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Abstract. Modern organizations typically store their data in a raw for-
mat in data lakes. This data is then processed and usually stored under
hybrid layouts, because they allow projection and selection operations.
Thus allowing (when required) to read less data from the disk. However,
this is not very well exploited by distributed processing frameworks (e.g.,
Hadoop, Spark) when analytical queries are posed. These frameworks di-
vide the data into multiple partitions and then process each partition in
a separate task, consequently creating tasks based on the total file size
and not the actual size of the data to be read. This typically leads to
launching more tasks than needed, which in turn increases the query
execution time and induces significant waste of computing resources.
To allow a more efficient use of resources and reduce the query execution
time, we propose a method that decides the number of tasks based on
the data being read. To this end, we first propose a cost-based model
for estimating the size of data read in hybrid layouts. Next, we use the
estimated reading size in a multi-objective optimization method to de-
cide the number of tasks and computational resources to be used. We
prototyped our solution for Apache Parquet and Spark and found that
our estimations are highly correlated (0.96) with the real executions.
Furthermore, using TPC-H we show that our recommended configura-
tions are only 5.6% away from the Pareto front and provide 2.1x speedup
compared to default solutions.

Keywords: Big data, Hybrid storage layouts, Parallelism, Parquet, Spark

1 Introduction

The size of data is growing exponentially [20,29]. Since huge volumes of data
are difficult to be stored on model first load later fashion, organizations end up
storing all the the raw data on a distributed file system (e.g., HDFS?) or cloud
storage (e.g., Amazon S3%). In addition, they have their own data pipelines to

3 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
* https://aws.amazon.com/s3
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process the raw data, and store it into very wide tables [4, 15] using hybrid lay-
outs [3, 16], which have built-in support for projection and selection operations,
helping in reading data more efficiently from the disk [27, 28].

There are several available hybrid layout implementations, such as: Opti-
mized Record Columnar (ORC)?, Parquet® and CarbonData’. All of them follow
the same physical structure as shown in Figure 1. Data is stored into multiple
horizontal partitions, known as stripes in ORC, row groups (RGs) in Parquet and
blocklets in CarbonData, and each horizontal partition stores its data column-
wise, which is beneficial for projection. Statistics about the data are stored in
each partition, and they may help on filtering partitions. Furthermore, hybrid
layouts support dictionary encoding for compressing repetitive values of individ-
ual columns. The dictionary can also be used to filter partitions.

Furthermore, high-level languages (e.g., Apache Pig® , Hive?, etc.) are used
to write analytical queries for getting business insights from the processed data.
These analytical queries are executed on distributed processing frameworks (such
as Hadoop!® or Spark!!), which process data in parallel on multiple machines
to speed up the analysis. As mentioned above, hybrid layouts allow to read
less data from the disk. Yet, this is not thoroughly exploited by distributed
frameworks when deciding the number of tasks!? for processing the data. They
always decide the number of tasks based on the total table size and not on the
portion of the table being read. This leads to the over-provisioning of tasks,
where many tasks remain idle — without any data to process, but still present
extra overhead (e.g., initialization time, garbage collection). Furthermore, the
idle tasks also waste the computational resources which are assigned to them.
The latter is not considered even in the area of cloud computing [12, 13,21, 24],
where computational resources are decided based on the total data size. This
leads to wastage of resources and money.

Row Group 0 Row Group 1 Row Group n
. Column 0 Column 0 Column 0 _
% Column 1 Column 1 Column 1 %
Column n Column n Column n

Fig. 1. Structure of hybrid layouts

® https://orc.apache.org
5 https://parquet.apache.org
" https://carbondata.apache.org
8 https://pig.apache.org
9 https://hive.apache.org
10 https://hadoop.apache.org
' https://spark.apache.org
12 A task is a unit of work that processes a partition on a machine.
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Fig. 2. Parallelism for hybrid layouts in distributed processing frameworks

Motivational Example. Let us assume that we have the processed data stored in
hybrid layout, which contains four row groups. Let us further assume that we
are executing an analytical query with a filter operation, which only satisfies two
RGs. The distributed processing frameworks process the data in parallel by di-
viding them into multiple partitions (for simplicity, we assume that one partition
is equal to a row group). By default a distributed framework would create four
tasks. However, two of them would remain idle (c.f. Figure 2a), and yet would
read extra metadata from the disk and would require extra initialization time.
This would increase the makespan — execution time. Furthermore in terms of
computational resources, four executors'® would be required to execute all these
tasks in parallel. Whereas, in an ideal scenario, based on the amount of data
read (c.f. Figure 2b) only two tasks with two executors would be enough. The
latter would help on saving computational resources and reduce the makespan.

As argued above, we need to decide the number of tasks based on the actual
data read from the disk. To do that, we first need to estimate the read size,
which can be done by utilizing our cost model presented in [17]. The cost model
estimates the scan, projection, and selection sizes for hybrid layouts.

In this paper, we extend it further to estimate the makespan of the query
implementing a query based on the estimated reading size. Thus, we design a
framework which takes a user query and data statistics as inputs to estimate
the reading size, and then through a multi-objective optimization method [10]
decide the number of tasks and executors.

13 An executor is a computational resource/unit which can execute a task.
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After configuring the number of tasks and executors, the query would be
automatically submitted to a distributed processing framework. We implemented
our approach for Parquet and Spark to show its applicability in real scenarios.

The main contributions of this work can be summarized as follows:

— We extend the cost model for hybrid layouts presented in [17] to estimate
the makespan of a query.

— We propose a framework based on a multi-objective optimization method [10]
that using our extended cost model, configures the number of tasks and
executors for a given query.

— We prototype our approach on Parquet and Spark to show its benefits.

— We report the results of our extensive evaluation with TPC-H' benchmark.

The remainder of this paper is organized as follows: In Section 2, we discuss the
related work. In Sections 3 and 4, we present the cost model and the architecture
of our approach. In Section 5, we discuss a multi-objective method to find the
number of tasks and executors. In Section 6, we present our experimental results
and finally, in Section 7, we conclude the paper.

2 Related Work

Estimating Number of Tasks. There are research works [18,25] for Hadoop,
which estimate the number of mappers and reducers tasks. In [18], the elbow
curve technique is used to find the trade-off between number of tasks and execu-
tion time. This helps to find the right number of tasks where execution time is
minimized. Similarly, [25] utilizes a multi-objective approach for estimating the
number of tasks by considering a deadline constraint. These both approaches
do not consider the amount of data read, while estimating the number of tasks.
These works only estimate the tasks based on the available number of machines
and some objectives (such as deadline). As previously argued, the amount of
data read is an important factor in deciding the number of tasks.

Resource Provisioning in Cloud. There have been extensive research works [12,
13,21,24] by cloud community on resource provisioning. There is also a sur-
vey [26] on energy-efficient techniques for big data analytics, which are divided
into five categories. One of them (i.e., energy-aware resource allocation) focuses
on deciding the number of machines to execute a given query with the aim to save
energy. These works from both cloud computing and energy-efficient big data
analytics focus more on deciding the number of machines to process an applica-
tion. They aim at saving energy and computational resources, which indirectly
leads to cost savings. However, they make these decisions without considering
the reading size. Our approach could help them to decide resource provisioning
in more granular level and overall, it can help these works to achieve their goals
more efficiently.

' http:/ /www.tpc.org/tpch
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Tuning Configurable Parameters. There are research works [6,11,19] to tune
the configurable parameters of distributed processing frameworks. [19] proposes
a trial and error approach to tune the configuration parameters of Spark. This
work finds the optimal values for these parameters, based on trial and error ap-
proach. Similarly, [11] proposes a methodology to profile the impact of different
parameters pairs on benchmarking applications, by applying a graph algorithm
to create complex candidate configurations. These configurations are checked in
parallel and then, the best performing one is chosen. In [8], the shuffle perfor-
mance in Spark is improved by controlling the total number of shuffle files. This
approach consolidated multiple shuffles file into one based on the available cores.
This helps in improving the execution time of shuffle phase. [6] profiles the bot-
tlenecks (i.e., JVM, GC, serialization, etc.) of TPC-H queries and parameters
are manually configured to avoid the bottlenecks. This significantly increases the
query performance.

[2] has proposed a cost model for Spark, which helps to estimate the cost
of different query plans and decide the best one. Nevertheless, they assume the
number of tasks and executors are fixed. This work is complementary to ours and
would optimize the overall query plan, once data is read from disk and available
for the first task. As discussed above, these existing works do not explicitly
consider the degree of parallelism. Their main aim is to fine tune a cluster of
distributed processing framework or find an optimal query plan. Our approach
can further help them to improve the query execution time, by configuring the
degree of parallelism and computational resources.

3 Cost Model for Hybrid Layouts

In [17], we did not consider configuring the number of tasks and machines, but
focused on choosing different storage layouts based on their reading and writing
cost. Thus, we extend the cost model to consider new factors (e.g., Usedgzecutorss
Pg;e, etc.) and estimations to help in deciding the number of tasks and machines
for a given query. In this section, we present the extended cost model for esti-
mating the number of tasks and executors. It should be noted that the number
of tasks depends on the partition size (also known as input split).

3.1 Parameters of the Cost Model

Our cost model for hybrid layouts relies on a wide range of statistical informa-
tion that are summarized in Table 1, containing system constants, data statistics,
workload statistics as well as hybrid layout variables. We assume that the con-
stants which depend on the configuration of the environment (e.g., BWp;si) are
provided. Furthermore, we discuss the collection of statistics (i.e., dataset and
workload) in Section 4.
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Variable Description
System Constants
Usedgzecutors Number of executors for processing
Chunksize Block size in HDFS
Psize Size of partition to control the number of tasks
BWpisk Disk bandwidth
BWhyet Network bandwidth
Data Statistics
[T Number of rows in a table
ColValuegize® Average size of a column value
#Cols Total columns of T
Sortedcor True for sorted and False for unsorted column
Workload Statistics

Refcols Number of columns used in an operation
SF Selectivity factor of an operation

Hybrid Layout Variables
RGSize RG size
Markers;.e Size of sync marker
Metacoisg;, . Size of min-max statistics of columns for an RG
Bodysize Size of the body
Headers;ze Size of the header
Footersize Size of the footer
Usedgrcs Number of RGs in the file
|RG| Number of rows of a RG

! Extra 4 bytes are considered for variable length columns
Table 1. Parameters of the Cost Model

Usedne. — ColValuessize - |T| - #Cols (1)

RGsize — (Markers;ze - #Cols)
||
— 2
|RG| Tsedno (2)
Bodysize = ((ColValuegize - |RG| + Markersize) - #Cols) - Usedras (3)
Metagize = (MetaColsgize - #Cols) - [Usedras | (4)
Totalsize = Headersize + Bodysize + Metasize (5)

3.2 Physical Format of Hybrid Layouts

As shown in Figure 1, hybrid layouts divide the data into multiple RGs (esti-
mated using Equation 1) and each RG contains a subset of rows (estimated using
Equation 2). In each RG, hybrid layouts store data column-wise and its size can
be estimated using Equation 3. Moreover, hybrid layouts also store metadata
(e.g., min-max statistics) for each RG inside either the header or footer section,
which can be estimated using Equation 4. The size of actual data and metadata
are further used in Equation 5 to estimate the total size of the file.
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_B d ize
USedTasks = &—‘ (6)
PSize
[ US@dTaskS
d aves = UsedBoecutors
Use w US@dEa:ecutOT‘S—‘ (7)
LastW avegzecutors = ((USEdTasks - 1) mod US@dEacecutm‘s) +1 (8)
_ PSize
#RGSPartztwn - RGSize—‘ (9)

3.3 Estimating Number of Tasks

Modern distributed processing frameworks decide the number of tasks based on
the total file size (which is the size of actual data without metadata) and the
partition size (estimated using Equation 6). Moreover, the degree of parallelism
depends on the number of executors. All tasks cannot be executed at once,
if the number of executors is less than the total number of tasks. Thus, we
need multiple rounds/waves to finish the query (estimated using Equation 7).
Further, we can calculate the number of executors active in the last wave using
Equation 8. Additionally, each partition contains one or more RGs, which can
be estimated using Equation 9.

3.4 Estimating MakeSpan

In this paper, we focus on read-only analytical queries, to estimate the amount
of data read for their first operation and based on that, we try to find the best
partition size to control the number of tasks. Given the simplicity of a file system
(far from that of a DBMS), only three operations need to be considered: scan,
projection, and selection. These three operations can be generalized to selection
sorted and selection unsorted, because scan and projection operations are just the
extreme cases of selection unsorted with selectivity factor of 1 (i.e., they read all
RGs).

RefColssize = (ColValuegize - |RG| + Markersize) - Refcols (10)
SF -Usedrgs + 1 selection sorted

Readras 11

e (1 -(1- SF)'RG‘) -Usedrgs selection unsorted (11)

Data read estimation. As mentioned above, hybrid layouts help to read
only the referred columns and their size can be estimated using Equation 10.
Additionally, they use the available metadata (e.g., min-max statistics) to filter
some RGs. If selection is applied on sorted data, the average number of read RGs
can be calculated directly based on the selectivity factor as shown in Equation 11
(we add one to handle the effect of position variation inside the RGs, because
hybrid layouts read the whole RG even if there is only one matching row [16]).
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Whereas, for selection of unsorted data, the expected number of read RGs can
be estimated using Equation 11 (borrowed from bitmap indexes [5]).

Usedrasks — 1 selection unsorted
Fullpartitions = Readras . (12)
_— selection sorted
#RGsPaTtition
. 0 selection unsorted
Pa""tlalPartitions - . (13)
2 selection sorted

1 selection unsorted
LaStPu/rtition - (]‘4)

0 selection sorted

EmptyPa'rtitions = UsedTask:s - FUllPartitions - Pafrtialpa'rtitions (15)
— Lastpartition
T Matches
i Full Partition Full Partition Full Partition Full Partition Last Partition ! | RG | Predicate
I(a) : 1
Selection ! 1 Does not
Unsorted RGO | |RG1 RG2| RG3 RG4| RG5 RG6| RG7 RG 8 ; RG |Match
: Predicate
Empty Partition Partial Partition Full Partition Partial Partition =~ Empty Partition
(b)
Selection :
sorted :||RGO||RG1 RG2| RG3 RG4| RG5 RG6||RG7 RG 8

Fig. 3. Type of partitions in selection sorted and unsorted

Types of partitions. Distributed processing frameworks process data by di-
viding them into multiple partitions, where each partition is processed in a sep-
arate task. For selection unsorted, every task processes a full partition except the
last task, whose partition might not be completely full, as shown in Figure 3a.
Equation 12 and Equation 14 indicate the number of full and last partitions.
Thus, for unsorted data, any partition has the same probability of containing
data. However, selection sorted guarantees that we read full partitions, except for,
potentially, the first (from where selection starts) and last one (where selection
ends), because requested data will not start just at the beginning and finish
just at the end of a partition. To reflect this, we always have two partial parti-
tions (Equation 13) and the number of full partitions depends on the number of
RGs to be read (Equation 12). Importantly, note that all other partitions will
nevertheless read their metadata to determine no data matches the predicate
(Equation 15). Figure 3b exemplifies these partitions. It should be noted that
the number of partitions and the number of RGs inside each partition are im-
portant factors for deciding the correct number of tasks and have direct impact
on makespan estimation.
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Cost estimation. The total cost of a task depends on four factors: initialization
cost, I/O cost, CPU cost, and networking cost. The initialization cost is constant
and can be determined according to the execution environment. The /O cost
depends on the amount of data read within a task and the disk bandwidth.
We do not consider CPU cost due to its negligible impact compared to I/0 cost
(existing works [16, 3] already proved that this is enough to capture the execution
trend). Finally, we do not need any shuffling [3], because we focus only on the
first operation loading data and therefore, the networking cost for shuffling is
considered to be zero.

However, there might be some cases when partition size goes beyond the
chunk size and it may require some chunks to be transferred over the network.
There are two solutions to handle this scenario. The first one is to define a
maximum limit on the partition size and always keep it less than the chunk size.
The second is to use an existing approach [14], which transfers data in advance
to avoid idle cycles on the processing machines. The approach to be used should
be chosen based on the business requirements. Our approach would work fine for
cloud storage (e.g., Amazon S3), as soon as it accesses the whole file together
as an object (not in partitions). Thus, distributed processing frameworks can
create a partition without worrying about going beyond the chunk size and data
locality.

Metasize Metasize
tMetadata = (U dzecuo'rs_l 1
Costaserada BWpisk * BWhnet (Usedpzecu ) (16)

There is still a networking cost for metadata (Equation 16), because current
solutions require to sequentially transfer metadata to all other executors before
start processing the data. Typically, it is read and transferred by the master or
driver executor.

CostFullpyriivion = COStnit (17)
MetaSizg + RefCOlSSizE . #RGSPa'rtition . (1 - (1 - SF)‘RG‘)
_|_
BWbpisk
ize * F artitions * P 173 - s
Oddpar _ RefColss (Full partit : #RGsPartition — Readras) (18)
Pa'rtlalPa'rtitions
COStPartialPartition - COStInit + Metasg‘;/—;i(jkddData (19)
Residualpata = RefColssize (20)
- (Usedras — #RGsPartition - Full partitions) - (1 — (1 — SF)‘RG‘)
Metasize + Residualpam
Costrastpariition = COStInit + BWopiek (21)
MetaSizc
CostEmptypariition = COStInit + BWpik (22)

Each partition has an initialization cost, which is a constant, and I/O cost
(which depends on metadata and the amount of data read inside the partition).
As shown in Figure 3, full partitions read all matched RGs inside a partition, and
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their cost can be estimated using Equation 17. Equation 18 estimates data read
from partial partitions and Equation 19 its cost. Equation 20 reads the data left
in the last partition and Equation 21 its cost. The other partitions just read
metadata and its cost is in Equation 22.

CostauTasks = Fullpartitions - COSLFullpyriivion (23)
+ Emptypartitions . COStEantyp,,yr“;tion

+ PartialPartitions : COStPa'rtialpaMitwn
COStAllTasks (24)

Usedrasks — Lastpartition

AvgCostrask =

These cost of all partitions help to estimate the total cost of all tasks using
Equation 23, which is used in Equation 24 to estimate the average cost of a task.
It should be noted that the cost of last partition is only applied for selection
unsorted and it is considered separately when estimating the total makespan.
Thus, we do not consider its cost here.

Wave 2 Task 6 Task 7

Wave 1| Task 3 Task 4 Task 5

Wave 0| Task0 |!| Task1 || Task2
Executor 0 Executor 1 Executor 2

Fig. 4. Execution of tasks

Estimating makespan. As discussed earlier, each task processes different
amounts of data and thus, some tasks can finish earlier compared to others.
Likewise, each executor can finish their assigned tasks on different times. Thus,
we should estimate makespan based on the executor that is processing largest
stack of tasks (e.g., in Figure 4, Executor 0 and Executor 1 are the ones with the
largest stack). This can be done by estimating standard deviation among tasks
and used it further for estimating overall makespan of an operation.

Used;;»GS = #RGsPartition - Full partitions (25)
Readres = Usedpes - (1—(1— SF)IEeh (26)
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For standard deviation, first we need to estimate the number of RGs inside
full partitions, using Equation 25. It is further used in Equation 26 to estimate
the actual read RGs based on the selectivity factor.

/ / ’
Readrgs Usedrgs — Readpgs

: . Selection unsorted
Usedpe, Usedpg,

(#RGSPartitions :

' Usedpgs — #RGSpartitions )

Stdev = UseleGs -1 (27)

QSSdTﬂSkS Costrask, — AvgCostras 2
\/Zz—l ( Task; 9 Task) Selection sorted

US@dTask:s -1

Finally, we use hypergeometric distribution [22] for selection unsorted to esti-
mate the standard deviation of a full partition in Equation 27, based on the read
RGs. Hypergeometric distribution estimates the standard deviation of choosing
a subset of items without replacement from the total available items. This is
similar to our case where we are also trying to select RGs (i.e., Read/RGS) from
the total RGs (i.e., US@d;:LGS>. Similarly, we also estimate standard deviation in
Equation 27 for selection sorted.

When LastWavegxecutors = 1

MakeSpan =
When LastWavegxecutors > 1

(UsedWaves : AngOStTask) + COStMetadata
+Stdev - \/Usedwaves - 2 - loge(LastW ave grecutors)

Finally, we estimate makespan for an operation using Equation 28. There are
two scenarios based on the number of executors active in the last wave. In the
first scenario, there is only one executor in the largest stack. In this case, the
last task is processing Lastpartition. Lhen, we do not need to take any standard
deviation, because there is one single largest stack. Thus, we just add the average
duration of all task in that stack.

In the second scenario, the makespan depends on metadata transfer, the
average cost of a task, the number of executors running in the last wave, and their
standard deviation. Thus, we need to estimate expected maximum [7] of those
by using the standard deviation as presented in Equation 28, which accounts for
the standard deviation of the addition of tasks (i.e., vUsedwaves), as well as the
maximum among executors in the last wave (i.e., \/2 - loge(LastW avepgecutors))-

4 Owur Approach

In this section, we discuss our approach in detail. Figure 5 shows its architecture,
which does not require any change in a distributed processing framework (i.e.,

Costrulipariivions * (Usedwaves — 1) + Costrastparisrion T COStMetadata

(28)
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it is fully transparent for users). The main function blocks of our architecture
are the following ones:

Query Parser Cost Model Submi_ttrc]]uery
Wi
estimated
>
%Query—) ¥ L tasks
and D &
User Query Profiling Data Profiling executors Computer Cluster

Sample

Fig. 5. Architecture of our approach

4.1 Query Parser

The query parser takes a query as input and uses an existing parser (i.e., Spark-
SQL parser'®) to validate its syntax. After validation, it generates the physical
plan of the query as an XML and forwards it to the next module. The physical
plan represents a tree that starts from input sources to the final output. It also
highlights the operations, which can be pushdown to the storage layer.

4.2 Query Profiling

The query profiling takes physical plan as an input and extracts pushdown op-
erations from the plan. Hybrid layouts can only pushdown two operations: pro-
jection and selection. It is easy to extract referred columns from the physical
plan. Whereas, for selection, it is not possible to extract selectivity factor (SF)
from the physical plan. To extract SF, query log needs to be parsed for analyzing
the old executions of the same query. Finally, this module passes the pushdown
operations along with required statistical information of operations to the cost
model.

4.3 Data Profiling

The data profiling module takes a sample of data and computes the statistical
information listed in Table 1. We rely on an existing approach, namely single
column profiling technique from [1].

15 https://jaceklaskowski.gitbooks.io/mastering-spark-sql /spark-sql- Ast Builder.html
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4.4 Cost Model

The cost model is used to estimate the reading size for a given query. Typically,
a query can have many operations linked together as a Directed Acyclic Graph
(DAG). The operations are ordered based on their possibility of pushdown to
the storage layer. Hence, the first operation is always a pushdown operation,
which reads directly from the disk and impacts parallelism. The subsequent op-
erations takes processed data from the first operation, which modern processing
frameworks (e.g., Spark) always keep in memory.

The cost model takes a pushdown operation, workload, data statistics, and
cluster configuration as inputs, which are used to estimate the makespan for a
given partition size and the number of executors as presented in Section 3. Our
goal is to find the best partition size and the number of executors, which can
be done using a multi-objective optimization method describe in the following
section.

5 Multi-Objective Optimization

In this paper, we focus on optimizing two objectives, which are contradicting
to each other. These objectives are makespan of query and resource usage (i.e.,
number of executors) required to run the query. We would like to minimize both
together. However, they are mutually contradicting, i.e., if we want to reduce
makespan, we require more computational resources. In the same way, if we
want to save computational resources, we have to compromise makespan. Thus,
we need to find a trade-off between them that satisfies user requirements and
constraints.

The first objective function (i.e., MakeSpan(Operationrype, Psize, UsedEzecutors))
is based on the makespan estimation according to Equation 28 (as defined in
Section 3) for a given operation type, partition size, and the number of ex-
ecutors. Similarly, the second objective function (i.e., Resourcevsage(Psize) =
Cost autasks as defined in Equation 23 estimates the resource usage, which in-
creases with the number of tasks.

T t l ize
PSize >= RGS'LZ& and PSize <= L (29)
UsedEgzecutors
PS'Lze <= ExeCUtOTAlemoTySize (30)
Usedggecutors <= MaxEzecutors (31)

To avoid unfavorable or even impossible configurations, we need to add three
constraints. Firstly, Equation 29 guarantees that the partition size is always
greater than or equal to the RG size and at the same time, we have enough
partitions to utilize all assigned executors as shown in Equation 30. Finally,
Equation 31 enforces the maximum number of executors.

Typically, there is no single optimum in a multi-objective optimization prob-
lem, but a Pareto front which contains many potentially optimal solutions de-
pending on user prioritization of one objective or another (as shown in Figure 6a).
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(a) Makespan versus Resource Usage for Sorted Selection (SF: 0.2) ; (b) Pareto front for Sorted Selection (SF: 0.2)
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Fig. 6. Pareto front for a selection (circle size represents resource usage, the bigger the
more resources; and color represents makespan, red for high and green for low)

Thus, the user has to choose one configuration from the Pareto front to, in the
end, execute the query at hand. Our framework'® facilitates the user choice by
reducing the many possible configurations to very few (belonging or close to the
Pareto front), so helping her to select one according to her preferences. As shown
in Figure 6b, the position in the solution space does not determine the position in
the configuration space, which hinders user’s choice. In this case, our framework
leaves only two (out of thirty-five possible solutions), which satisfy both objec-
tives according to our estimations. When the user selects one of those two, the
framework submits the query seamlessly to a processing engine by configuring
the partition size and number of executors accordingly.

In this paper, we do not focus on proposing a new multi-objective method,
rather we focus on finding the best possible configuration (i.e., number of tasks
and executors) for a given query. Thus, we use an existing multi-objective op-
timization approach, namely NSGA-II [10], implementing genetic algorithms. It
simply takes objective functions along with constrains as input, and produces
the Pareto front as an output.

6 Experimental Results

In this section, we discuss the setup and dataset used in our experiments. We
also provide the results that validate the accuracy of the cost model and show
the benefits of our approach.

6.1 Setup

We perform experiments on 5-machines cluster. Each machine has a Xeon E5-
2630L v2 @2.40GHz CPU, 128 GB of main memory, and 1TB SATA-3 of hard
disk, and runs Hadoop 2.6.2 and Spark 2.1.10 on Ubuntu 14.04 (64 bit). In
the cluster, we dedicated one machine for the HDFS name node and Spark

16 http://www.essi.upc.edu/dtim/tools/adbis2019
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Variable Value
UsedEzecuto'rs 27 3, 4, 57 and 6
Chunksize 128 MB

BWpisk 1.3 x 10® bytes/second
BWhxet 1.25 x 108 bytes/second
Costrnit 1 second

RGsize 128 MB

Markersize 16 bytes
Metacotsg;,. 156 bytes
Headers;.c 4 bytes
Table 2. Values according to our environment

master node together, and the remaining machines to data nodes for Hadoop
and executors for Spark. We prototyped our approach for Apache Parquet 1.8.2.
Table 2 shows the values of all environmental variables in our testbed. We also
configured replication factor equals to the number of machines to have replicas
on every machine thus avoiding chunk transfer in the case of having partition
size greater than the chunk size.

We also instantiated our cost model presented in Section 3 for scan, projec-
tion, and selection (both sorted and unsorted). Scan operation is just a selection
unsorted with selectivity factor 1, referring all the columns of the table. Simi-
larly, Projection is also a selection unsorted with selectivity factor 1 and based
only on the referred columns. For Selection, we just need to give selectivity factor
and it would work for both.

6.2 Results

As mentioned in [4, 15], very wide tables are common in modern analytical sys-
tems, because of their advantages in processing compared to normalizing data
into narrower tables. Nevertheless, to the best of our knowledge, there is no pub-
lic benchmark available that consists of wide tables. Therefore, in this section,
we first validate the accuracy of our cost model for makespan with a synthetic
dataset of a very wide table. Further, we present the results to show the benefits
of our approach to choose the best configuration for queries over the TPC-H
denormalized schema.

Cost model validation. We generated a synthetic dataset of a very wide ta-
ble with 1186 columns with different data types and 32 GB of size. We executed
scan, projection with 10 referred columns, and selection with 0.2 selectivity fac-
tor to compare the real executions with our estimations. Figure 7 shows that
comparison (notice that, we normalized the results, both real and estimation,
. T —min o . .
like — to facilitate visual comparison).
maxr — mwn

Figure 7a, Figure 7b, and Figure 7c show the results for a scan operation with

different number of executors. Similarly, Figure 7d, Figure 7e, and Figure 7f show
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Fig. 7. Validation of our estimation for makespan

the results for a projection operation with different number of executors. Finally,
Figure 7g, Figure 7h, and Figure 7i show the accuracy of our estimations in
comparison with the real executions for selection operation against sorted data.
And, Figure 7j, Figure 7k, and Figure 71 shows the results for selection operation
against unsorted data. Observe that, our estimations successfully capture the
trends of real executions in almost all cases. Most of our predictions closely
follow the real trends. In case of Figure 7c, 7h, and 7i the divergences with the
real trend are due to the different units used in our estimation. Yet, the trends
are predicted correctly and suffice to find the optimal partition size. The only
exception is 7b, where we estimated a lower cost for large partition. Nevertheless,
even in this case, our choice is still better than the default partition size.

We also confirm the accuracy of our estimations with the real executions
using statistical correlation, which measures how well the cost model estimates
are related to the real execution. In Figure 7, it can be seen that our estimations
are highly correlated (i.e., overall Pearson correlation coefficient 0.96) to real
executions.

Query|SF Ref Cols|Similar Queries
Q1 [0.98, 0.98] [7, 7] -
Q3 [0.0026, 0.0056] |[5, 7] Q8, Q12, Q17
Q10 |{[0.011, 0.031] [4, 11] |Q4, Q5, Q6, Q7, Q11, Q14
[
[

Q16 [[0.04, 0.08] 2,8 |Q2, Q13, Q15, Q18
Q20 |[0.000025, 0.0007]|[5, 11] |Q19, Q21
Q22 [[0.11, 0.2] 2,7 |Q9

Table 3. Representative queries of TPC-H
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Fig. 8. Comparison between our configurations and default ones for TPC-H

Performance evaluation. In TPC-H, the widest table has only 16 columns
and in TPC-DS'", only 26. Hence, we follow [23] to generate a wide table by
completely denormalizing all other tables in TPC-H against lineitem. The FROM
clauses in all queries are consequently changed to the corresponding denormal-
ized table. This results, for a scale factor 16GB, in a denormailized table of
124G B being generated for the evaluation. We have chosen six representative
queries based on different projected attributes and selectivity factors as shown
in Table 3. The table shows the intervals of selectivity factor and number of re-
ferred columns of each group of queries. The other queries follow similar access
patterns to those selected.

As presented earlier, there is no optimal solution in a multi-objective op-
timization, but there are many best solutions referred to as Pareto front. The
Pareto front of our estimation is denoted as Paretogstimated, and the Pareto
front of the real execution is denoted as Paretogreq. It could happen that in
the Paretogstimated, We miss some real Pareto solutions. These are referred to
as Paretonrissea- Furthermore, we have the default set of solutions — when a
default partition size (i.e., 128MB) is used, denoted as De fault gea:. Finally, each
solution has two metrics based on our objectives, namely, makespan and resource
usage.

We compute the Euclidean distance between Paretogsiimatea and Paretorear
(both makespan and resource usage components are normalized to mitigate dif-
ferences in the scales, resulting on a maximum distance of v/2), and also to
penalize the missed solutions, we compute the distance between Paretoarss and
Paretogstimatea — all these distances compute to Our Solution. Furthermore, we

17 http://www.tpc.org/tpeds
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also compute the distance between Defaultgeqs; and Paretogre.; — which are
represented as Default Configurations. More precisely, the Euclidean distance is
computed between each solution of one set and all the solutions of the other set,
and each time the minimum distance between them is taken.

In Figure 8, we show the Boxplot of the distances corresponding to Our
Solution compared to the boxplot of the distances to Default Configurations. We are
showing the results of the representative queries (chosen based on their referred
columns and selectivity factors) of TPC-H. Observe the boxplots in Our Solution
are smaller and closer to zero distance, which means that the solutions proposed
(i.e., Paretogstimatea) are much closer to the real Pareto front (i.e., Paretoreca)
than the default configurations (i.e., Defaultrea). In summary, on average we
are as close as 5.6% to the real Pareto front, whereas, the default configuration
is much further from the Pareto front (on average 58.2%).

(a) Improvement in makespan (b) Speedup gain over default configuration
3.0
150 + W= Our Approach H =$= Speedup
R Default I
- 125 2.5 1
)
g - I
£ 100 5
g | 4 2 20l
4 75 ! T 2.
t ol | #
E
= I 15
"
1.0 T T T T T T
Ql Q3 Q10 Q16 Qz0 Q22 Q1 Q3 Qlo Ql6 Qz0 Q22
TPC-H Queries TPC-H Queries

Fig. 9. Speedup gain for TPC-H queries

We also compare the query execution time (i.e., makespan) of our approach
with the default configuration (e.g., default partition size of 128MB). As men-
tioned earlier, we have multiple solutions for a query and we took the minimum
makespan among these solutions for comparison. Similarly, we have multiple
default configurations and we took the average of their makespans. Figure 9a
compares the makespan of TPC-H queries, which highlights the advantage of
our approach over the default solutions. Likewise, we also present the speedup
gain in Figure 9b, which is between 1.8x to 2.5x. On average, our approach
provides 2.1x speedup against the default configuration.

7 Conclusions

Hybrid layouts are widely used to store processed data in highly distributed Big
Data systems to perform ad-hoc analysis. These Big Data systems process data
on a computers cluster by creating multiple tasks. Typically, they create tasks
based on the total size of the table, rather than based on the reading size of the
query. Moreover, always using the default configuration has a heavy impact on
performance. Thus, we proposed a cost-based framework which utilizes a multi-
objective approach to decide the number of tasks and executors for a given query
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based on the reading size. We prototyped our approach for Apache Parquet,
evaluated it on TPC-H queries, and showed the improvement it provides.
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