

Cahsai, A., Anagnostopoulos, C. and Triantafillou, P. (2015) Scalable data

quality for big data: the Pythia framework for handling missing values. Big

Data, 3(3), pp. 159-172. (doi:10.1089/big.2015.0002)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/109175/

Deposited on: 20 August 2015

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1089/big.2015.0002
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Scalable Data Quality for Big Data:
The Pythia Framework for Handling Missing Values

A. Cahsai, C. Anagnostopoulos, P. Triantafillou
School of Computing Science

University of Glasgow, G12 8QQ, Glasgow, UK
a.cahsai.1@research.gla.ac.uk; christos.anagnostopoulos@glasgow.ac.uk;

peter.triantafillou@glasgow.ac.uk

ABSTRACT
Solving the missing-value (MV) problem with small estima-
tion errors in large-scale data environments is a notoriously
resource-demanding task. The most widely used MV im-
putation approaches are computationally expensive because
they explicitly depend on the volume and the dimension of
the data. Moreover, as datasets and their user community
continuously grow, the problem can only be exacerbated. In
an attempt to deal with such problem, in our previous work
[1], we introduced a novel framework coined Pythia, which
employs a number of distributed data nodes (cohorts), each
of which contains a partition of the original dataset. To
perform MV imputation, the Pythia, based on specific ma-
chine and statistical learning structures (signatures), selects
the most appropriate subset of cohorts to perform locally a
Missing Value substitution Algorithm (MVA). This selection
relies on the principle that that particular subset of cohorts
maintains the most relevant partition of the dataset. In ad-
dition to this, as Pythia uses only part of the dataset for
imputation and accesses different cohorts in parallel, it im-
proves efficiency, scalability and accuracy comparing against
a single machine (coined Godzilla), which uses the entire
massive dataset to compute imputation requests. Although
this paper is an extension to our previous work, we particu-
larly investigate the robustness of the Pythia framework and
show that the Pythia is independent from any MVA and sig-
natures construction algorithms. In order to facilitate our
research, we considered two well-known MVAs (namely K-
nearest neighbor and expectation-maximization imputation
algorithms) as well as two machine and neural computa-
tional leaning signature construction algorithms based on
adaptive vector quantization and competitive learning. We
prove comprehensive experiments to assess the performance
of the Pythia against Godzilla and showcase the benefits
stemmed from this framework.

Categories and Subject Descriptors: H. Information
Systems; I.5.3 Clustering.

Keywords: Big data; Scalability; Missing values; Impu-

.

tation; Adaptive vector quantization; Self organizing maps;
Adaptive resonance theory.

1. INTRODUCTION
Data quality is a major concern in big data processing and

knowledge management systems. One relevant problem in
data quality is the presence of missing values (MVs). The
MV problem should be carefully addressed, otherwise bias
might be introduced into the induced knowledge. Common
solutions to the MV problem either fill-in the MVs (impu-
tation) or ignore / exclude them. Imputation entails a MV
substitution algorithm (MVA) that replaces MVs in a dataset
with some plausible values.

On the one hand, most computational intelligence and ma-
chine learning (ML) techniques (such as neural networks and
support vector machines) fail if one or more inputs contains
MVs and thus cannot be used for decision-making purposes
[2]. Furthermore, the choice of different MVAs affects the
performance of ML techniques that are subsequently used
with imputed data [3]. On the other hand, the MV problem
abounds: it can be found, for instance, in results from medi-
cal experimentation and chemical analysis, in datasets from
domains such as meteorology and microarray gene monitor-
ing technology [6], and in survey databases [7]. MVs can
occur e.g., due to wireless sensor faults, not reacting experi-
ments, or participants skipping survey questions. Industrial
and research databases include MVs [8], e.g., maintenance
databases have up to 50% of their entries missing [9]. Pa-
tient records in medical databases lack some values; inter-
estingly, a database of patients with cystic fibrosis missing
more than 60% of its entries was analyzed in [10]. Moreover,
gene expression microarray data sets contain MVs, making
the need for robust MVAs apparent, since algorithms for
gene expression analysis require complete gene array data
[11].

Motivations. Given the significance of MVAs, three
notes are in order: Firstly, MVAs which can ensure low
estimation errors are computationally expensive and typi-
cally their performance is largely dependent on dataset sizes
and on the data dimension. Secondly, nowadays, datasets
can be massive. Even worse, existing datasets grow signifi-
cantly with time; it is not surprising that most MVAs in the
literature are typically tested over small-to medium sized
datasets. Lastly, as if the scalability limitations imposed by
dataset sizes were not enough, in many applications the user
community (e.g., in shared scientific datasets in data centers
accessed by scientists from all over the world) can be very
large and thus the MV imputation input arrival rates can

become high as well. These facts pose a scalability night-
mare.

The scalability gospel (as established by the seminal work
from Google researchers producing the Map-Reduce (MR)
[12] data-access paradigm and systems such as the Google
File System [13]) rests on the notion of scaling out: that is,
(i) employ a large number of commodity (off-the-shelf and
thus inexpensive) machines, each storing a much smaller par-
tition of the original dataset, and (ii) access them in parallel.

However, MR is not a panacea, for the following rea-
sons. First, not all complex problems are ‘embarrassingly
parallelizable’ and amenable to MR techniques. In particu-
lar, there exist MVAs coming with small imputation errors,
which are not MR-able [14]. The MVAs are basically (com-
plex) statistical and machine learning algorithms like the ex-
pectation maximization imputation algorithm [20] and the
sequential multivariate regression imputation [19] algorithm.
Such algorithms are based on iterative processes, i.e., the
MR scheme needs to process data again and again. In such
MVAs, the intermediate processes need to communicate to
each other and possibly processing requires lot of data to be
shuffled over the network of distributed data nodes. In ad-
dition, when the Map phase generates too many keys, then
sorting takes for ever. Moreover, it’s not always straight
forward to implement any potential ML-based imputation
algorithm as a MR program [14]. Further, MR does not ef-
ficiently handle streaming MV imputation requests. Since
the Map output stream it is not kept into the memory, this
will be inefficient especially when dealing with a high rate
of MV imputation requests. In the context of MVAs, even
if they were ‘embarrassingly parallelizable’, not all parti-
tions may be relevant. Specifically, given the fact that a
number of machines are involved for locally executing the
MVAs, the entire massive dataset is partitioned into smaller
datasets distributed onto the machines. This dataset parti-
tioning is simple in the sense that each data node contains
a unique, non-overlapping subset of the entire dataset. It
may very well be the case that a number of the machines
hold data that cannot help (or even hurt) in the MV im-
putation process. And, obviously, engaging only a fraction
of all machines will introduce large benefits: First with re-
spect to performance. MV imputation will be shorter, as
these times typically depend on the worst performing ma-
chine and with increasing machine numbers the probability
of a mall-performing machine increases. Further, overall MV
imputation throughput will be higher, as each imputation
will be taxing fewer overall system resources (processors,
communication bandwidth and disks). Second, with respect
to MV estimation errors. In fact, as we shall formally show
later, engaging all machines and their dataset partitions may
actually introduce large additional MV estimation errors.

Goals. In this work, we will consider a stream of MV
imputation requests, hereinafter referred to as inputs. An
input is a multi-dimensional vector with some MVs in cer-
tain dimensions, arriving at a data system. Typically, the
system is presented with a batch of data items with MVs,
which must be added to the system after MVs have been
estimated. It is worth noting in this case that, in order to
trace back imputed MVs in the system, each imputed in-
put is accompanied with an imputation meta-data vector
containing the dimension index of each estimated/imputed
value. Through this meta-data flagging technique, the sys-
tem makes clear what values are real values or imputed ones.

From a data management viewpoint, this enables the system
to ensure that the stored data maintain integrity by clearly
flagging MVs as an important operation and legal matter.

There are two system alternatives to impute the MVs.
The first is based on employing a single machine which stores
the whole of the dataset. We affectionately call this ma-
chine Godzilla. Godzilla can employ any MVA to perform
the MV imputations. As motivated earlier, this approach
suffers from several disadvantages. The second alternative
employs a (potentially large) number of machines, referred
to as cohorts, each storing a partition of Godzilla’s dataset.
Each cohort stores a unique and non-overlapping subset of
the massive Godzilla’s dataset. Imputation execution en-
gages cohorts in parallel, whereby each cohort runs an MVA
on a much smaller local dataset. This can introduce dra-
matic performance improvements. As an illustration, let us
assume 50 cohorts and an MVA operating on a dataset of
size n with asymptotic complexity O(n2), or O(n3) [4], [6].
A scale-out execution is expected to speedup input process-
ing by a factor of 502 = 2, 500 (or 503 = 125, 000) as such
MVA runs in parallel on a dataset of size 1

50
n. Moreover,

this alternative affords the possibility of accessing only a
subset of all cohorts for a given input.

The formidable challenges here entail: (i) for data accu-
racy (estimation-error) reasons, we should ensure that the
subset of cohorts contacted achieve similar, if not smaller es-
timation errors, compared to the errors that Godzilla would
yield; (ii) swiftly determine cohort to engage per imputation,
achieving large efficiency/scalability gains.

2. BACKGROUND & RELATED WORK

2.1 Missing data
Assume a data set X of d-dimensional data points with

some MVs on a certain dimension Xi. Data on Xi are said
to be missing completely at random (MCAR) if the proba-
bility of MV on Xi, q, is unrelated to the value of Xi itself
or to the values of any other dimensions. If data are MCAR,
a reduced sample of X will be a random sub-sample of X ;
MCAR assumes that the distributions of MVs and complete
data are the same. Data on Xi are said to be missing at
random (MAR) if q depends on the observed data, but does
not depend on the MV itself. In MAR, the dimension as-
sociated with MVs has a relation to other dimensions, i.e.,
MVs can be estimated by using the complete data of other
dimensions. Data on Xi are missing not at random (MNAR)
if q depends on the MVs and, thus, imputation is not per-
missible in this case.

2.2 Related work
Missing data hinder the application of many statistical

analysis and ML techniques available in off-the-shelf soft-
ware. To analyze X with MVs, certain MVAs have been
proposed [15]. The simplest method is discarding the data
points with MVs or removing the corresponding dimensions.
Both removals of such points and dimensions result in de-
creasing the information content of X and are applicable
only when (i) X contains a small amount of MVs, and (ii)
the analysis of the remaining complete points will not be
biased by the removal. There are many MVAs varying from
näıve methods, e.g., mean imputation, to some more robust
methods based on relationships among dimensions. In the
dummy variable adjustment, MVs are set to some arbitrary

value. The mean / mode imputation replaces MVs of a di-
mension by the sample mean / mode of all observed values
of that dimension. In hot deck MVA [16], a MV is filled in
with a value from an estimated distribution w.r.t. X . In
the K-nearest neighbors MVA [17], the MVs of a point are
imputed considering the K most similar (observed) points
from X . The regression- and likelihood-based MVAs are in-
troduced in [18]. In regression-based imputation [19], the
MVs of a point are estimated by regression of the dimen-
sions corresponding to MVs on the dimensions associated to
the observed values of that point. This approach argues that
dimensions have relationships among themselves; if no rela-
tionships exist among dimensions in X and the dimensions
corresponding to MVs, such MVA will not be precise for im-
putation. Likelihood-based imputation [18] is based on pa-
rameter estimation in the presence of MVs, i.e., X ’s param-
eters are estimated by maximum likelihood or maximum a
posteriori procedures relying on variants of the Expectation-
Maximization algorithm. The multiple imputation MVA
[20], instead of filling in a single value for each MV, re-
places each MV with a set of plausible values that represent
the uncertainty about the actual value to impute. These
multiply-imputed datasets are then analyzed by using stan-
dard procedures for complete data and combining the re-
sults from these analyses. In case of MVs in time series, the
models in [21] (using dynamic Bayesian networks), [22] (us-
ing matrix completion), and [23] (using Gaussian mixtures
clustering) recover MVs in motion capture sequences, vital
signs, and micro-array gene expression streams, respectively.
Furthermore, ML-based MVAs, e.g., decision-trees and rule-
based methods, generate a model from X that contain MVs,
which is used to perform classification that imputes the MVs
(see [3] and the references therein). Finally, the imputation
framework [8] applies most existing MVAs (base methods)
to improve their accuracy of imputation while preserving the
asymptotic computational complexity of the base methods.
The interested reader could also refer to [8], [11] and [24]
(and the references therein) for a comprehensive survey of
the most recent MVAs.

3. DEFINITION

3.1 Definitions & Notations

Definition 1. Given a set X of d-dimensional data points,
X = {x1, . . . ,x|X|}, for each xi we define the imputation

meta-data vector wi = [wik]> with wik = 0 whenever xi’s
k-th dimensional value is missing; otherwise wik = 1. We ex-

press xi as (zi, z
m
i), where zi ∈ Rd

′
denotes observed values

and zm
i ∈ R(d−d′) denotes MVs, with d′ =

∑d
k=1 wik.

Definition 2. Given a finite integer m > 0, Xi is a parti-
tion of X such that X ≡ ∪mi=1Xi and Xi 6= Xj , i 6= j. Si de-
notes the machine (cohort), which maintains Xi, performs a
MVA over Xi, and is indexed by i, i = 1, . . . ,m. S = {Si}mi=1

is the set of all cohorts. The (imaginary) Godzilla S0 assem-
bles all Xi and is capable of performing a MVA over X .

Definition 3. A single MV input on MVA is i = (x,w)
and output is x̂ expressed by (z, ẑm). x̂ ∈ Rd is referred

to as estimate containing ẑm ∈ R(d−d′) of imputed MVs by
MVA. If xa is the actual vector, the absolute reconstruction
error is e =‖ x̂− xa ‖; ‖ x ‖ denotes the Euclidean norm.

3.2 MVAs in our framework
As our approach is independent of any particular MVA,

we overview and experiment with two popular and repre-
sentative MVAs in our framework. Note, in our previous
work we also experiment with the REG [19] MVA algorithm.
To exemplify our framework and methods, we employ the
weighted K-nearest neighbors (KNN) [17] and Expectation
Maximization imputation method (EM) [20]. These MVAs
are widely used for multivariate imputation in many scien-
tific areas.

3.2.1 Weighted K-nearest neighbors imputation
KNN is widely used [24] since it has many attractive char-

acteristics: it is a non-parametric method, which does not
require the creation of a predictive model for each dimension
with MV and takes into account the correlation structure of
the data. KNN is based on the assumption that points close
in distance are potentially similar. For given input (xi,wi)
with xi = (zi, z

m
i), KNN calculates a weighted Euclidean

distance Dij between xi and xj ∈ X such that

Dij =

(∑d
k=1 wikwjk(xik − xjk)2∑d

k=1 wikwjk

)1/2

.

The MV of the k-th dimension of xi (i.e., zmik of zm
i) is

estimated by the weighted average of non-MVs of the K

most similar xj to xi, i.e., ẑmik =
∑K
j=1

D−1
ij∑K

v=1D
−1
iv

xjk. KNN

is typically used with K=10,15,20; theses values have been
favored in previous studies [24], [25]. (In our experiments
we will use K=10).

Remark 1. A naive approach for searching the closest d-
dimensional data point with respect to a given point x over
a dataset of size n = |X | requires O(nd) time. This im-
plies also O(ndK) time for retrieving the K nearest data
points. Nonetheless, we could built a d-dimensional tree
over the points of X to allow to efficiently perform K near-
est neighbors search. Such structure is ‘good’ for searches in
low-dimensional spaces. However, its efficiency decreases as
dimensionality grows, and in high-dimensional spaces this
structure gives no performance over naive O(ndK) linear
search. Overall, the KNN imputation algorithm can build
a d-dimensional tree with O(n logn) time complexity and
achieves imputation time complexity close to O(Kd logn).

3.2.2 Expectation Maximization imputation
The EM algorithm is an iterative algorithm for estimating

MVs by maximizing the likelihood function [18]. Assume
that X is generated by a probability density function f(X|θ),
where θ is a parameter of the model. The likelihood function
L(θ|X) is a function of the parameter θ for fixed X . For
mathematical convenience, likelihood function is represented
by its log-likelihood function l(θ|X) = ln(L(θ|X)). Without
loss of generality, consider for fixed X a set of parameters
θ = {θ1, . . . , θt} with t > 0. For every θi ∈ θ, we calculate
l(θi≤t|X). The obtained outcome shows that how likely X
is observed under θi. The highest the outcome is the most
likely X is observed under that parameter. In general, L
is used to identify the value of θ, which is best supported
by X . For a set X , which contains observed values, Xobs
and MVs Xmiss, the log maximum likelihood of X is l(θ|X)
= l(θ|Xobs,Xmiss) = l(θ|Xobs) + ln f(Xmiss|Xobs, θ). The
main concept of EM is to maximize the maximum likelihood

estimation (MLE) of θ from l(θ|Xobs) in order to maximize
the MLE of l(θ|X). The EM algorithm consists four steps:
Step (i) replace MVs by estimated values, Step (ii) estimate
θ (also known as E-step), Step (iii) re-estimate MVs using
the new θ (referred as M-step), Step (iv) re-estimate θ,
iterate until convergence [18].

To illustrate how the EM algorithm is used for imputation,
consider the d-dimensional mean vector u = [u1, . . . , ud]

>

and covariance matrix Σ = [σjk] with j, k = 1, . . . , d. Both
u and Σ refer to learning parameter θ, i.e., θ = (u,Σ). Ini-
tially, µ and Σ are calculated considering only the non miss-
ing values, i.e., from the Xobs set. Then, the EM imputation
algorithm calculates each step as follows:

• Step 1: For each xi ∈ X , if wik = 0 then we estimate
ẑmik = uk. Note that wi remains unchanged in order
to help us identify which dimensions are observed or
missed in the original data set X .

• Step 2: Estimation of parameter θt at iteration t ≥ 1.
For each k, j = 1, . . . , d we calculate:

E

 |X|∑
i=1

xik|Xobs, θt

 =

|X|∑
i=1

xtik

and

E

 |X|∑
i=1

xikxij |Xobs, θt

 =

|X|∑
i=1

xtikx
t
ij + ctjki

with

ẑmik =

{
xik, if wik = 1

E
(∑n

i=1 xik|Xobs, θt
)

if wik = 0

and

ctjki =

{
0, if wik = 1 or wij = 1

xikxij |Xobs, θt if wik = 0 and wij = 0

At the end of this step, the purpose is to estimate the
sufficient statistics, i.e., mean, variance, and covari-
ance so that the following step can update the param-
eter θt. Specifically, this step estimates u and Σ, and
uses them to build a set of regression equations that
predict the missing values from the Xmiss set. This is
achieved by the sweep regression operator [18] realizing
the conditional expectations. Such operator combines
the mean vector and the covariance matrix into a single
augmented matrix and applies a series of transforma-
tions that produce the desired regression coefficients
and residual variances.

• Step 3: re-estimate MVs using the new θt parameter.
This step becomes a straightforward estimation prob-
lem that uses the filled-in sufficient statistics from the
previous step to impute the missing values. Then, for
each k, j = 1, . . . , d we calculate:

u
(t+1)
k = (|X | − 1)−1

|X|∑
i=1

ẑmik

and

σ
(t+1)
jk = (|X | − 1)−1

|X|∑
i=1

[(xij − µj)(xik − µk) + cjki]

• Step 4: If |l(θt+1|X) − l(θt|X)| ≤ ε then terminate
(converge); otherwise, go to Step 2. We set ε = 10−3

for convergence.

Remark 2. Each iteration takesO(nd) computations given
that n = |X |. However, the termination behavior of EM
is not easy and guaranteed. Theoretically speaking, with-
out any stopping threshold (or, setting a stopping threshold
ε = 0), EM would infinitely converge up to an infinite pre-
cision, i.e., ε = 0. Hence, the theoretical runtime of EM is
infinite. Any small and non-negative threshold ε > 0 and
ε → 0 forces EM to terminate earlier. But it will be hard
to get a theoretical limit here different than O(ndtε) where
tε is the number of iterations up to achieving precision close
to ε.

4. THE PYTHIA FRAMEWORK
The Pythia framework in [1] employs a potentially large

number of cohorts, S. Each cohort, Si ∈ S, stores a unique
and non-overlapping subset of a massive dataset X . Impu-
tation execution engages cohorts in parallel, whereby each
cohort runs a MVA on a much smaller local dataset, Xi. Ac-
cordingly, for some input, Pythia must swiftly predict the
appropriate cohort or cohorts, S ′, in which the MVA is going
to be executed. Pythia predicts S ′ ⊆ S for each input based
on per-cohort signatures [1]. Each cohort Si constructs a
signature Pi from Xi. Pi reflects the current structure of
data points in Xi. The idea behind a signature is that Si is
engaged for a given i once x can be ‘explained’ through Pi.
Si provides its (locally) created Pi to Pythia, which stores
all signatures forming P = {Pi}mi=1. The operation of the
Pythia framework is as follows: Given in imputation request
(input) i,

• Step 1: Pythia predicts the subset of cohorts S ′ ⊆ S
with respect to P

• Step 2: Pythia engages only the cohorts from S′ send-
ing the input i to them.

• Step 3: Each cohort Si ∈ S ′

– Step 3.1: Si invokes locally a MVA and

– Step 3.2: Su provides its estimate x̂i to Pythia.

• Step 4: Pythia constructs the aggregate estimate x̂
that is sent to the cohorts from S ′.

• Step 5: Each Si ∈ S ′ can exploit x̂ for updating its Pi.

• Step 6: Pythia uses x̂ for updating the signatures set
P.

• Step 7: Pythia stores the imputation meta-data vector
w to trace back imputed MVs in the system.

4.1 Signatures
The general idea of a signature Pi is to represent knowl-

edge on the probability density function (or distribution) of
the Xi of a cohort. Through Pi we optimally quantize the
Xi space of each cohort Si to estimate the distribution of the
underlying Xi. Through adaptive vector quantization, which
is achieved by unsupervised competitive learning, we obtain
a set of ‘representatives’ over Xi. The information conveyed
by these representatives and their topological neighboring

representatives drives the decision on whether a cohort Si
is eligible for being engaged in a given imputation request i.
In this section, we propose two methods for signatures cre-
ation based on two adaptive vector quantization algorithms,
namely the Adaptive Resonance Theory [26] and the Self
Organizing Maps [5].

4.1.1 Adaptive Resonance Theory Signature
Each cohort Si ∈ S employs the ART [26], an unsuper-

vised learning model from the competitive learning paradigm,
in order to locally construct Pi over Xi. In ART, whose al-
gorithm is shown in Algorithm 1, each xk ∈ Xi is processed
by finding the nearest representative c∗ ∈ Rd to xk, i.e.,
c∗ = arg minc∈Ci ‖ c− xk ‖, where Ci is the set of represen-
tatives. Then, it is allowed xk to modify/update c∗ only if
c∗ is sufficiently close to xk (c∗ is said to ‘resonate’ with xk)
i.e., if ‖ c∗−xk ‖≤ ρi for some vigilance ρi > 0. In this case,
c∗ is updated through the rule c∗ ← c∗+ηi(xk−c∗), where
ηi ∈ (0, 1) is a learning rate, which gradually decreases. Oth-
erwise, i.e., ‖ c∗−xk ‖> ρi, a new representative c is formed
handling xk such that c = xk and Ci ← Ci ∪ {c}.

Definition 4. The ART signature Pi of cohort Si over Xi
is the triple

Pi = 〈Ci, ρi, ηi〉. (1)

ALGORITHM 1: ART signature creation algorithm
at cohort Si
Input: Xi, ηi, ρi
Output: Ci
Ci = {x1};

for 1 < k ≤ |Xi| do
b∗ =‖ c∗ − xk ‖= minc∈Ci ‖ c− xk ‖;
if b∗ > ρi then
Ci ← Ci ∪ {xk};

else
c∗ ← c∗ + ηi(xk − c∗);

end

end

Definition 5. We say that x is a member of an ART Pi
signature, notated by x ∈ Pi, iff minc∈Ci ‖ c − x ‖≤ ρi;
otherwise, x 6∈ Pi.

The statement ‘x ∈ Pi’ denotes that there is at least one
c ∈ Ci such that x is placed close to c with distance less than
ρi, for instance, the closest representative c∗ to x. The more
representatives c ∈ Ci satisfy the criterion ‖ c−x ‖≤ ρi, the
more appropriate Ci is for x. In this sense, if x ∈ Pi then
x can be represented by at least one representative from
Xi. Based on this intuition, if x ∈ Pi, cohort Si provides a
rather good estimate for some missing parts of x compared
to a cohort Sj associated with a Pj for which it holds true
that x 6∈ Pj . The latter case indicates that no representative
from Cj can be a representative point for x.

Since ρi represents a threshold of similarity between points
and representatives, thus, guiding the ART algorithm in de-
termining when a new representative should be formed, it
should depend on Xi. In order to give a physical meaning to
ρi, it is expressed through a set of percentages αk ∈ (0, 1)

of the ranges between the lowest xmin
k and highest xmax

k val-
ues of each dimension k of points in Xi, k = 1, . . . , d. Let
ri = [(xmax

1 − xmin
1), . . . , (xmax

d − xmin
d)]> and the diagonal

d× d matrix A with A[k, k] = αk. Then ρi =‖ Ari ‖. High
αk values result to a low number of representatives and vice
versa. Each Si determines a ρi over Xi, creates Pi through
Algorithm 1, and sends Pi to Pythia.

Remark 3. When dealing with mixed-type data points,
e.g., consisting of categorical, binary, and continuous at-
tributes, we can adopt appropriate distance metrics [29] for
the distance between xk and xl instead of using the Eu-
clidean distance ‖ xk−xl ‖; this does not spoil the generality
of signature creation.

4.1.2 Self-Organizing Map Signature
The basic SOM [5], whose algorithm is shown in Algo-

rithm 2, is formally a nonlinear, ordered, smooth mapping
of high dimensional vectorial data manifolds, input vector
(x), onto the vectorial elements (representatives) of a reg-
ular, low dimensional lattice L. SOM implicitly captures
the structure of x and, in particular, identifies the repre-
sentatives of x that have similar statistical characteristics
in the high-dimensional vector space. The most important
characteristic of the SOM is the capability of producing a
structured ordering of the vectors, i.e., similar vectors in the
input space are mapped to neighboring representatives of the
map. The incrementally formated representatives estimate
the distribution of a dataset X .

Consider the vectors x1, . . . ,x|Xi| from the dataset Xi of
cohort Si. The on-line SOM algorithm maps incrementally
these vectors into a lattice L composed of `i × `i represen-
tatives, `i > 0, i.e., the number of representatives in Si
is `2i . Hereinafter the parameter ` is referred to as lat-
tice width. The representatives are linked together by a
neighborhood relationship h(j, j′) over the indicies j, j′ ∈ L,
j, j′ = 1, . . . , `2i . With each representative on L, we associate
a representative cj of lattice L with the same dimension as x.
The `2i representatives of L are initialized randomly among
the input vectors. By assuming a general distance metric
between x and cj , D(x, cj), the image of x onto the lattice
L is defined by the winning representative c∗j that matches
best with x, i.e.,

j∗ = arg min
j∈L
D(x, cj). (2)

In the Euclidean space where D(x, cj) =‖ x − cj ‖2, i.e.,
the 2-norm, the on-line SOM algorithm, at the kth input xk,
k = 1, . . . , |Xi|, consists of two steps:

• Step 1: (Assignment) Vector xk is assigned to a win-
ning representative c∗j , i.e., ‖ xk − c∗j ‖= minj∈L ‖
xk − cj ‖

• Step 2: (Update) All representatives in L are updated
as

cj = cj + η(k)h(j, j∗; k) (xk − cj) . (3)

The parameter η(k) ∈ (0, 1) called learning rate is a
non-increasing function of k. A good choice of η(k) im-
proves significantly the convergence of SOM [5]; usu-

ally η(k) = η(k−1)
1+η(k−1)

with η(0) = 1. A discussion

about η(k) and the choice of an ‘optimal’ learning rate
can be found in [5]. The h(j, j∗; k) is a smoothing
Kernel function defined over indicies j, j∗ ∈ L, usually
given by the Gaussian neighborhood function:

h(j, j∗; k) = exp

(
−
‖ rj − r∗j ‖2

2β2(k)

)
.

Vectors rj and r∗j are, respectively, the locations of
representatives cj and c∗j on L. The topological neigh-
borhood is symmetric around the winning representa-
tive, which has the maximum value. Parameter β(k)
is the width of the neighborhood with initial value β0
defined as β(k) = β0 exp(− k

Tβ
), where Tβ is a con-

stant. The boundaries of neighborhood h(j, j∗; k) de-
pends on β(k). A small width value corresponds to
narrow boundaries, while with high width, the bound-
aries contains more neighbors.

Remark 4. Since the size of |Xi| = 1
m
|X | is significantly

large thus we can assume that the on-line algorithm of SOM
converges. However, if the algorithm has not converged then
an additional iteration (or, iterations) is performed until
a termination criterion holds true. This criterion, which
is compared to a percentage convergence threshold ε > 0,
refers to the 1-norm between successive estimates of the rep-
resentatives, i.e., the algorithm converges if

∑
j∈L‖wj(k)−

wj(k− 1)‖1 < ε ·
∑
j∈L‖wj(k− 1)‖1 with ‖wj‖1=

∑d
i |wji|

and k > 0.

Let Ci be the set of representatives {cj}`
2
i
j=1 belonging to

lattice L.

Definition 6. The SOM signature Pi of cohort Si over Xi
is the tuple

Pi = 〈Ci, `i〉. (4)

Each cohort Si ∈ S can locally set the number of repre-
sentatives `2i in its lattice thus giving it the flexibility to,
independently of the other cohorts, determine the ‘resolu-
tion’ (quality) of data space quantization. Evidently, the
higher the value of `i the more fine grained the resolution of
Xi quantization gets; however at the expense of higher space
requirements. On the other hand, a low value of `i might
not be enough to represent the diversity of the data in Xi.

The distance between x and its winner representative cj∗
plays a significant role on determining how appropriately
x is represented by Pi. The fact that cj∗ is the closest
representative to x does not covey any information about
how qualitatively the topologically close data space area of
cj∗ represents the topologically close data space are to x.
Given a smooth distance metric between x and cj∗ we define
as degree of membership of x to Pi the function µi : Rd →
[0, 1] such that

µi(x) = exp(− ‖ x− cj∗ ‖22). (5)

A µi value close to unity indicates that x is topologically
very close to its winning representative cj∗ thus x is believed
to be a member of Pi with a high degree. A µi value close
to zero indicates that x is topologically very distant from its
winning representative cj∗ . Hence, in this case x is not a
member of Pi.

Definition 7. We say that x is a member of a SOM Pi,
notated by x ∈µ Pi, with a degree of µi(x) > ε, ε→ 0.

ALGORITHM 2: SOM signature creation algorithm
at cohort Si
Input: Xi, `i, β0, Tβ
Output: Ci
Initialize cj , j ∈ L;
Ci = {c1, . . . , c`2i

};
for (1 ≤ k ≤ |Xi|) do

j∗ = arg minj∈L ‖ xk − cj ‖2;
cj ← cj + η(k)h(j, j∗; k)(xk − cj), j ∈ L;

end

Remark 5. Once Pythia has produced the estimate x̂ given
an input i = ((z, ẑm),w), it updates locally the signatures
of those cohorts which were engaged in the imputation pro-
cess. In case of ART signatures, the reader could refer to [1]
which reports on the expected magnitude of change of the
representatives in an ART signature due to the estimate. In
the case of SOM signatures, the updates are the same with
that of the ART signature, provided that the winner repre-
sentative cj∗ of input z get updated with a small constant
rate η; the same rate is adopted in ART signatures.

4.2 Cohorts prediction
Up to this point, we have shown how to use signatures

as a guiding light to select appropriate cohorts for MV im-
putations. Now, our concern is twofold: MV imputations
must be (i) low cost and (ii) high accuracy. Low cost (once
signature processing is performed) refers to the communi-
cation cost between Pythia and cohorts and to the cost
of running MVAs at cohorts. High accuracy refers to low
RMSE. Therefore, in our previous work we presented algo-
rithms with these in mind. Now, we further propose two
cohorts prediction algorithms corresponding to ART- and
SOM-signatures, which engage the top-K relevant cohorts
for an imputation request, 1 ≤ K ≤ m. Under this class of
algorithms, Pythia is not involved in producing the (final)
estimate x̂, instead, only the top-K best cohorts are engaged
for doing this locally. Pythia communicates only with these
cohorts, which run the MVA in parallel, thus, this optimizes
our cost metric. Note, the reader could refer also to the
accuracy-aware class of algorithms in our previous work [1],
in which Pythia is (merely) engaged in the final estimate.

4.2.1 ART signature cohort prediction
For simplicity consider the top-1 (best cohort) scheme,

i.e., K = 1. Given imputation request i and a set of ART
signatures, Pythia determines the best cohort S∗ ∈ S with
P ∗ = 〈C∗, ρ∗, η∗〉 such that the following criteria hold true:

• Criterion C1: c∗ = arg minc∈∪mi=1Ci ‖ c − z ‖ and
c∗ = arg minc∈C∗ ‖ c − z ‖, i.e., c∗ ∈ C∗ is the closest
representative to z among all representatives from all
signatures, and

• Criterion C2: z ∈ P ∗, i.e., the vector z is member of
the ART signature P ∗.

Note that z ∈ Rd
′

with 0 < d′ =
∑d
k=1 wk < d provided

that x contains d − d′ MVs. In order to evaluate ‘z ∈ P ∗’

Pythia calculates ρ∗(d
′) ≤ ρ∗ associated with the n dimen-

sions of q∗ corresponding to the n non-MVs. Then, it checks

if ‖ c∗ − z ‖≤ ρ∗(d
′) dealing only with the d′ dimensions of

c∗. Pythia engages only the best cohort S∗, which produces
the final x̂. If there is no cohort that satisfies criteria C1
and C2, then Pythia engages the cohort that satisfies only
criterion C1. If K > 1 one can repeat the above criteria
for the top K cohorts ranked with the distance between the
corresponding c∗j and z, 1 ≤ j ≤ K < m. In this case the
final x̂ is produced by aggregating all x̂j with 1 ≤ j ≤ K.

4.2.2 SOM signature cohort prediction
Consider again for simplicity the top-1 (best cohort) scheme.

Given imputation request i and a set of SOM signatures,
Pythia determines the best cohort S∗ ∈ S as follows:

• Step 1: Find the winner prototype c∗i = arg minc∈Ci ‖
z− c ‖ from signature Si, ∀i.

• Step 2: Define a membership indicator Ii(z) = 1 if
µi(z) > ε; otherwise 0, ∀i.

• Step 3: Calculate the normalized membership degree

µ̃i(z) =
µi(z)Ii(z)∑m
k=1 µk(z)Ik(z)

and select the cohort with the maximum value of µ̃.

If for all cohorts Si ∈ S, it holds true that Ii(z) = 0,
i.e., z cannot be represented by any winner representative
from all signatures, then Pythia engages the cohort whose
winner representative is the closest to input z among all
winner representatives (from all signatures). If K > 1, then
Pythia engages (at most) the top K cohorts ranked with
respect to the µ̃ value. In this case the final x̂ is produced
by aggregating all x̂j with 1 ≤ j ≤ K.

4.3 Pythia asymptotic complexity
Let ξ be the average number of representatives per ART

signature. In a SOM signature we have `2 representatives,
assuming that the latices from all signatures have the same
number of representatives. For the top-K class of algorithms
for cohorts prediction, we adopt a d-dimensional tree struc-
ture over all representatives from all ART and SOM signa-
tures in P. Given imputation input i, Pythia performs a
1NN search with O(d log(mξ)) and O(d log(m`)) time since
it searches over all representatives in ART and SOM sig-
natures, respectively, from all signatures ∪mi=1Ci given that
K = 1. Pythia requires O(mdξ) and O(md`2) space, respec-
tively, for ART and SOM signatures. Pythia requires O(K)
communication with cohorts from S.

4.4 Limitation of the Signatures Algorithms
The main limitations of the ART- and SOM-based sig-

natures algorithms are the nature of their parameters that
need to be defined in advance. In the SOM algorithm, a
fixed number of representatives in the lattice L must be de-
termined beforehand. In this context, a good choice of the
lattice size (number of representatives `2) has a significant
impact on the overall quality of the derived self-organized
clusters. A small ` value, i.e., a low number of representa-
tives, might not be sufficient enough to represent the topo-
logical structure of the data, thus capturing their statistical
characteristics. On the other hand, a huge number of rep-
resentatives scatter similar data items into more than one

clusters. In addition, this comes with a significant number
of ‘training’ samples for the SOM algorithm to converge.
Likewise, a good choice of the vigilance parameter ρ plays
an important role on incremental data space partitioning
in the ART algorithm. A relatively high vigilance value
produces few clusters/representatives, in which ‘non-similar’
data points are grouped together. On the other hand, a
small vigilance value yields the formation of a high number
of representatives that might contain few data points and in-
crease the signature size, i.e., the representatives set C, per
cohort. An appropriate determination of the vigilance ρ and
the lattice size ` highly depends on the statistical properties
of the underlying data in each cohort, individually. That is
a ‘good’ vigilance or lattice size for one cohort might not be
suitable for another one. Therefore, a fine tuning of these
parameters is essential in order to get optimal quality of
data space partitioning. The reader could also refer to for a
discussion on good values for vigilance [27] and lattice size
[28] corresponding to the ART and SOM algorithms, respec-
tively.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
We conducted an extensive series of experiments to as-

sess the performance of Godzilla and Pythia’s over the best
cohort scheme (K = 1) on a real dataset. The dataset is
adopted from the UCI Machine Learning Repository [33].
We selected randomly 1.2 million real valued 50-dimensional
vectors (d = 50) that have no MVs from physical activity
monitoring features. We synthetically produce MVs ran-
domly and independently marked as missing with probabil-
ity q ∈ (0, 1). Therefore, we expected |X |

∑d−1
k=1

(
d
k

)
qk(1 −

q)d−k points with MVs. We set q = 0.3, which is a relatively
high probability of MVs per dimension, thus, being able to
test Pythia’s robustness in terms of accuracy.

Lattice width ℓ

10 20 30 40 50

R
M
S
E

0

0.02

0.04

0.06

0.08

0.1

Pythia (SOM)

Figure 1: RMSE vs. lattice width ` for SOM signa-
ture.

On average, an ART signature Pi contains 0.05% of points
of the entire dataset X (this amount refers to the number
of representatives stored in Pythia per cohort); whereas, for
SOM we varied the size of the lattice ` ∈ {10, 20, 30, 50}.
As shown in Fig. 1, we obtained no significant change in
the root mean squared error (defined formally later) when
` increases from 20 to 50. This implies that there is no
notable trade off between accuracy and lattice size, thus,
we set ` = 20 to increase the efficiency of Pythia in the

cohorts prediction phase. When ` = 20, each SOM signa-
ture (on average) contains 0.01% of points of the entire set
X . Furthermore, we set the convergence threshold ε = 0.01
and observed that (on average) the SOM on each cohort
has converged after 10,000 input vectors. This denotes the
avoidance of unnecessary extra iterations that might run
while representatives have already converged and also the
fact that the size of each cohort’s dataset is adequately huge
for the on-line learning algorithm of SOM. We also adjusted
the initial width of the neighborhood function boundaries
β0 = ` (the width of the lattice) so that these boundaries
could contain almost all representatives during the first few
iterations (note: it decays exponentially with each itera-
tion). In SOM, we used initial learning rate η(1) = 0.5,
which gradually decreases as discussed in Section 4.1.2. In
ART we used learning rate η = 0.1. Moreover, we set the
range percentage αk = α = 0.2, 1 ≤ k ≤ d, in ART for
all dimensions in order to construct the P set. We run all
experiments 10,000 times and took their average values for
all performance metrics. The number of cohorts m ranges
in {20, . . . , 100}. Pythia’s cohorts prediction algorithms and
the MVAs reported in Section 3.2 were developed in Java.
Table 1 summarizes the parameter values used in our exper-
iments.

Parameter Notation Value/Range
d dimension 50
m number of cohorts {20, 40, 60, 80, 100}
ε convergence threshold 0.01
q MV probability 0.3
|X | dataset size 1, 2 · 106

T imputation requests 104

α vigilance range in ART 0.2
η learning rate in ART 0.1
` lattice width in SOM {10, 20, 30, 50}
β0 initial width in SOM 20

Table 1: Experimental parameters.

5.2 Performance metrics
Our metrics include efficiency metrics and accuracy met-

rics. A scale-out system consisting of m cohorts affords two
types of parallelism: intra-imputation and inter-imputation
parallelism. The former refers to the capability of process-
ing any single imputation using a number of cohorts in par-
allel, each accessing a dataset partition. The latter refers
to the systems’ capability of running in parallel a number
of imputations, each of which engages a subset of cohorts.
It is crucial to note that Godzilla affords neither of these
parallelism. This latter scenario is particularly important
as typically a system is presented with a (large) batch of
(vector-) inputs, each with missing values and the goal is to
impute all input vectors in the batch as quickly/scalably as
possible. Given this, our efficiency metrics embody various
efficiency aspects impacting scalability.

First, we report on imputation latency, defined as the time
(in seconds) a system (i.e., Godzilla or Pythia) requires to
impute a single input (vector) using a MVA. The rate of
latency increase as dataset sizes grow is a strong aspect of
scalability. In Pythia, latency refers to the time to predict
best cohort S∗, plus the latency to run MVA in parallel at

the engaged cohort.
Imputation speedup is defined as the ratio of Godzilla la-

tency over Pythia latency; it indicates how much a system
is faster than Godzilla for a single imputation. The linear
imputation speedup ratio is m.

We measure imputation accuracy using the RMSE metric,
i.e., the root-mean squared difference between actual vector
xa and estimated vector x̂ after T imputation requests:

RMSE =

(
1

T

T∑
t=1

∑d
k=1 wtk(x(a)tk − x̂tk)2∑d

k=1 wtk

)1/2

. (6)

Finally, we measure the storage metric b for Pythia adopt-
ing either ART or SOM signatures. Specifically, this metric
refers to the total number of representatives in the ART
signature and total number of representatives in the SOM
signature. For the latter case, this corresponds to b = `2m
given that all SOM signatures adopt the same lattice width
`. In the ART signature case, each signature has constructed
different number of representatives, which depends on the
underlying data distribution of each cohort’s dataset. If ξi
is the number of representatives of an ART signature Pi then
the storage metric corresponds to b =

∑m
i=1 ξi.

5.3 Imputation efficiency
Figures 2 and 3 show the imputation speedup against

number of cohorts m using the EM and KNN imputation al-
gorithms, respectively, utilizing Pythia with ART and SOM
signatures. In KNN at Figure 3, a slightly super linear
speedup is observed for all number of cohorts, e.g., speedup
ratio is a slightly greater than m when m cohorts are en-
gaged in the imputation process. Super linear speedup is
also noticed for EM at Figure 2 when the number of cohorts
increases. This is due to the fact that the MVAs algorithms
(KNN and EM) highly depend on the size of dataset X , i.e.,
their computational complexity is proportional to O(|X |).
Hence, a portion of dataset |Xi| = 1

m
|X | which is processed

by an imputation algorithm over a cohort Si yields a de-
crease in the corresponding latency of imputation by at least
a factor of m. More interestingly, the more demanding (in
terms of computational effort) an imputation algorithm is,
the more benefit we get if we run it over a portion of the
entire dataset; see also Remarks 1 and 2 in Section 3.2 for
the computational complexity of the imputation algorithms.
Overall, Pythia has achieved substantial speedup using ART
and SOM signatures in both MVAs.

Number of cohorts m
20 40 60 80 100

S
p
ee
d
u
p

0

20

40

60

80

100

120

Pythia (ART)

Pythia (SOM)

Linear speedup

Figure 2: Speedup vs. number of cohorts m for ART
and SOM signatures using EM.

Number of cohorts m
20 40 60 80 100

S
p
ee
d
u
p

20

40

60

80

100

120

140

Pythia (ART)

Pythia (SOM)

Linear speedup

Figure 3: Speedup vs. number of cohorts m for ART
and SOM signatures using KNN, K = 10.

Figures 4 and 5 show the latency in seconds of Godzilla
and Pythia for ART and SOM signatures, respectively, in
logarithmic scale for different number of cohorts m against
different number of dataset size |X |. The dataset size varies
from 105 to 7 ·105 of 50-dimensional vectors. Godzilla strug-
gles with increasing dataset size. Specifically, for Godzilla,
by an increasing dataset size, a supper linear increase in
latency is observed in both Figures 4 and 5. Pythia scales
nicely with its latency increasing linearly utilizing both ART
and SOM signatures. Indicatively, given a dataset size |X | =
5 · 105, Godzilla requires 60 seconds and Pythia (with m =
100 and SOM signature) requires 0.2 seconds to impute an
input, respectively. Moreover, when the number of cohorts
increases, a sub-linear increase in latency is obtained for
Pythia. Pythia can easily handle large datasets if more co-
horts are available to scale to big data missing values. Our
results up to now clearly make a strong case for the scale-out
advantages of the Pythia framework.

Dataset size (×105)
1 2 3 4 5 6 7

L
at
en
cy

(s
ec
on

d
s)

10
-2

10
-1

10
0

10
1

10
2

Pythia (ART, m = 20)

Pythia (ART, m = 60)

Pythia (ART, m = 80)

Pythia (ART, m = 100)

Godzilla

Figure 4: Latency in seconds vs. dataset size ×105

for Pythia ART and Godzilla with different number
of cohorts m = {20, 60, 80, 100}.

5.4 Imputation accuracy
We now experiment with the expected achieved imputa-

tion accuracy utilizing the most relevant cohorts in parallel.
We focus on the best cohort prediction scheme where Pythia
based on ART and SOM signatures engages only the best co-
hort out of the m cohorts. Figures 6 and 7 show the RMSE
against the number of cohorts m using KNN and EM, re-
spectively. Pythia (in both ART and SOM signatures) using
KNN, obtains a relatively low RMSE (on average for all m)

Dataset size (×105)
1 2 3 4 5 6 7

L
at
en
cy

(s
ec
on

d
s)

10
-2

10
-1

10
0

10
1

10
2

Pythia (SOM, m = 20)

Pythia (SOM, m = 60)

Pythia (SOM, m = 80)

Pythia (SOM, m = 100)

Godzilla

Figure 5: Latency in seconds vs. dataset size ×105

for Pythia SOM and Godzilla with different number
of cohorts m = {20, 60, 80, 100}.

as observed in Figure 6. The same RMSE was also achieved
by Godzilla. Accordingly, there was no significant statisti-
cal difference observed between the accuracy of Pythia and
Godzilla. Please note that Pythia adopting the best cohort
prediction scheme and using KNN yields a higher RMSE
compared to Godzilla. This is due to the fact that, using
KNN, Godzilla would provide the global nearest K points,
whereas in Pythia, the best cohort, even when storing irrel-
evant data, will be contributing its local nearest K points.
The latter necessarily implies that a single-cohort imputa-
tion might involve points, which adversely affect imputa-
tion accuracy. Using EM, however, the lowest and highest
RMSE were achieved by Pythia (base on ART signature),
0.11 and 0.16, respectively; see Figure 7. Comparing against
the RMSE of Godzilla, 0.12, still there is no significant dif-
ference. This indicates that Pythia has comparable RMSE
with Godzilla regardless of the imputation algorithms and
the signature creation algorithms.

Number of cohorts m
20 40 60 80 100

R
M
S
E

0

0.02

0.04

0.06

0.08

0.1

Pythia (ART)

Pythia (SOM)

Godzilla

Figure 6: RMSE vs. number of cohorts m for Pythia
ART, Pythia SOM and Godzilla using KNN.

Finally, Table 2 shows the total number of representatives
b =

∑m
i=1 ξi and representatives b = `2m in ART and SOM

signatures that are stored in Pythia for making predictions
against the number of cohorts m for α = 0.2 and ` = 20,
respectively; we also show the percentage storage b

|X| with

respect to the entire dataset size. One can observe that,
in the case of the ART signature, the average number of
representatives per cohort decreases with the number of co-
horts. This indicates the robust behavior of Pythia in terms

Number of cohorts m
20 40 60 80 100

R
M
S
E

0

0.05

0.1

0.15

0.2

Pythia (ART)

Pythia (SOM)

Godzilla

Figure 7: RMSE vs. number of cohorts m for Pythia
ART, Pythia SOM and Godzilla using EM.

of storage requirements. Specifically, the total number of
representatives remains the same for all values of m. In the
case of the SOM signature, the number of representatives
is explicitly controlled by the ` parameter and is not deter-
mined by the underlying data distribution. Given a number
of cohorts m ≤ 50, by comparing the imputation accuracy
of both signature methods, ART and SOM (see also Figures
6 and 7), we observe that a Pythia variant with SOM sig-
nature requires 50% less storage than a Pythia variant with
ART signature for achieving quite similar accuracy levels
for both KNN and EM imputation algorithms. In this case,
we can conclude that, when deploying a relatively low num-
ber of cohorts for missing values imputation, the adoption of
SOM signature is preferable than an ART signature scheme.
On the other hand, for a relatively high number of deployed
cohorts, both variants (ART and SOM) can be applied with
ART signature resulting into slightly better accuracy per-
formance and SOM signature requiring 2% less storage.

ART ART pct. SOM SOM pct.

m b =
∑m
i=1 ξi (%) b

|X| b = `2m (%) b
|X|

20 40,047 3.09 8,000 0.61
40 40,630 3.13 16,000 1.23
60 40,813 3.15 24,000 1.85
80 41,153 3.17 32,000 2.47
100 41,190 3.18 40,000 3.08

Table 2: Storage requirement in Pythia.

6. CONCLUSIONS & FUTURE RESEARCH
We have tackled the problem of scaling out MV impu-

tations, a common problem in many big data applications.
We studied and developed some of the fundamentals of the
problem, based on which we developed Pythia, a framework
and algorithms designed for this aim. The Pythia frame-
work is drastically different, as it on the one hand avoids the
need to access all cohorts (and all associated costs for com-
munication and for running MVAs at all cohorts), while on
the other can achieve better or comparable MV imputation
accuracy, compared to centralized solutions. The major pur-
pose of this paper is to examine whether the Pythia frame-
work introduced in [1] is robust and independent of any MVA
and signature creation algorithm. Specifically, through our
comprehensive experiments in this paper we showed that

Pythia can provide drastically better efficiency/scalability
and competitive accuracy compared to a centralized ap-
proach (Godzilla). This is achieved by introducing the idea
of the signature, a statistical learning structure over the dis-
tributed datasets. The signatures are exploited by Pythia to
decide on the most appropriate subset of data nodes to be
access upon a stream of imputation requests. We proposed
two methods for constructing a signature structure based on
adaptive vector quantization and competitive learning. The
central conclusions of our study are as follows. Godzilla
suffers from obvious severe scalability and efficiency limita-
tions. Hence, Pythia is deemed as an appropriate solution
since it not only significantly outperforms Godzilla in terms
of efficiency (storage, latency) but, also, performs as good
as Godzilla with respect to imputation accuracy. Moreover,
the Pythia is independent of any particular imputation al-
gorithm and signature construction algorithm. This renders
the Pythia framework capable of coping with MV imputa-
tion requests, which are directed to subsets of cohorts for
local MVA invocations.

6.1 Discussion on Limitations
A primary functionality of the Pythia is the swiftly de-

termination of the most relevant subset of cohorts to direct
the incoming MV imputation request (input vector i) based
on the signatures. In this context, the Pythia node decides
on the closest representative c of each cohort’s signature
by calculating the Euclidean distance over the dimensions
of the input that contain non-missing values. In the case
of high-dimensional data (d is relatively high) and when the
probability of a missing value is low (p is relatively low) then
the Pythia node has to calculate the Euclidean distance over
(1 − p)d dimensions. In that case, the Euclidean distance
metric might change in some non-obvious ways [31]. Specif-
ically, as it has been argued in [32], under certain reasonable
assumptions on the underlying data distribution, the ratio
of the distances of the nearest and farthest neighbors to a
given target in a high dimensional space is almost unity for
a wide variety of data distributions and distance functions.
In such a case, the nearest neighbor identification (which
refers to the closest representative in our context) becomes
ill defined, since the contrast between the distances to dif-
ferent data points does not exist. In such cases, even the
concept of proximity may not be meaningful from a qualita-
tive perspective: a problem which is even more fundamental
than the performance degradation of high dimensional al-
gorithms. In our case, the Lk = (

∑d
j=1(ij − cj)k)1/k norm

with k = 2, i.e., L2 = (
∑d
j=1(ij − cj)

2)1/2 is susceptible
to the dimensionality curse for many classes of data distri-
butions [32]. Specifically, based on the analysis in [32], the
relative contrast of the distance of an input vector i with a
representative vector c depends heavily on the adopted Lk
distance metric. This provides considerable evidence that
the meaningfulness of the Lk norm worsens faster with in-
creasing dimensionality for higher values of k. Thus, in our
problem with a high value of the dimensionality d, it may be
preferable to use lower values of k. This means that the L1

distance metric (i.e., the Manhattan distance metric) is the
most preferable for high dimensional applications, followed
by the Euclidean (L2), then the L3 metric, and so on. En-
couraged by the analysis in [32], we are planning, as a future
work, to examine the behavior of fractional distance metrics
for the distance between i and c, in which k is allowed to

be a fraction smaller than unity. Further, the limitations of
the adopted algorithms for the signatures construction and
the possible directions for dealing with these limitations are
discussed in Section 4.4.

6.2 Future Research
Apart from the future work discussed in Sections 4.4 and

6.1 triggered by the limiations of the Pythia framework, we
further plan to incorporate to our research agenda the fol-
lowing items. This work has shown that the Pythia frame-
work improves not only the imputation efficiency but also
achieves at least the same imputation accuracy comparing
against the performance of the Godzilla variant. The exper-
imental evaluation focuses on stationary data. In station-
ary data, the underlying probability distribution function
does not change over time. Hence, the signatures of the
Pythia do not change frequently so that they remain as a
reliable representation (through the derived clusters). In a
non-stationary data environment, e.g., an environment deal-
ing with data streams, such distribution function (estimated
through clusters) changes over time swiftly [30]. In this con-
text, new clusters can be formated and existing clusters have
to be updated to follow the data streams trend. Therefore,
our future research items include the enhancement of the
Pythia framework to access only a relevant part of the whole
dataset in order to improve scalability, efficiency and predic-
tion accuracy in a dynamic environment with ever-changing
data patterns. As the probability distribution function of
the data streams changes frequently, we plan to investigate
methods for updating the Pythia signatures to efficiently
support MV imputation requests.

7. REFERENCES
[1] C. Anagnostopoulos, et al, Scaling out big data

missing value imputations: pythia vs. godzilla. Proc.
20th ACM SIGKDD (KDD’ 14) International
Conference on Knowledge discovery and data mining.
ACM, New York, NY, USA, pp.651–660.

[2] X. Su, et al, ‘Using Classifier-Based Nominal
Imputation to Improve Machine Learning’, Proc. 15th
PAKDD, Part I, LNAI 6634, pp. 124–135, 2011.

[3] A. Farhangfar, et al, ‘Impact of imputation of missing
values on classification error for discrete data’, Pattern
Recognition, 41(12): 3692–3705, Dec 2008.

[4] M.T. Asif, et al, ‘Low–Dimensional Models for Missing
Data Imputation in Road Networks’, Proc. 38th IEEE
ICASSP, pp.3527–3531, 2013.

[5] T. Kohonen. 2001. ‘Self-Organizing Maps’ (3rd ed.).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[6] E.C. Chi, et al, ‘Genotype imputation via matrix
completion’, Genome Research, 23(3):509–18, Mar
2013.

[7] I.B. Aydilek, et al, ‘A novel hybrid appoach to
estimating missing values in databases using k–nearest
neighbors and neural networks’, Innovative
Computing, Information and Control, 8(7A):
1349–4198, Jul 2012.

[8] A. Farhangfar, et al, ‘A Novel Framework for
Imputation of Missing Values in Databases’, IEEE
Trans. Sys. Man Cyber. (A), 37(5): 692–709, Sep 2007.

[9] K. Lakshminarayan, et al, ‘Imputation of missing data
in industrial databases’, Appl. Intell., 11(3): 259–275,

Nov / Dec 1999.

[10] L. A. Kurgan, et al, ‘Mining the cystic fibrosis data’,
J. Zurada & M. Kantardzic (Eds.), Next Generation of
Data–Mining Applications, IEEE Press, 415–444, 2005.

[11] A.W. Liew, et al, ‘Missing value imputation for gene
expression data: computational techniques to recover
missing data from available information’, Brief.
Bioinform., 12(5): 498–513, Sep 2011.

[12] J. Dean, et al, ’MapReduce: Simplified Data
Processing on Large Clusters’, Proc. USENIX OSDI,
2004.

[13] S. Ghemawat, et al, ‘The Google File System’, Proc.
ACM SOSP, 2003.

[14] C-T. Chu, et al, ‘Map-Reduce for Machine Learning
on Multicore’, NIPS 19, MIT press, 281–288, 2006.

[15] C. K. Enders, ‘Applied Missing Data Analysis’,
Guilford Press, NY, 2010.

[16] D. W. Joenssen, et al, ‘Hot Deck Methods for
Imputing Missing Data’, Proc. 8th MLDM , LNCS
7376, pp.63–75, 2012.

[17] O. Troyanskaya, et al, ‘Missing value estimation
methods for DNA microarrays’, Bioinformatics,
17(6):520–525, 2001.

[18] R.J. Little, et al, ‘Statistical Analysis with Missing
Data’, Wiley, NY, 1987.

[19] T.E. Raghunathan, et al, ‘A multivariate technique for
multiply imputing missing values using a sequence of
regression models’, Survey Methodology, 27(1):85–95,
2001.

[20] D.B. Rubin, ‘Multiple Imputation After 18+ Years’, J.
of the American Statistical Association,
91(434):473–489, 1996.

[21] L. Li, et al, ‘DynaMMo: mining and summarization of
coevolving sequences with missing values’, Proc. 15th
KDD, 527–534, 2009.

[22] S. Yang, et al, ‘Online recovery of missing values in
vital signs data streams using low–rank matrix
completion’, Proc. 11th IEEE ICMLA, 281–287, 2012.

[23] M. Ouyang, et al, ‘Gaussian mixture clustering and
imputation of microarray data’, Bioinformatics, 20(6):
917–923, Apr 2004.

[24] T. Aittokallio, et al, ‘Dealing with missing values in
large-scale studies: microarray data imputation and
beyond’ Brief. Bioinform. 11(2):253–264, 2010.

[25] D-W. Kim, et al, ‘Iterative Clustering Analysis for
Grouping Missing Data in Gene Expression Profiles’,
Proc. PAKDD 2006, LNAI 3918, pp.129–138, 2006.

[26] G. A. Carpenter, et al, ‘The ART of adaptive pattern
recognition by a self–organizing neural network’, IEEE
Computer, 21(3): 77–88, Mar 1988.

[27] L. Meng, et al, ‘Vigilance adaptation in adaptive
resonance theory’ Neural Networks (IJCNN), IEEE
International Joint Conference on, pp.1–7, 2013.

[28] Y. Prudent, et al ‘An incremental growing neural gas
learns topologies’ Neural Networks (IJCNN), IEEE
International Joint Conference on , vol.2, no.,
pp.1211–1216, 2005.

[29] A. Ahmad, et al, ‘A k–mean clustering algorithm for
mixed numeric and categorical data’ Data &
Knowledge Engineering, 63(2):503–527, 2007.

[30] Y. Chen and L. Tu. Density-based clustering for

real-time stream data. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 133–142, ACM, 2007.

[31] C. Aggarwal, et al, On the surprising behavior of
distance metrics in high dimensional space. Springer.
2001.

[32] K. Beyer, et al. ‘When is Nearest Neighbors
Meaningful?’ ICDT Conference Proceedings, 1999.

[33] K. Bache, et al, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml] Irvine, Uni. of
California, School of Inform. and Comp. Sci., 2013.

