR structures is that the � nal solution is not a single structure but a family of structures as required for
input for dimensionality reduction. Although this family is usually composed of 10 to 50 structures, this
number can be made as large as necessary by deriving more structures that satisfy the NMR experimental
constraints to the same level as the original number. It is not clear, however, if new information is always
useful for the dimensionality reduction technique since all the structures in the family are derived from
the same set of experimental observations. Structures derived using either x-ray crystallography or NMR
are stored in major databanks, such as the Protein Data Bank (Berman et al., 2000).

Molecular dynamics (MD)

An alternative to using experimental methods to derive structural data is using computational methods
such as MD (Brooks et al., 1988). In fact, computational methods are used to augment existing experi-
mental data since MD simulations typically start from a three-dimensional protein structure determined by
x-ray crystallography or NMR. MD uses a force � eld (Cornell et al., 1995; MacKerell et al., 1998) to ap-
proximate the potential energy surface of a protein. The force � eld measures energy through a combination
of bonded terms (bond distances, bond angles, torsional angles, etc.) and nonbonded terms (van der Waals
and electrostatics). The relative contributions of these terms are different for the different types of atoms
in the simulated molecule. They are determined by adjusting a series of parameters so that the molecule
displays characteristics that have been observed experimentally or have been calculated from � rst prin-
ciples. Once the force � eld has been speci� ed, the time evolution of the system at an atomic scale is
determined by solving Newton’s equations of motion. One of the main disadvantages of MD is that it is
very computationally expensive, which makes it impossible to run simulations for a timescale relevant to
a majority of biological processes. Given current computer hardware, the timescales that are practically
feasible to simulate even for a medium sized protein are usually less than 10–50 ns. The longest simulation
published so far is 1 ¹s (Duan and Kollman, 1998). These simulations can take from days to months of
computer time, even on parallel machines, depending on the timescale simulated and the complexity of the
molecular model. Nonetheless, shorter simulations can provide us with invaluable data since they are the
only method of observing proteins in “real time” and with atomic detail. For the purposes of determining
a set of collective modes of motion representing the � exibility of the protein, it has been veri� ed that it
is only necessary to run short MD simulations (< 1 ns) (de Groot et al., 1996c) because the subspace
spanned by the calculated left singular vectors derived from MD converge quickly.

MD is a good data source for our purposes because it can provide a large number of conformations of
a molecule. However, MD is not as accurate as experimental methods due to approximations introduced
in the computational process in order to make the MD simulation computationally practical. Among
these approximations is the over simpli� ed treatment of solvation effects and the lack of polarizability
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representation in commonly used force � elds. Addressing some of these limitations is currently the focus
of many researchers, and there have been signi� cant advances in the area of continuum electrostatic models
and polarizable force � elds. Improvements to the data generated by computational methods will re� ect
positively on the quality of the information that is obtained using dimensionality reduction.

When carrying out the dimensionality reduction described in this work, we must chose among the
data sources which are available for the molecular system being studied. It is unlikely that data from all
sources described in this section will be available simultaneously for any particular system. Furthermore,
data obtained using exclusively experimental data sources is especially dif� cult to obtain. However, the
availability of experimental data is very likely to increase in the future due to methodological improvements
resulting from increased automation advances resulting in part from structural genomics projects. In the
next section, we apply our method to two model systems using available sources of data.

5. APPLICATION TO SPECIFIC SYSTEMS

HIV-1 protease

The � rst model system used in this study is HIV-1 protease. HIV-1 protease is a homodimeric aspartyl
protease with each subunit containing 99 residues. The active site of HIV-1 protease is formed by the
homodimer interface and is capped by two identical ¯-hairpin loops from each monomer, which are
referred usually as � aps (see Fig. 2). This protein plays a critical role in the maturation of the HIV-1
virus and has been the focus of intensive research in both academic and pharmaceutical communities. As
a result, there is a large quantity of structural information on this system. This protein is known (Collins
et al., 1995) to undergo a large conformational rearrangement during the binding process consisting of the
opening and closing of the � aps over its binding site. The conformations of the open and closed forms are
overlapped in Fig. 2.

There are approximately 150 experimental structures available in public databases (http://srdata.nist.
gov/hivdb/ and http://www.rcsb.org/pdb/) for this system, and this number is continually growing due to
its pharmaceutical importance. Of these structures, many are bound to different ligands and, depending on
the size and shape of the ligand, display widely different conformations of the residues in the binding site.

FIG. 2. Backbone representation of HIV-1 protease for the unbound (gray) and bound forms (black). The arrows
indicate the � aps region where large conformational changes take place. The binding site is the location indicated
by B.

http://srdata.nist.gov/hivdb/
http://srdata.nist.gov/hivdb/
http://www.rcsb.org/pdb/
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It has been observed that the volume of the cavity can approximately double depending on the ligand. In
Fig. 3, we show a tube representation of HIV-1 protease bound to two different inhibitors. The structures
shown correspond to PDB access code 4HVP and 1AID. As can be seen in the � gure, the protease is able
to change its shape mostly in the � aps region to accommodate for different ligands which vary considerably
in terms of shape and volume. HIV-1 protease provides an excellent demonstration of protein plasticity
and underlines the importance of understanding and modeling protein � exibility for binding purposes.

One of the advantages of using the PCA methodology to analyze protein � exibility is that it can be
used at different levels of detail depending on what kind of information we are interested in obtaining. For
example, if we are interested in the overall motion of the backbone, then we can construct the matrix A
de� ned in Section 3 using only the coordinate information from the ®-carbons. This reduces the number
of degrees of freedom to 3 £ 198 and makes the computation of the SVD faster. Alternatively, we can
include all the atoms of the protein for a total of 3 £ 3,120 degrees of freedom and be able to observe the
simpli� ed � exibility of the protein as a whole. As an intermediate case, we can include only the atoms
that constitute the binding site to study how it can change shape during the binding of different ligands.
This intermediate solution would probably be better for a drug design study. Below, we describe the results
obtained for all three cases above.

In the � rst experiment, we determined the modes of motion generated from MD data. The initial
structure used for the simulation was determined by x-ray crystallography (Miller et al., 1989) (PDB
access code 4HVP). Molecular dynamics simulations for this system were carried out with the program
NAMD2 (Kalé et al., 1999) using the charmm22 force � eld (MacKerell et al., 1998). Since we were mostly
interested in conformational changes in the binding site of this protein, we did not include any inhibitor
in the simulation in order to be able to observe a larger range of conformational motions in this region.
The simulations were carried out in a box of TIP3 water using periodic boundary conditions, particle
mesh Ewald full electrostatic integration, and pressure and temperature coupling using the Berendsen
algorithm (Berendsen et al., 1984). After an equilibration period of 200 picoseconds, the simulations were
carried out for an extra 1.4 nanoseconds each at a temperature of 300K, and structures were saved to
disk every 100 femtoseconds. The resulting 14,000 structures were used in the dimensionality reduction
procedure.

In Fig. 4, we show the fraction of the total variance explained by the 20 most signi� cant left singular
vectors for the SVD analysis of the coordinate data for all 198 ®-carbons in HIV-1 protease. The largest
singular value accounts for 35% of the total variance. The � rst 3 and � rst 20 account for 53% and 80%,
respectively. In practice, this means that we can approximate a system of 596 dimensions using only
20 dimensions and are still able to retain 80% of the variance in the original data. This results in a drastic
reduction of complexity with only a small reduction in our ability to represent different conformations of
HIV-1 protease.

FIG. 3. Tube representation of HIV-1 protease (PDB access codes 4HVP and 1AID) bound to different inhibitors
represented by spheres. The plasticity of the binding site of the protein allows the protease to change its shape in order
to accommodate ligands with widely different shapes and volumes.



626 TEODORO ET AL.

FIG. 4. Fraction of total variance represented by the most signi� cant singular values for HIV-1 protease dimension-
ality reduction.

In Fig. 5, we show the motion of the backbone that was captured in the � rst principal component. This
motion matches well with the opening and closing of the binding site, a fact that has been determined
experimentally (Fig. 2). It also shows the strength of this method in isolating the most relevant biological
motions from a large amount of high-dimensional input data where they were not clearly recognizable.
The reason why it is dif� cult, even for an expert, to recognize these principal motions directly from the
raw MD data is the enormous quantity of information generated by this technique. PCA also reveals the
tendency of the protein to move in a certain direction even though this movement is not fully explored
during the MD run. This constitutes one of the main advantages of this method since it enables the

FIG. 5. HIV-1 protease backbone motion as de� ned by the � rst principal component. The structure shown at the
center left corresponds to the bound reference structure (ligand not shown). As the structure moves along the � rst
principal component the � aps either close more over the binding site (bottom sequence) or, if moving in the opposite
direction, lead to an open conformation (top sequence) very similar to structures obtained by crystallography for the
unbound conformation.
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discovery of the important motions using shorter MD simulations with a consequent drastic reduction in
computational cost.

It is important to emphasize at this point that no bias was introduced at any point in the calculation that
would inevitably lead to the observed result. The input to the data reduction consisted uniquely of MD
sampling data obtained from a short simulation starting from the bound conformation without the ligand.
What is being captured is the opening caused by the removal of the ligand without driving the simulation
directly to the � nal open conformation as is the case for the steered MD technique (SMD) (Isralewitz et al.,
2001). The reason we avoid this alternative is that we want to validate the utility of using MD simulations
when only one experimental structure is known for the system of study. We do not want to introduce any
bias to the system as SMD would do.

The results obtained from SVD for all atoms were similar to the ®-carbon approximation but contain
extra information about amino acid sidechain movements. The most dominant, the � rst three, and the � rst
twenty left singular vectors account for 20%, 37%, and 68% of the total variance, respectively. These
values are smaller than for the ®-carbon carbon dimensionality reduction because the total number of
degrees of freedom considered is much larger. It is again clear from these values that in the new basis only
a few degrees of freedom account for most of the conformational variation.

One advantage of using the HIV-1 protease as a model system is the wealth of structural information
publicly available for this protein. It is possible to carry out the same type of dimensionality reduction
work using only laboratory-determined structures of HIV-1 protease bound to different ligands. Here, we
present results of applying PCA to x-ray crystallographic data. A similar analysis is possible using families
of structures derived from NMR data. We used 130 structures of HIV-1 protease deposited in the Protein
Data Bank. The coordinates of the different ligands bound to the structures were not included in the
calculations. The fraction of total variance represented by the most signi� cant singular values for the PCA
of the ®-carbon coordinate information using exclusively laboratory derived data is also shown in Fig. 4.
This result is similar to the result obtained from the MD data. The most signi� cant left singular vector
accounts for 30% of the total variance, and the � rst 20 account for 85%.

As a � nal validation of our method, we decided to investigate if, using the main modes of motion
de� ned by the principal components and an experimental structure bound to a particular ligand, we could
approximate the structure of HIV-1 protease bound to a different ligand. For this experiment, we were only
concerned with variations in the shape of the binding site and computed the dimensionality reduction only
for this part of the protein. We de� ned the binding site atoms as those that are part of amino acids that
touch the ligand directly in any of the x-ray structures in the PDB. A total of 266 atoms were identi� ed.
As the initial reference, we chose the same structure we used for the MD simulation, and as a target
structure, we used a complex with a large nonpeptide inhibitor (Rutenber et al., 1993) (PBD access code
1AID). The binding site conformations as well as the inhibitors bound to these are considerably different
as shown in Fig. 3. The root mean square deviation (RMSD) between the two proteins is 1.86 Å if we
take into account only the atoms that constitute the binding site.

The next step was to calculate the coordinates of the target structure in the new basis. For this, we
used the de� nition of the representation basis given by the principal components of the MD data, and
we set the origin of the space to be our reference structure. The coordinates in each of the dimensions
are given by the dot product of the atomic displacement vector and the left singular vector de� ning each
dimension. The resulting coordinates will be a solution vector of the form [w1; w2; w3; w4; : : : ; w3N ].
We can now calculate what would be the RMSD between our target structure and our low-dimensional
approximation. The approximation corresponds to [w1; 0; 0; 0; : : : ; 0] if we consider only the � rst collective
mode, [w1; w2; 0; 0; : : : ; 0] if we consider the � rst two, and [w1; w2; w3; w4; : : : ; wk; 0; : : : ; 0] if we
consider the � rst k collective modes. The RMSD results for an increasing number of collective modes are
shown in Fig. 6. When using the PCA basis, we are able to approximate the target structure to an RMSD of
less than 1 Å using 40 principal components out of a total of 798. By contrast, if we used an approximation
with a random orthonormal basis (Wolfram, 1999) de� ning the same space (shown by a broken line in
Fig. 6), we would need more that 650 principal components to obtain the same accuracy. This shows the
strength of our method in approximating other conformations of the same protein using a lower dimensional
search space and validates the effectiveness of the PCA by comparing it with an approximation carried out
using a random basis. It is also important to note that the values that we obtain for the approximation to
the target can be further improved. Currently, we are using the projection of the target structure on the new
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FIG. 6. RMSD between a reference (4HVP) and a target structure (1AID) for an approximation of the � exibility of
HIV-1 protease using an increased number of collective modes. The solid uses the collective modes basis determined
by PCA, and the broken line uses a random basis de� ning the same space.

basis to estimate a set of coordinates in the reduced space that approximate the target structure. However,
the optimal approach is to search the low-dimensional space directly to look for the best match. In this
way, we can search for alternative coordinate values along the most signi� cant principal components that
compensate for the approximation being introduced by the dimensional truncation of the representation
basis. We are currently developing search techniques for the purpose of � nding these solutions in the
reduced space.

Aldose reductase

The second model system used in our study is aldose reductase. The biological function of this enzyme is
yet not entirely known but it is believed to play a primary role in the development of severe degenerative
complications of diabetes mellitus (Larson et al., 1988). Finding new inhibitors for this protein could
potentially lessen some of the complications of diabetes. Unfortunately, just like in the case of the previous
example and like many other proteins, aldose reductase has the capacity to adjust the shape of its binding
site depending on the ligand it is binding to. A small-molecule database screen for potential ligands would
miss many potential candidates if it did not include the protein � exibility in the search process. Several
experimental structures of aldose reductase have been solved using x-ray crystallography when bound to
different ligands as well as in the unbound form. It was observed that with some inhibitors such as sorbinil
(Urzhumtsev et al., 1997), the structure is almost similar to the unbound form. For other inhibitors, such
as the tolrestat (Urzhumtsev et al., 1997) and zopolrestat (Wilson et al., 1993), there is a formation of
a speci� city pocket resulting in signi� cantly different binding site con� gurations. This conformational
change is shown in Fig. 7 where we compare the shape of the binding site for the unbound form of the
enzyme to the bound form with tolrestat. In the unbound form shown on the left of Fig. 7, there are a
series of amino acids (represented by ball-and-stick models), which come together to close the speci� city
pocket. In the presence of tolrestat (represented on the right by a van der Waals sphere model), the amino
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FIG. 7. The unbound form of aldose reductase is shown on the left while the bound from is shown on the right.
The bottom � gures zoom in the corresponding top � gures to show aminoacids whose rearrangements open a pocket
that make the binding possible.

acids at the top and bottom of the binding site separate and open the extra cavity. The movement is caused
by both side chain and backbone rearrangements.

Although there are currently 16 structures of aldose reductase deposited in the PDB, we cannot use this
data exclusively as input for the dimensionality reduction technique as we did for HIV-1 protease. The
reason is that the data does not contain much variability, as only two ligands are signi� cantly different
from the rest. In this case, we have to complement laboratory obtained structures with data obtained from
an MD simulation. This will be typically the case with most protein systems of interest for drug design,
as few structures have been determined under different sets of experimental conditions and with different
ligands. The starting structure for the MD simulation was the unbound form with PDB code 1AH4. The
MD and PCA procedures used for this example were similar to what was described above for HIV-1
protease. However, since the system is larger (315 versus 198 aminoacids for HIV-1 protease) and it is
known from crystallography observations that only the binding site region changes its shape, we decided
to apply our dimensionality reduction technique only to this region. We conservatively de� ned the binding
site to be a sphere of radius 20 Å around the center of the tolrestat speci� city pocket (see Fig. 7). This
changed the dimensionality of the input data from 3 £ 5,121 to 3 £ 2,544.

Again, as it was observed with HIV-1 protease, there is a large dominance of only a small fraction of
the left singular vectors. The 40 most dominant vectors account for 81% of the total variance (Fig. 8), with
the � rst three accounting for 22%, 11%, and 6% of the total variance, respectively. If we consider the new
reduced basis of 40 dominant left singular vectors (versus the initial 3 £ 2,544) as a representation for
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FIG. 8. Fraction of total variance represented by the most signi� cant singular values for aldose reductase dimen-
sionality reduction.

the � exibility of the binding site, we can now model on our reduced basis some of the � exibility that is
experimentally observed. For this, we calculated an approximation of the form [w1; w2; : : : ; w40; 0; : : : ; 0]
as we did for HIV-1 protease using the unbound form as the reference structure (no pocket present) and
the bound structure to tolrestat as our target (pocket is present). The RMSD for the binding site residues
represented in Fig. 9 between the bound (shown in light gray) and unbound form (shown in black) is 1.74 Å.
Using a 40 degrees of freedom approximation, we can reduce this value to 1.07 Å. From the � gure, it is
clear that we can obtain a good approximation on the residues that form the top of the speci� city pocket
with our approximate structure (shown in gray) matching almost exactly the experimental structure for the
bound form. It is important to note that the approximation is able to capture not only the movement of
amino acid sidechains, such as the rotation of the phenylalanine ring shown in the center, but also global
displacements caused by a movement at the backbone level, such as shown in the top of Fig. 9. This
contrasts with complexity reduction methods that consider the important � exibility of the protein as being
represented only by movements of sidechains and which are unable to represent induced � t conformational
changes caused by backbone movements. The bottom part of the speci� city pocket does not show a match
of similar quality but does show a trend in the right direction. In fact, the approximated structure already
displays the speci� city pocket and is large enough to accommodate ligands such as tolrestat or zopolrestat.

6. CONCLUSION

In this paper, we showed how to obtain a reduced basis representation of protein � exibility. Proteins
typically have a few hundreds to a few thousands of degrees of freedom. Starting with data obtained from
laboratory experiments and/or MD simulations, we demonstrate that we can compute a new set of degrees
of freedom which are combinations of the original ones and which can be ranked according to signi� cance.
Depending on the level of accuracy desired, the k most signi� cant of these new degrees of freedom can
be used to model the � exibility of the system. We have observed, in multiple occasions, that the reduced
basis representation retains critical information about the directions of preferred motion of the protein.
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FIG. 9. Approximation (gray) of the bound conformation (black) using the unbound conformation (light gray) as a
starting point and searching along main modes of collective motion.

It can thus be used to compute conformational rearrangements of the protein that can further be studied
for interaction with novel ligands or other proteins. Our work contributes to the better understanding of
how changes in the conformation of a protein affect its ability to bind other molecules and hence of its
function. We envision that protein databases, such as the Protein Data Bank, would be annotated in the
future with principal modes of motion for proteins allowing rapid and detailed analysis of biomolecular
interactions. This annotation would allow researchers to analyze not only the static structure of a protein
but also its motions and relations between structure, motion, and function. The process of determining
collective modes of motion could be automated using the methods described in the present work, and
the information would complement other structural databases, such as the Database of Macromolecular
Movements (Gerstein and Krebs, 1998).

In this paper, we used PCA as our dimensionality reduction technique. The results obtained are biolog-
ically meaningful. Clearly, it is worth investigating the application of nonlinear dimensionality reduction
techniques to the same problem. For example, local PCA (Kambhatla and Leen, 1997), locally linear em-
bedding (Roweis and Saul, 2000), and multilayer auto-associative neural networks (Kramer, 1991) might be
able to provide us with the same kind of information as PCA while using an even further reduced number
of degrees of freedom. The application of these dimensionality reduction methods to protein structural data
is only practical for modeling if we are able to obtain an inverse mapping from the lower to the higher
dimensional space. This mapping can in principle be obtained using machine learning techniques such as
neural networks. Carrying out this step ef� ciently is very dif� cult and constitutes an open research question.
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Preliminary work in our group indicates that some of the advantages obtained by performing a nonlinear
dimensional reduction are outweighed by an increased computational cost and a loss in accuracy due to the
approximated inverse mapping. Nevertheless, the advantage of reduced complexity in the representation of
molecular motion may justify the increased computational cost of the nonlinear dimensionality reduction
depending on the application.

All our work was done using the Cartesian coordinates of atoms in the protein. An interesting idea is to
perform the dimension reduction in the dihedral and the bond angle space of the system. The advantage of
this approach is that the initial dimensionality of the problem is reduced because given certain constraints
fewer parameters are necessary to uniquely de� ne a protein structure. The � rst constraint is that bond
lengths are � xed. At a second level of approximation, bond angles between three consecutively bonded
atoms can also be considered � xed. As such, it is possible to represent a molecular conformation using only
the set of dihedral angles corresponding to torsions around single bonds. The dimensionality of this space
is in practice approximately almost an order of magnitude smaller than the Cartesian representation. Initial
experiments showed that a dihedral angle-based analysis of conformational data is very sensitive to noise
and prone to error. We are currently investigating this problem and improving the general methodology
in order to apply the methods described in this work to a dihedral angle representation. Last but not
least, we investigate how to effectively explore conformational � exibility of a protein in the reduced basis
representation to make approximate but fairly accurate predictions for protein–protein and protein–ligand
interactions. This work could be used to predict complex effects, such as the induced � t effect during
ligand binding in a drug design study, in a computationally ef� cient manner.
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