
Abstract

Global climate change and its impact on human life has become one of our era’s greatest challenges. Despite the
urgency, data science has had little impact on furthering our understanding of our planet in spite of the abundance
of climate data. This is a stark contrast from other fields such as advertising or electronic commerce where big data
has been a great success story. This discrepancy stems from the complex nature of climate data as well as the scientific
questions climate science brings forth. This article introduces a data science audience to the challenges and oppor-
tunities to mine large climate datasets, with an emphasis on the nuanced difference between mining climate data
and traditional big data approaches. We focus on data, methods, and application challenges that must be addressed
in order for big data to fulfill their promise with regard to climate science applications. More importantly, we
highlight research showing that solely relying on traditional big data techniques results in dubious findings, and we
instead propose a theory-guided data science paradigm that uses scientific theory to constrain both the big data
techniques as well as the results-interpretation process to extract accurate insight from large climate data.

Introduction

Over the past few decades, the Internet has democratized

the creation, access, and analysis of large datasets. As data continue

to grow in size and complexity, new algorithms have been de-

veloped to learn from eclectic data sources—algorithms that au-

tonomously identify patterns with minimal human input. These

developments have led the field of data science to firmly enter the

mainstream. In the midst of data science’s democratization, global

climate change has quickly become one of our era’s most pressing

issues. A lot remains to be understood about our planet and the

physical processes that govern it to effectively answer questions

about global climate change and its societal impacts. It has been

proposed that given the abundance of climate data from model

simulations, Earth-orbiting satellites, and in situ observations, we

may close some of these knowledge gaps by directly learning from

these large climate science datasets. However, Earth is a complex

dynamical system like none we have studied before. As a result,

big data–induced progress within climate science has been

slower compared with big data’s success in other fields such as

biology or advertising. The slow progress has been vexing given

that climate science has become one of the most data-rich

domains in terms of data volume, velocity, and variety.1

This article discusses some of the major big data challenges

researchers face when mining climate data and how being

mindful of such intricacies can have a significant impact on a

socially relevant and commercially viable domain. We will use

examples from existing research in climate and data science to

demonstrate and discuss key concepts, with the goal of pre-

paring a new generation of data scientists with the tools

and processes for data science to have the highest impact on

momentous challenges facing our society due to climate

change.
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The Climate System: A Data Science
Perspective

Climate science is the study of our planet’s environment. Our

planet is a splendid example of a complex, dynamic system in

perpetual motion to balance energy and sustain its habitable

environment. Fundamentally, climate science is a field fo-

cused on studying large-scale changes in the land, atmo-

sphere, oceans, and cryosphere over long temporal periods

(years, decades, centuries), although some consider shorter

(weather) time scales such as days or weeks to also be part of

studying climate. Figure 1 shows a more complex view of the

climate system. The interacting parts of the system range from

micrometer-sized particles and aerosols to large-scale changes

in the land surface. What is not evident from Figure 1 is a

notion of the temporal scales at which these interactions occur.

Some interactions might last hours or days—such as the in-

fluence of sea surface temperatures on the formation of a

hurricane—while other interactions might occur over several

years (e.g., ice sheets melting). Thus, not only is it important to

know the interacting parts of the system, but we must also

understand the spatiotemporal scales at which they interact.

Monitoring these constantly evolving planetary processes is

critical for us to understand what drives the above-mentioned

interactions and how they might change if the planet con-

tinues to warm. The idea is to understand what drives certain

planetary processes and then project any changes in these

processes if some of the drivers changed (e.g., because of

increased greenhouse gas emissions).

On the surface, such predictive modeling and causal inference

are common exercises in traditional data science. So why is

data science’s impact on climate science lagging that of other

domains? There are three major factors that have slowed

progress. First, the data that climate science uses violate many

of the assumptions and practices held in traditional data science.

For example, the majority of climate data are organized in a

spatiotemporal grid. As such, the data are auto-correlated where

regions in spatial or temporal proximity tend to be highly re-

lated. Hence, any methods that impose independence assump-

tions among data points will have limited practicality with such

data. Second, the field of data science has historically focused on

certain tasks and evaluation metrics2 that are not applicable to

some of climate science’s biggest needs. Finally, and this is only a

matter of time, climate science, its data, and challenges have not

been exposed to the broader data science community until re-

cently. However, since the early efforts on this topic,3–7 the body

of work has been steadily increasing. These efforts have been

boosted by new interdisciplinary centers such as the National

Science Foundation (NSF)–funded center on understanding

climate change from data at the University of Minnesota8 and

the Center for Atmosphere Ocean Science of the Courant In-

stitute of Mathematical Science at New York University and

the growing communities of computational sustainability9 and

climate informatics.10

FIG. 1. Schematic view of the components of the global climate system (bold), their processes and interactions (thin arrows), and some
aspects that might change due to global warming (bold arrows). Some of these components have reliable datasets, while others don’t. This
figure does not show the various temporal time scales at which these processes interact. The multiple spatiotemporal scales at which
components of the climate system interact make a data-driven study of climate extremely challenging. Figure from Intergovernmental Panel
on Climate Change (IPCC).38
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In the following sections, we will demonstrate these chal-

lenges in more detail. Specifically, we will discuss challenges

and opportunities from a data and methods perspective to

provide data scientists a complete picture of mining climate

datasets.

Data Challenges

It goes without saying that the data are the wind that propels

any data science expedition. In fact, exploratory data analysis

to understand the data’s variability and intricacies is the first

step most big data practitioners take before unleashing their

arsenal of data mining techniques. This is especially critical in

climate science, where data scientists are far removed from

the data collection process. Climate data sources span across

four diverse sources: in situ, remote sensed, model output,

and paleoclimatic.11 Each data source has its set of advan-

tages, limitations, and appropriate uses that must be under-

stood before any data-driven exploration. Table 1 highlights

each data source with a key strength and weakness. For a

more elaborate discussion of climate data sources, please see

Faghmous and Kumar (2013).11

Continuously changing data
Despite having an abundance of

data, the climate science commu-

nity faces the significant challenge of

dealing with a continuously chang-

ing observing system.12 Just like Goo-

gle’s search engine algorithm goes

through changes, so do the instru-

ments and algorithms used to mon-

itor and process observational data,

especially for satellites and other

remote sensing tools. Changes in

instruments and data processing al-

gorithms put into question the ap-

plicability of such data to study long-term climate. For

example, tropical cyclones or hurricanes have been routinely

observed since the mid-1940s. Similarly, we have an abun-

dance of climate data spanning the same period.

One application of interest to the scientific community as

well as society at large is the ability to predict seasonal tropi-

cal cyclone counts using large-scale environmental variables.

However, before satellite monitoring became routine in the

late 1970s, tropical cyclones were prone to be missed if they were

not observed through landfall, a ship, or airplane reconnais-

sance.13,14 Thus, there is an upward trend in the total number of

tropical cyclones in the Atlantic, but it is unclear if it is due to

changes in the observational system or due to climate change.15

Data empathy
One prerequisite to any big data endeavor is data, lots of

them. Requiring large amounts of data has two major draw-

backs: first, the prerequisite of an abundance of information is

contrary to the way humans learn. In nature, humans learn

with relatively small sample sizes of unlabeled data. Yes, the

stimuli might be large (e.g., through the five senses); however,

the exposures or samples needed for learning tend to be small.

Second, with large datasets where one measures anything and

everything, it can be difficult to understand how that data

were collected and for what purpose.

Every dataset has a story, and understanding it can guide the

choice of suitable analyses; some have labeled this data un-

derstanding as data empathy. The reason for understanding

where the data come from is twofold: first, understanding how

the data are generated, their purpose, and generation pro-

cesses will guide your investigation. Second, understanding

the inherent biases in the data gives you a chance to correct

them or adjust your results and recommendations.

For example, one of the most widely used datasets in machine

learning is the mushroom dataset from the UCI reposi-

tory. This dataset is commonly used to demonstrate a basic

classification problem of predicting whether a mushroom is

edible (i.e., poisonous or not) based on some physical fea-

tures. The dataset comes with two labels, ‘‘poisonous’’ and

‘‘not poisonous’’; however, reading the dataset’s description,

we find that ‘‘Each species is identified as definitely edi-

ble, definitely poisonous, or of un-

known edibility and not recommended.

This latter class was combined with

the poisonous one’’ (see https://archive

.ics.uci.edu/ml/datasets/Mushroom).

Thus, the data originally had three

classes that were collapsed into two.

In this particular case, the best mod-

els are, therefore, guaranteed to yield

false positives, where a mushroom is

labeled as poisonous while it is not.

But consider the disastrous impact

if these uncertain mushrooms were

merged with the nonpoisonous class instead.

Climate data are routinely postprocessed for easy use. Figure

2 shows raw satellite data for sea surface height, along with

Table 1. List of Climate Data Sources

with the Temporal Coverage of Each Data Source

Key strength Key weakness

Climate model Ability to run forward
simulations

Relies solely on
physics

In situ
observation

Direct observations Spatial bias

Satellite Global coverage Lack of continuity
as missions last
on average 5 years

Paleoclimate Ability to use proxy data
to infer preindustrial
climate trends

Techniques to
analyze such data
are still evolving

‘‘CHANGES IN INSTRUMENTS
AND DATA PROCESSING
ALGORITHMS PUT INTO

QUESTION THE APPLICABILITY
OF SUCH DATA TO STUDY

LONG-TERM CLIMATE.’’

Faghmous and Kumar
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the postprocessed product available to the public. Such heavy

postprocessing will lead to biases in the data, and any analysis

must appropriately identify how such biases might manifest

in the results. Luckily, the Climate Data Guide16 (http://

climatedataguide.ucar.edu), a project funded by the U.S.

National Science Foundation, can be a resource to big data

practitioners. The Climate Data Guide serves as a commu-

nity-authored guide for climate datasets. The guide contains

over 100 Earth Science-related data-

sets with additional information such

as common uses and a list of peer-

reviewed publications that used the

data.

Short observational record
Another challenge with climate data

is availability. Some datasets span only

a decade or less. Although the data

might be large—for example, high

spatial resolution but short temporal

duration—the spatiotemporal ques-

tions that we can ask from such data

are limited. One study in the journal

Science17 connected changes in sea

surface temperatures in the Pacific

and North Atlantic to changes in forest fires in the Amazon.

The study found that the sea surface temperatures thou-

sands of miles away had a 0.9 correlation with forest fires in

certain regions of the Amazon. However, the duration of the

fire record only spanned 10 years, and these correlations

were between time series of length 10. Hence, even these

high correlations could occur by random chance and must

be scrutinized further.

Heterogeneity
Another data challenge is heterogeneity. The Earth system is

composed of numerous interacting variables that guide its

climate. Different key variables are monitored using various

technologies, and some might not be observed at all. One

attempt to quantify the most important Earth science vari-

ables is the 50 essential climate variables (ECVs), each of

which has its own biases. For example, variables that rely on

ground stations might be subject to spatial bias or have to be

moved frequently because of sociopolitico events on the

ground. Other ECVs might come from satellites whose mis-

sions generally last 5 years, where understanding how the

records of the same dataset relate to each other is a significant

challenge to a continuous record. From a data science per-

spective, it is important to be aware that although these data

originate from disparate sources,

they are still part of the same sys-

tem and are inexorably related. One

data-centric challenge is how to merge

data from heterogeneous sources that

are complimentary yet possibly re-

dundant.

Data representation
Traditional data science, and ma-

chine learning specifically, has relied

on attribute-value data as input to

most learning models.2 However,

numerous climate phenomena can-

not be represented in attribute-

value form. For example, a hurricane

is an evolving pattern over a sig-

nificant spatiotemporal span. Thus, one cannot represent a

hurricane with a binary value as it does not simply appear

and then disappear. Instead, a storm gradually gains strength,

plateaus, and gradually dissipates. Such spatiotemporal evo-

lutionary processes are well captured by the differential equa-

tions used in climate models, but there is a need for similar

abstractions within broader data science.

One data representation that has gained popularity is the

notion of a ‘‘climate network.’’ In general, nodes in the cli-

mate network are geographical locations on the grid, and the

edge weights measure a degree of similarity between the be-

haviors of the time series that characterize each node (linear

correlation,6,18 mutual information,19 synchronization,20 etc.)

However, such network-based representation of climate data

needs significant advances. First, most of these representations

‘‘FROM A DATA SCIENCE
PERSPECTIVE, IT IS

IMPORTANT TO BE AWARE
THAT ALTHOUGH THESE DATA
ORIGINATE FROM DISPARATE

SOURCES, THEY ARE STILL
PART OF THE SAME SYSTEM

AND ARE INEXORABLY
RELATED.’’

FIG. 2. An example of raw and postprocessed satellite data. (Left) Along-track satellite observations of sea surface height from the JASON-II
satellite for May 20, 2010. (Middle) A 12-day composite of five satellites centered on May 20, 2010. (Right) The postprocessed data from
May 20, 2010. The altimeter products were produced by Ssalto/Duacs and distributed by AVISO, with support from CNES (www.aviso
.oceanobs.com/duacs/).
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assume single-variable networks, while the climate system is a

multivariate one. Thus, there is a need for novel methods that

are able to summarize the interac-

tions of several climate variables

across space and time. Second, these

‘‘data assimilation’’ methods must

consider the heterogeneous nature

of the data. Each variable in the

analysis might have different origins

and biases. Finally, the study of

networks in a variety of applications

assumes static networks, with some

notable exceptions.21 In climate,

however, there needs to be an intu-

itive framework to construct spatio-

temporal networks. The most common methods currently

construct networks for each time slice and then analyze

them separately. Such a framework generates unstable net-

works across time due to noisy data as well as the sensitive

methods used to construct networks. Finally, there is a need

to develop novel network analysis methods for physical sci-

ences. The majority of network analyses in climate rely on

network characteristics derived from mathematics and other

domains, which might not be suitable for the application at

hand.

Methods Challenges

Traditionally, many data-driven explorations tend to boil down

to regression or classification. However, the focus of climate

science is more about understanding than predicting. Yes,

there is interest in predicting individual events, but a greater

focus remains on a system-level view rather than individual

events. This difference comes with two consequences: First,

there is a greater emphasis on model interpretability rather

than model flexibility. Thus, ‘‘black box’’ models that tend

to do very well in regression or classification tasks are not

adopted because their accuracy cannot be related back to

physical processes. Second, existing data science conventions

have focused on a narrow form of data representation that

does not abstract spatiotemporal phenomena. This means

that the way the data are represented relies heavily on

attribute-value representation without any notion of con-

textual information (in space or time). This representation

was reinforced by the popularity of the UC Irvine Machine

Learning repository—a set of small public datasets that re-

searchers developing novel learning algorithms could use to

test their methods. However, not all problems lend them-

selves to a set of attributes that are generally assumed to be

independent. Finally, the spatiotemporal nature of the data

presents unique challenges.

The spatiotemporal nature of climate data emerges in the

form of auto- and cross-correlation between input variables.

Therefore, existing learning methods that make implicit or

explicit independence assumptions about the input data will

have limited applicability to the climate domain. For ex-

ample, pattern mining—the task of autonomously extracting

interesting patterns from data—

is challenging because, in auto-

correlated spatiotemporal fields, the

data tend to be smooth and fea-

ture boundaries become blurred. In

relationship mining, where we are

interested in finding significant

relationships between datasets, the

autocorrelation makes such that nu-

merous regions tend to be highly

correlated due to proximity in

space and time.

Sample bias
Sampling bias is the case when you shortchange your

model by training it on a biased or nonrandom dataset,

which results in a poorly generalizable hypothesis. One of

the most common examples of this bias happens when as-

sessing startup success. Numerous business courses rely on

‘‘case studies’’ of successful companies. Such case studies ac-

tually depict the anomalies and not the norm as most com-

panies fail—for every Apple that became a success, there were

1000 other startups that died trying. To build an accurate data-

driven exploration, we must build our models with samples

from all populations.

For example, Johns et al.22 investigated the genesis conditions

of tornadoes by monitoring two environmental conditions:

wind shear and convective available potential energy (CAPE).

The authors analyzed the wind shear and CAPE associated

with 242 tornado cases and fit a model to these data. From a

data science perspective, a shortcoming of this study is that it

failed to sample wind shear and CAPE values when tornados

did not occur. In order for a model to separate between

positive (tornados) and negative (no tornados) events, it

must be trained using both populations.

However, sampling negative events, especially for climate

extremes, is no trivial task. This is because there is a severe

class imbalance between positive and negative events since the

majority of the time can be considered a negative event.

Problem definition challenges
A great advantage traditional data science has is the clear

definition of learning tasks (regression, classification, etc.). In

climate science, however, objective function can be harder to

define. For example, one of the most feared impacts of global

climate change is drought. Yet, the very notion of a drought is

ambiguous from a data-driven perspective. First, there are

numerous types of droughts: agricultural, metrological, and

hydrological.23 However, in general, droughts may be defined

as ‘‘the prolonged absence, or marked deficiency, of pre-

cipitation.’’24 Second, even if we can agree on a definition,

how to represent such ‘‘deficiency’’ is unclear. For instance,

‘‘THE SPATIOTEMPORAL
NATURE OF CLIMATE DATA
EMERGES IN THE FORM OF

AUTO- AND CROSS-
CORRELATION BETWEEN

INPUT VARIABLES.’’

Faghmous and Kumar
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droughts may be quantified in absolute or relative terms,

and depending on which data representation is chosen, one

might arrive at different conclusions. Two recent studies

published in Nature Climate Change25 and Nature26 came to

opposing conclusions about whether there are noticeable

changes in drought trends as a result of climate change. One

study23 further highlighted the disparate results by pointing

out (among other reasons) that each study relied on a dif-

ferent precipitation dataset. There are other instances where

two studies used the same data but arrived at opposing

conclusions. When examining the changes in sea surface

temperatures and hurricane occurrences, one study27 found

that the observed hurricane trends were just part of larger

oscillations, whereas another study15 concluded that hurri-

cane counts were increasing along with sea surface temper-

atures. In this case, both groups used the same data but

instead relied on different data analysis techniques to arrive at

opposing conclusions.

Evaluation challenges
Data-driven methods generally focus on optimizing objective

metrics to quantify the performance of an algorithm: reve-

nue, churn rate, classification error, etc. However, the fo-

cus on abstract quantities such as these makes it hard to

apply these methods to climate where the emphasis is more

about understanding than mere statistical accuracy. In other

words, there is a fundamental difference between the objec-

tive functions in climate science and broader data science.

This is especially true when it comes to translate model per-

formance to impact. In business, one can easily tie a low

misclassification rate to some business bottom line—an X%

decrease in classification error would

result in Y% increase in up-sell dol-

lars. However, it is less clear how

much an increase or decrease in

root-mean-square error would im-

pact climate phenomena, much less

societies on the ground.

From predictions to causal
inference
The most common success stories of

big data revolve around predictions:

predicting your new favorite movie

or dish, predicting if your marriage

will last, etc. Often times in our quest

for accuracy, little concern is given to

why the models are accurate as long as they provide some

predictive skill. This focus on prediction accuracy biases an-

alyses to more complex statistical models, but as models

become more complex, it becomes harder to understand why

they are skillful, and they rarely yield insight into the

mechanisms that drive phenomena. We need better models to

determine causal inference and will require a trade-off be-

tween model flexibility and model interpretability.

Theory-Guided Data–Driven Applications
in Climate Science

Advances in data science, the growth of datasets, and virtu-

ally no (computational) barriers to the analysis of such

data gave rise to the notion that any problem with a clear

objective function can be solved given sufficient data. There

will be no need for domain expertise or subjective interpre-

tation since there are enough data to tell the full story. This

big data narrative gained common acceptance in mainstream

culture and data sciences. Such a narrative became so pop-

ular that a 2008 article in Wired Magazine went as far as

declaring big data as ‘‘The End of Theory,’’28 where data

would speak for themselves when present in sufficiently large

quantities.

What we have learned since the Wired article is that unsu-

pervised big data analysis is a tool, and like any tool, it is

prone to misuse. Consider Google Flu Trends, once consid-

ered big data’s poster child. In 2009, a team of Google re-

searchers reported in the journal Nature29 that by analyzing

flu-related queries coming into its search engine, it can ac-

curately detect flu outbreaks quicker than the Centers for

Disease Control and Prevention. This story gained mass appeal

because of its narrative: an innovative and agile Internet

company was faster and better at detecting a serious public

health concern than an outdated and bureaucratic agency

and its army of domain experts. Unfortunately, Google Flu

Trends’ success (and story) did not withstand the test of

time. A 2014 study30 found that, for consecutive years,

Google made more bad predictions than good ones. Ac-

cording to the study’s authors, the

drop in accuracy was due to the

system’s overreliance on search

queries, which depend on Google’s

ever-changing search engine algo-

rithm. As a result, the data that were

collected at different times had dif-

ferent purposes, causes, and inter-

pretations. There are two lessons

from this cautionary tale. First, any

data-driven discovery is inexorably

linked to the quality of the data,

their source, and sampling biases.

Second, when the size and com-

plexity of the data become so large,

common problems in ‘‘little data,’’

such as statistical significance, don’t magically disappear; they

come back with a vengeance.

More broadly, the two most common perils of big data an-

alytics when it comes to scientific domains deal with the

methods used and the means by which results are inter-

preted—and they share a common thread: disregard for

common domain knowledge. From the method’s perspective,

‘‘DATA-DRIVEN METHODS
GENERALLY FOCUS ON
OPTIMIZING OBJECTIVE
METRICS TO QUANTIFY
THE PERFORMANCE OF

AN ALGORITHM: REVENUE,
CHURN RATE, CLASSIFICATION

ERROR, ETC.’’
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some of the most popular data analysis techniques are ill-

suited to analyze noisy, heterogeneous, and autocorrelated

data that are found in climate and other sciences. Thus, while

these methods will certainly produce output, they may rarely

yield insight. The riskier offense is that of interpreting such

output using a theory-free mindset. The big data scientist

should be cautioned to interpret any results within the known

theories of the application domain.

As a result, big data analytics should

not be seen as the ‘‘silver bullet’’ of

modern research and must be used

in addition to other tools lest we

misuse them. What is needed is the

development of data-driven meth-

odologies that are guided by theory

to constrain search, discover more

meaningful patterns, and produce

more accurate models.

While the need to study our planet

will most certainly spur numerous

data science innovations, we believe

that the highest impact change will

occur when we remove the emphasis

on differentiating between data-driven and hypothesis-driven

or theory-driven research. Recently, an increasing number of

studies have shown that employing one approach over the

other would yield limited results. On the one hand, a hy-

pothesis-driven research agenda will run into problems when

there is not sufficient theory to explain certain phenomena.

For example, we do not have a clear theory about how forest

fires will evolve if the planet continues to warm. Thus, a

theory-driven investigation will likely produce limited insight

on that topic. On the other hand, focusing solely on statistical

accuracy without any regard to climate science theory may

return physically implausible results that have no practical

use to the domain scientist.

What is needed is an approach that leverages the advances in

data-driven research yet constrains both the methods and the

interpretation of the results through tried-and-true scientific

theory. Thus, to make significant contributions to climate

science, new data science methods must encapsulate domain

knowledge to produce theoretically-consistent results. For

example, where selecting a statistical model, one should dis-

card distributions that are inconsistent with the physics that

guide the climate system.

In addition to constraining big data methods (e.g., regres-

sion), we must also interpret any statistical model output

from a theoretical perspective as well. As an illustrative ex-

ample, take the Science study that linked changes in sea sur-

face temperatures to forest fires in the Amazon.17 What

makes it different from the Google Flu Trends study is that

the link between sea surface temperatures and fires was not

solely based on the 0.9 correlation between a length-10 time

series. Instead, the authors were able to explain a physically

plausible mechanism that would lead sea surface tempera-

tures to impact dryness, and as a result, forest fires several

months later. If it were only for the data-driven insight, the

study would not be plausible enough.

Here we highlight some other examples of theory-guided data

science with climate applications.

Faghmous et al.31 showed that large-

scale pattern mining algorithms can

discover false patterns if not con-

strained by basic theoretical facts. In

their study, the authors developed

an unsupervised method to identify

coherent rotating structures in the

ocean known as ocean eddies. There

were several existing methods that

identified eddies, including one set

of results that were published in the

journal Science.32 However, the pat-

terns identified were not analyzed

based on a simple physical fact that

eddies are theoretically axisymmet-

ric Gaussian features33 with a single

extremum (maximum or minimum). This physical consis-

tency constrained a simple pattern-mining algorithm to pro-

duce more accurate features compared to methods that

routinely merge eddies and could be identified as features

with two or more extrema.

In a relationship mining application,34 scientists attempted to

automatically identify the various climate variables that are

currently observable and are good predictors of simulated

increases in global temperatures if CO2 levels in the atmo-

sphere were to double (known as equilibrium climate sensi-

tivity). To identify such variables, the researchers set up a

search space comprised of 41,741 vectors representing data

from various spatiotemporal scales. The authors showed that

although many of the candidate vectors were identified as

skilled predictors using traditional significance testing

methods, all of the potential 41,741 relationships were not

statistically significant once they accounted for dependence

between models, variables, locations, and seasons. Thus, any

high statistics observed were found to be explainable by

chance, showing that without a physically consistent hy-

pothesis, testing would yield misleading results.

Finally, within predictive models, it has been shown both

theoretically35 and in practice36 that theory-agnostic models

generalize poorly to unseen data despite being highly accu-

rate on observed data. As a result, methods that fit the data

without any regard to the underlying physical dynamics that

constrain and produce the observations can lead to a ‘‘non-

physical finite time blow-up and large time instability in

statistical solutions.’’35 Ganguly et al.37 provide another ex-

ample of this paradigm in the context of climate extremes.

‘‘WHAT IS NEEDED IS THE
DEVELOPMENT OF DATA-
DRIVEN METHODOLOGIES

THAT ARE GUIDED BY THEORY
TO CONSTRAIN SEARCH,

DISCOVER MORE
MEANINGFUL PATTERNS,

AND PRODUCE MORE
ACCURATE MODELS.’’

Faghmous and Kumar
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Conclusion

Climate science is one of our era’s greatest challenges because

of the danger it poses to our planet. It also presents a tre-

mendous opportunity for big data research since climate

science brings forth novel data, methods, and evaluation

challenges. However, big data analytics alone are not enough

to insightfully and accurately explore climate data. There is a

need for theory-guided data science methods that blend the

power of big data analytics with the caution of scientific

theory and first principles.
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