

City, University of London Institutional Repository

Citation: Ardagna, C. A., Bena, N., Hebert, C., Krotsiani, M., Kloukinas, C. & Spanoudakis,

G. (2023). Big Data Assurance: An Approach Based on Service-Level Agreements. Big
Data, 11(3), pp. 239-254. doi: 10.1089/big.2021.0369

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30053/

Link to published version: https://doi.org/10.1089/big.2021.0369

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Big Data Assurance: An Approach Based on
Service-Level Agreements

Claudio A. Ardagnaa, Ernesto Damiania,b, Cedric Hebertc, Maria Krotsiani,
Christos Kloukinas, George Spanoudakisd,

aDSRC, DI, Università degli Studi di Milano
Milano, 20133, Italy

bAIISI, Khalifa University
Abu Dhabi, UAE
cSAP Labs France

Mougins, 06250, France
dCity, University of London

Northampton Square, London, EC1V 0HB, UK

Abstract

Big data management is a key enabling factor for enterprises that want to
compete in the global market. Data coming from enterprise production pro-
cesses, if properly analyzed, can support a boost in the enterprise man-
agement and optimization, guaranteeing faster processes, better customer
management, and lower overheads/costs. Guaranteeing a proper Big Data
analytics is the Holy Grail of Big Data, often opposed by the difficulty of
evaluating the precision of the Big Data analytics results. This problem is
even worse when Big Data analytics are provided as a service in the cloud,
and must comply with both users’ requirements and laws. Recently, the Big
Data community has started noticing that there is the need to complete Big
Data with assurance techniques proving the correct behavior of Big Data an-
alytics and management. This paper provides an assurance solution based on
Service-Level Agreements (Slas), where stochastic formal models are used
to define, negotiate, and monitor Slas targeting the behavior of Big Data
platforms and analytics delivered as a service.

Email addresses: claudio.ardagna@unimi.it (Claudio A. Ardagna),
ernesto.damiani@ku.ac.ae (Ernesto Damiani), cedric.hebert@sap.com (Cedric
Hebert), {Maria.Krotsiani, C.Kloukinas, G.E.Spanoudakis}@city.ac.uk (Maria
Krotsiani, Christos Kloukinas, George Spanoudakis)

Preprint submitted to Computers & Security March 13, 2023

Keywords: Service-Level Agreements, Big Data Analytics, Big Data
Assurance, Model Checking

1. Introduction

Big Data is a major research topic, leading all productive environments
and enterprises towards the data-driven economy. Big Data becomes funda-
mental for all enterprises, from big ones to SMEs, which want to compete
in the global market. Better management of data coming from productive
processes in fact leads to faster processes, better customer management, and
lower overheads/costs. Often, the immense benefits of Big Data are for-
bidden to those enterprises that do not have in-house Big Data skills and
competences, and are therefore unable to manage the intrinsic complexity of
its technologies.

In the last few years, the R&D community has focused on widening the
adoption of Big Data technologies by providing solutions supporting users in
easily implementing a Big Data campaign [1, 2]. Approaches to Big Data-
as-a-Service have been defined, providing services for the management and
execution of Big Data computations at different layers of the cloud stack.
Substantial work has been done on Big Data Platform-as-a-Service, where
users are provided with a pre-configured platform, as for instance Microsoft
Azure HDInsight and Amazon EMR. Users need then to only concentrate
on configuring and executing the analytics without worrying about how to
manage and deploy the corresponding platform. This scenario, however,
collides with the lack of data scientists having the skills and competences
to implement a sound Big Data campaign and retrieve meaningful results.
According to the Harvard Business Review [3], shortage in data scientist
dates back to 2012, with an inexorable, increasing trend in data professional
demand towards our days (IBM predicts job demand for data scientist, data
developers, and data engineers to reach nearly 700,000 openings by 2020 with
an increase of 28% [4]).

Following this issue, in the last few years, different techniques supporting
the concept of Big Data Analytics-as-a-Service has been defined [5, 6, 7, 8, 9],
where high-level requirements of the users are transformed in Big Data work-
flows that can be executed on the target Big Data platform. However, these
approaches suffer from the inability to evaluate and manage the quality and
correctness of the implemented Big Data analytics. It is therefore increasingly

2

important to guarantee that the overall Big Data infrastructure complies with
users’ expectation, and even more with national/international laws and reg-
ulations. This challenge points to the concept of Big Data assurance, which
aims to provide justifiable confidence that a system behaves as expected.
In the past, assurance techniques (i.e., audit, certification, compliance) have
been used to evaluate the status of distributed systems such as the cloud [10].
These solutions, however, barely apply to Big Data scenarios and require a
rethinking of the assurance concept at large.

Effectively tackling such issues is fundamental to increase trust in Big
Data-as-a-Service paradigm, and in turn to foster the movement of critical
businesses to it. In this paper, we extend the work presented in [11] and
provide an approach to Big Data assurance, whereby Service-Level Agree-
ments (Slas) help evaluating the compliance of a Big Data environment and
corresponding analytics, both distributed as a service, to (security) prop-
erties. We consider a Model-based Big Data Analytics-as-a-Service (MB-
DAaaS) methodology (Section 3), where the users specify a set of declarative
requirements, driving the deployment of the Big Data services to accomplish
specific analytics. After introducing the concept of Big Data assurance, dis-
cussing data, process, and platform assurance (Section 4), we present our
approach to Big Data assurance (Section 5), where Slas are defined accord-
ing to declarative requirements of the users and configurations of the target
execution platform. Moreover, we present different Sla negotiation pro-
cess (Section 6), which is supported by the PRISM [12] probabilistic model
checker, and our solution to Sla monitoring (Section 7). The performance
of the proposed approach is finally evaluated in a simulated environment
(Section 8) proposed by SAP, a global market leader in enterprise resource
planning.

To conclude, the approach in this paper develops on the approach pre-
sented in [11] providing the following contributions i) a refined assurance
methodology, which mixes assurance requirements and controls at declar-
ative and procedural levels using annotations functions, ii) two types of
Sla negotiation processes, namely client-middleware-server negotiation and
client-server negotiation, iii) a new approach to Sla monitoring.

2. Related Work

Non-functional assurance verification can be defined as the way to gain
justifiable confidence that a system will consistently demonstrate one or more

3

properties, and operationally behave as expected despite failures and at-
tacks [13]. As discussed in [10], non-functional assurance consists of method-
ologies and techniques (e.g., audit, certification, and compliance) for collect-
ing and validating evidence supporting different security properties, such as,
security, privacy, and dependability.

Several assurance techniques have been defined in the past for distributed
systems, from service-oriented architectures (e.g., [14, 15]) to cloud environ-
ments [16, 17, 18, 19, 20, 21]. These techniques mostly focused on evaluating
the security and dependability status of distributed systems. More specifi-
cally, existing processes evaluate the status of the system at all layers of the
corresponding stack (e.g., service, platform, and infrastructure layers for the
cloud), provide a process that continuously evaluates the correctness of the
system behavior, and support incremental evaluation to reduce the need of
evaluating the system from scratch at each contextual change. Lot of research
has also been done to assess the behavior of Big Data technologies. Several
approaches have been developed in the area of Sla for Big Data applica-
tions, mainly targeting MapReduce jobs [22, 23, 24] and Hadoop [25], where
they either tried to identify and address Sla violations or found appropriate
algorithms taking into consideration the performance of these services at all
cloud layers [26].

In this paper, Slas are used as a means for supporting Big Data assur-
ance. Slas have been heavily used to specify terms and conditions for service
provision between service consumers and service providers. To support the
Sla specification process, several specification languages (e.g., [27, 28, 29,
30, 31]) have been defined over the years, with the aim to simplify the Sla
specification process for the involved parties, and to minimize the time and
cost required for it. Despite the extended research on Sla languages and
Sla management, Slas still fail to completely address the requirements of
BDA services. Even though new Sla languages have been developed to sup-
port cloud services (e.g., CSLA [32], SLAC [33], SLA* [30]), security abd
privacy of services is not fully supported. Finally, cloud and BDA services
support complex operations and have many dependencies between different
operations/services, which are difficult to model with current Sla languages.

3. MBDAaaS Methodology

Big Data analytics and management are practical pressing needs, which
represent turning key aspects for enterprises that want to compete in the

4

global market. While a Big Data computation can be easily deployed, it still
takes substantial expert knowledge to set the computation up in such a way
that it actually produces meaningful and sound results. Current approaches
mostly focused on providing the so-called Big Data Platform-as-a-Service
(BDPaaS) paradigm, where Big Data providers (e.g., Azure, Amazon) offer
Big Data platforms on demand to end users. End users then access a complete
Big Data platform, without the need of knowing how to install and configure
it, and just focus on implementing a Big Data computation. BDPaaS, though
important, is not sufficient to widen the adoption of Big Data technologies
among the different production domains. It is fundamental to support the
users in the management of Big Data analytics and all involved activities.

Recently, the research community moved from a paradigm where Big
Data application development is driven by the latest technology release, to
a more traditional (model-based) paradigm where the users specify their
expectations in terms of requirements, and users/consultants follow them in
implementing the Big Data computation. In [5], we presented a Model-based
Big Data Analytics-as-a-Service (MBDAaaS) approach, where users specify
declarative requirements driving smarter components in carrying out the Big
Data processes. MBDAaaS is based on the Model Driven Engineering (MDE)
paradigm and aims to reduce as much as possible the involvement of the users
in Big Data management.

In the following, after describing our reference scenario, we briefly sum-
marize the approach in [5].

3.1. Reference Scenario
We use a reference scenario provided by SAP, a global market leader in

enterprise resource planning, where an ERP system continuously sends its
application logs to two connected cloud platforms, a private cloud Monsoon
instance and a publicly accessible AWS instance saving data into a HADOOP
data store (Figure 1). In the private cloud, the data are first pseudonymized
and then anonymized with differential privacy before being streamed to the
AWS instance. There, the data are constantly monitored by a Retention
Service, configured to delete logs older than 1 year. An auditor (Clara) can
connect to this service and manually check whether there is a violation of the
retention policy. An analyst (Bob) can check the logs through an analytics
agent, which first clusters logs and then further anonymize big clusters with
k-anonymity. k-anonymity is configured to run only on ’big’ clusters. Small
clusters are considered anomalies and not eligible to k-anonymity protection.

5

Figure 1: Architecture diagram

Once his analysis is complete, Bob defines anomaly ranges which allows the
response team (Alice) to look at the raw logs whitelisted by Bob, enforcing
a 4-eyes principle. Alice uses a log viewer for taking the proper decision,
such as contacting the identified fraudster for a face-to-face interview. When
using the log viewer, the raw, non-anonymized logs are displayed to her, but
only if they pertain to the ranges defines in the Anomaly Range storage by
Bob (e.g., specific log IDs, specific time-ranges).

3.2. MBDAaaS Models and Workflow
The proposal in this paper is based on the approach in [5], which builds

on three models described below.

Declarative model. It collects a user’s requirements and expectations on
the Big Data computation. The user accesses a graphical user interface
and defines such requirements in terms of goals modeled as pairs (indicator,
objective). An indicator permits to measure the goal, while the objective rep-
resents a value the indicator must achieve. Each goal can also be enriched
with constraints as pairs (attribute, value), further refining user’s expecta-
tions. It is also coupled with a priority that permits to solve conflicts in

6

the user’s specifications and support the user in defining sound declarative
models. It is important to note that, unlike existing solutions mostly focus-
ing on data modeling and representation [34], the approach in [5] permits to
define declarative requirements along all phases of a Big Data computation
including: i) data preparation, ii) data representation, iii) data analytics,
iv) data processing, and v) data visualization and reporting. The declarative
model is specified as a JSON file and represents the input of the MBDAaaS
methodology.

Procedural model. It is a technology-independent model and defines the
workflow describing how the Big Data processes should be carried out to
achieve the objectives. It is modeled as a direct acyclic graph where i) each
node represents a service in one of the five phases of declarative model specifi-
cation, ii) each arrow between two nodes represents the execution flow. Each
service can be configured according to constraints in the declarative model
or preferences directly specified by the user. The procedural model defines a
service composition specified in a semantic language based on OWL-S [35].

Deployment model. It is a technology-dependent model that specifies
how the Big Data computation is executed on the target platform. It is a
technology-dependent representation of the service composition in the proce-
dural model, using a workflow language (e.g., Oozie, Spring Cloud Dataflow)
that can be automatically executed on the target platform. A compiler is
used to transform the OWL-S procedural model in a language-specific work-
flow. The deployment model contains all details on the target system and
implemented algorithms, and can be used as a source of assurance require-
ments.

Example. Figure 2 presents an example of declarative, procedural, and de-
ployment models on our reference scenario in Section 3.1. The application
data logs entail sensitive information on the actions performed by the employ-
ees. SAP can then define a declarative model, whose JSON representation is
presented in Figure 2, with the following goals:

1. goal Anonymization for the data preparation phase, with indicator
Anonymization technique and value Priv-bayes [36], extended with a
constraint on the noise level such as (Algorithm, epsilon=0.1);

7

Declarative Model (Excerpt)
{
[...]
"tdm:targetDataSources": [

"hdfs://192.168.0.5:8020"
],
[...]

"tdm:preparation": {
[...]
"@type": "tdm:Area",

"tdm:label": "Data Preparation",
"tdm:incorporates": [
{

"@type": "tdm:Goal",
"tdm:label": "Anonymization",
"tdm:constraint": "{}",
"tdm:incorporates": [
{

"@type": "tdm:Indicator",
"tdm:label": "Anonymization Techniques",
"tdm:constraint": "{}",
"tdm:visualisationType": "Option",
"tdm:incorporates": [

{
"@type": "tdm:Objective",
"tdm:constraint": "{k:10}",
"tdm:label": "K−Anonymity"

}]}]}]},
[...]
]}

Procedural Model

Stream
connector

Spark
k-means

kMeans
Algorithm

k-anonymity
service

display
results

Deployment model (SCDF)
PSEUDO: pseudonymization−service
−−parameter.output_column=pseudo
−−parameter.input_column=user
−−parameter.input_file=hdfs://user/root/sap/anon1/input.csv
−−parameter.input_data=hdfs://user/root/sap/anon1/input_data.csv
−−parameter.delimiter=;
−−parameter.output_file=hdfs://user/root/sap/anon1/output.csv
&& PRIV: privbayes−service
−−input_file=hdfs://user/root/sap/anon1/output.csv
−−delimiter=;
−−output_file=hdfs://user/root/sap/anon1/results.csv\\

Figure 2: An example of model specification

8

2. goal Anonymization for the data preparation phase, with indicator
Anonymization technique and value Pseudonymization, extended with
a constraint such as (Algorithm, hash=SHA-256);

3. goal Analytics Aim for the data analytics phase, with i) indicator Task
and value Crisp Clustering and ii) indicator Learning Approach and
value Unsupervised.

4. goal Compliance for the data analytics phase, with indicator Data Era-
sure and value 1 year ;

5. goal Anonymization for the data processing phase, with indicatorAnonymiza-
tion technique and value K-anonymity, extended with constraints such
as (Algorithm, K=10) and (Exception, Cluster-size<5);

A procedural model for the AWS instance then applies i) a stream data
connector to ingest SAP data on application logs, ii) an analytics service
clustering logs based on their similarity, and iii) an anonymization service
generalizing the content of each cluster before displaying it to the analyst.
The deployment model finally specifies the details (including the endpoints
and using Spring Cloud DataFlow language) of the anonymization and ana-
lytics services composed as described in the procedural model.

The MBDAaaS methodology is then composed of a series of semi-automatic
model transformations. It takes as input the declarative model and produces
as output the deployment model that is executed on the target platform. The
declarative model is first defined by the user. On the basis of the defined
goals and constraints, our methodology retrieves a set of services that are
compatible with the user goals. For instance, considering Goal 1 Anonymiza-
tion above, our methodology retrieves all services implementing a priv-bayes
anonymization service. Upon retrieving all services, the user manually con-
figures and composes a subset of them to produce the procedural model.
This model is then automatically transformed by a compiler in a deployment
model, which is ready to be executed on the target platform [5].

4. Big Data Assurance

The success of a methodology that assists users in instantiating their Big
Data computation depends on the ability of guaranteeing that the retrieved
results are in line with the user expectations. In our case, the retrieved results
must be the results of a process correctly implementing the user’s declarative
specifications. The soundness of the entire process depends on whether the

9

Declarative Model

Target Platform

Deployment Model

Procedural Model

Assurance Requirements

Assurance
RequirementsAssurance-Based

Refinement

Execution

Model
Transformation

Preliminary
Assurance
Controls

Service
Composition

Assurance
Controls

Figure 3: Model-based Big Data Analytics-as-a-Service methodology

Big Data computation satisfies the assurance requirements specified by the
user. Declarative requirements and procedural specifications become then
sources of assurance requirements that need to be verified both at run time
and a posteriori.

4.1. Assurance Methodology and Requirements
Big Data assurance extends traditional assurance to embrace different

layers of evaluation. In addition to the evaluation of the status of the platform
and its behavior, Big Data assurance process must evaluate the status of the
analytics process, as well as the status of the corresponding data. The latter
points to veracity of the 5V model for Big Data [37], which refers to the
trustworthiness of data.

In this paper, we focus on the assurance evaluation of our MBDAaaS
methodology. Figure 3 sketches how an assurance process aimed to verify
the compliance to specified requirements can be integrated with our method-
ology. Specifically, the declarative and procedural models in Section 3 are
extended with two annotations specifying assurance requirements. Assur-
ance requirements are first associated with specifications at declarative level,
which in turn can also be a direct source of assurance requirements. For
instance, a declarative specification on the expected data anonymity tech-
nique can directly point to an assurance requirement checking the adopted
anonymization technique. Declarative requirements are then integrated and
refined with assurance requirements specified at procedural level. The latter
are associated with specific services and monitor their computation. Once

10

the extended procedural model is fed into the compiler a deployment model is
produced, where each service is associated with the set of assurance controls
monitoring their execution and evaluating their compliance against assur-
ance requirements. Each service in the deployment model is then executed
together with corresponding assurance controls on the target platform. The
target platform includes a set of assurance managers, each responsible to
execute a subset of assurance controls for a specific service. The retrieved
assurance evaluation is then used to refine declarative model specification
towards full compliance with the user’s expectation.

MBDAaaS assurance must be evaluated at three layers that can be linked
to the five areas of declarative model specification, namely, data preparation,
data representation, data analytics, data processing, data visualization and
reporting, as follows.

• Data assurance. It evaluates how data are managed, represented, and
prepared for the Big Data platform. It relates to the two areas of the
declarative model regarding data preparation and data representation.
Data preparation consists of all activities that need to be done at data
collection/ingestion time to prepare data for analytics (e.g., cleansing
and anonymization). Data representation consists of the choices made
for representing data to be analyzed (e.g., data model, data structure,
and data management). In our scenario, the analyst must never see
individual data records, but only data buckets generalized by applying
k-anonymity. An assurance manager then verifies that each displayed
data record cannot be distinguished from at least k−1 other records.
As another example, the response team person must only be able to
access data records previously marked as suspicious by the analyst. An
assurance manager then verifies that the records made available match
with the specified anomaly ranges.

• Process assurance. It evaluates the status of a Big Data process, by
monitoring all activities between the ingestion of data and the produc-
tion of the computation outcome. It mainly relates to the two areas
of declarative model regarding data analytics, and data visualization
and reporting. Data analytics specifies the mining operations to be
executed (e.g., the type and the model of analytics, the target quality).
Data visualization and reporting specifies how the outcome of the com-
putation must be presented (e.g., information on the dimensionality,
cardinality, and graph type). In our scenario, data must not be kept

11

Table 1: Mapping between declarative areas and assurance layers
Assurance
Layer

MBDAaaS Areas Description

Data Data preparation,
Data representation

Evaluate the properties related to
data, such as their anonymity, privacy,
format.

Process Data analytics,
Data visualization & re-
porting

Evaluate the Big Data process prop-
erties, monitoring the run-time execu-
tion of analytics, the results and their
visualization.

Platform Data processing Evaluate the platform status: deployed
components, their configuration and
availability, and adherence to stan-
dards and guidelines.

on the cloud for more than one year. To this aim, a deletion service
runs every few minutes on the target system and an assurance manager
verifies whether data records are never older than 1 year. As another
example, data must be manipulated, stored, and accessed in an Euro-
pean country following General Data Protection Regulation (GDPR).
This can be achieved by monitoring the whole process, verifying the
location of the machine where data are managed.

• Platform assurance. It evaluates the status of the Big Data platform,
where computations are executed. It mainly considers the status of
those components and algorithms that are concerned with data and
process assurance. It relates to and goes beyond the data processing
area of the declarative model, concerned with data routing and paral-
lelization. It also considers non-functional components supporting data
security and privacy, and process monitoring. For instance, it includes
requirements on performance, parallelization, processing, and elastic-
ity. It permits to verify that a given non-functional (e.g., signature
component for data integrity) component is behaving as expected. In
our scenario, the Big Data platform must guarantee data integrity and
a given level of availability. Assurance manager then verifies that the
records are cryptographically signed and the signature is valid. It also
monitors the entire platform evaluating its availability.

Table 1 summarizes the mapping between the 5 areas of declarative model
and the three layers of assurance.

12

4.2. Assurance Requirements Specification
With a very general setting (Figure 3), we assume assurance requirements

on Big Data computations to be specified in terms of assurance annotations
of goals in the declarative model or services in the procedural model. The
only assumption we introduce on such annotations is the existence of a (semi-
automatic) means to translate these requirements in real assurance controls
at deployment level, such that, services are executed together with the con-
trols responsible for their evaluation. Assurance annotations are defined as
follows.

Definition 4.1 (Assurance Requirements). Assurance requirements Λ are
a set of assurance annotations λ in the form (attr op value), where attr is
an assurance target, op is an operator in {=,<,>,6=,≤,≥}, and value the
objective for the attribute.

Our generic definition of assurance requirements permits to capture dif-
ferent ways of expressing assurance annotations, as well as different target
levels. For instance, assurance annotations can be defined using different
techniques from SLAs (as in our paper) to certification, audit, and com-
pliance. Regarding their specification, assurance annotations could target
existing standards and regulations (e.g., GDPR), point to generic aspects
and configurations of Big Data services, or pose restrictions on the way in
which specific declaration can be achieved.

Assurance annotations can be specified at two different layers: declarative
specifications d in the declarative model and component service s in the
procedural model. Let us discuss the semantics of the annotation function λ
as follows.

• λ(d). It defines assurance annotations on specific elements of the
declarative model. Recalling that a declarative specification d is triple
(G, I, O), where G defines the goal to be achieved by the computa-
tion, I is an indicator that represents a way of measuring or assess-
ing the goal, and O is an objective that represents the target to be
achieved to consider the goal fulfilled, λ(d) associates an assurance
constraint with a specific d. For instance, declarative specification
da=(Anonymization,Anonymization_Technique, k-anonymity) re-
quires the adoption of a k-anonymity technique to prepare data. This
specification can be extended with an annotation λ(d) that points to a

13

specific regulation (e.g., GDPR). This regulation might prescribe some
requirements to be checked by our assurance methodology (e.g., the
value of k) to retrieve a positive evaluation. It is important to note
that declarative specifications can become a source of assurance require-
ments themselves. For instance, declarative specification da requires
an assurance control checking the correct working of the k-anonymity
technique.

• λ(s). It defines assurance annotations on specific services in the pro-
cedural model. These annotations define those checks that directly
transform in controls and are fed to the assurance monitor deployed
within the same environment where services s are executing. For in-
stance, a service s implementing a k-means clustering algorithm can be
annotated with an assurance requirement prescribing locality of compu-
tation, that is, all computation should be executed in a specific country.

Annotations λ(d) and λ(s) are integrated and compiled to form a deploy-
ment model that i) includes a ready-to-be-executed workflow of the compu-
tation and ii) integrates all assurance controls devoted to the evaluation of
the compliance between the computations and the user’s expectations. We
note that, as shown in Figure 3, the declarative and procedural models are
the main sources of requirements and, in turn, the targets of assurance spec-
ification and verification. In the remaining of the paper, we show how a Big
Data assurance process for our MBDAaaS methodology can be defined based
on Sla specification and management. Annotations are used to negotiate the
final Slas to be monitored, which evaluate the adherence of the implemented
Big Data processes to the user’s expectations.

5. SLA Specification

Slas are formal agreements (aka contracts) that clarify the service provi-
sioning and the responsibilities between the service consumer and the service
provider, to facilitate the communication between them [38]. At a minimal
level, Slas should define the security properties that need to be preserved
during the provision of a service and the penalties that will be applied, in
case the service provision violates those security properties.

Our Sla specification language is based on the WS-Agreement [27] ex-
tended to specify Slas that are suitable to cover the MBDAaaS concept.

14

Agreement
Name
Context
Terms
Service Terms
Guarantee Terms

Figure 4: Structure of the WS-Agreement Sla

The WS-Agreement specification language was introduced by the Open Grid
Forum to address some key requirements for the specification of Slas, such
as supporting modularity, accommodating other external and domain specific
standards, and allowing extensions.

In WS-Agreement, an Sla is composed of three main sections, that is,
the name, the context and the terms that are applied, as shown in Figure 4.
The first section provides an optional Sla name. The second section, called
Context, contains the metadata for the entire Sla (e.g., the Sla participants,
its lifetime). The third section specifies the terms of the Sla, which can be of
two types: a) Service Terms that describe the services regulated by the Sla
and b) Guarantee Terms (GTs) that specify the service levels that should be
satisfied during the provision of the service. More specifically, GTs define
the expected quality of service (QoS), comprising i) the obligated party,
ii) the list of services this guarantee applies to, iii) an optional condition
that must be met for a guarantee to be enforced, iv) an assertion expressed
over service descriptions (ServiceLevelObjective), and v) one or more business
values associated with this objective (BusinessValueList).

The limitations of WS-Agreement for our purposes in Section 4 are re-
lated to the lack of specification support for: i) security and privacy Service
Level Objectives (SLOs); ii) actions that need to be taken during the life
cycle of an Sla (e.g., service provision platform modification actions or Sla
renegotiation actions); iii) multi-party Slas; and iv) comprehensive models
of complex services, which include internal operations, service assets, data
and other dependencies that Big Data Analytics services usually have.

We then extend WS-Agreement to support monitorable SLOs, on one
side, and the specification of actions that should be undertaken in case of
guaranteed term violations, on the other side. The BNF grammar of the ex-

15

Listing 1: Extended WS-Agreement BNF grammar (abstracted)
XWSAgreement ::= { IdOpt ... Terms ... }
Terms ::= { ... { GuaranteeTerms } }
GuaranteeTerms ::= List{GuaranteeTerm , ""}
GuaranteeTerm ::= { Id ... BusinessValueListType }
BusinessValueListType ::= ... CustomBusinessValue
CustomBusinessValue ::= List{XAction , ""}

XAction ::= "renegotiate" Pred
| "penalty" Pred Int

| Id Pred
Pred ::= "true" | " fa l se "

| "(" Pred ")" [bracket]
| Pred "&" Pred | Pred " | " Pred
| " !" Pred | Pred "?" Pred " : " Pred
| NumExp "=" NumExp | NumExp "!=" NumExp
| NumExp ">" NumExp | NumExp "<=" NumExp
| NumExp "<" NumExp | NumExp ">=" NumExp

NumExp ::= Int | "(" NumExp ")" [bracket]
| NumExp "∗" NumExp | NumExp "/" NumExp
| NumExp "+" NumExp | NumExp "−" NumExp
| Pred "?" NumExp " : " NumExp
| "violat ions" "(" Id ")"
| "penalty_amount" "(" Id ")"
| "counter" "(" Id " ," Id ")"

tended WS-Agreement is shown in Listing 1. The grammar syntax is based
on the syntax used by the K Framework [39]. More specifically terminals
are inside quotes, and List{ X, “c” } is a c-separated list of zero or more
X s. Notes inside square brackets ([]) on the right have to do with evalua-
tion. seqstrict means that they must be evaluated left-to-right, and strict(1)
means that only the first non-terminal needs to be evaluated. Both Pred
and NumExp permit the ternary if-then-else operator pred ? exp1 : exp2,
which evaluates to exp1 when pred is true, and to exp2 otherwise. Apart
from constants, one can use predefined functions, such as violations(GT),
penalty_amount(GT), and counter(Action, GT). These functions pro-
vide the number of times a specific GT has been violated so far; the amount
accrued in penalties due to violations of a specific GT; and the number of
times an action has been executed, following a GT triggering, respectively.

More in detail, to support monitorable SLOs, we extended the sub-
element CustomServiceLevel of the ServiceLevelObjective, by introducing a
new type for CustomServiceLevel called PreciseSLOType, to support the spec-
ification of SLOs at two levels.

1. Declarative level, based on the declarative model of our MBDAaaS
approach (Section 3). This is specified as a property of a particular

16

category that is applied to a service asset (e.g., internal or external
operation or data elements of the service).

2. Procedural-Deployment level, which provides the exact run-time asser-
tion representing the SLO satisfaction, to support a run-time monitor-
ing process of the GTs. SLO assertions are expressed in the language
developed in the CUMULUS project [40] — itself based on Event Cal-
culus [41], a formal first order temporal logic language, also used by
the EVEREST Framework [42]

As an example, according to our reference scenario and the goals of the
declarative model, we can extract the information regarding security prop-
erty Pseudonymization, which should be guaranteed for data in application
logs following the specified algorithm (e.g., SHA-256). Based on the corre-
sponding procedural and deployment models, we can then retrieve the service
to which the considered property applies.

Moreover, to support the specification of actions that should be under-
taken when guaranteed terms are violated, we extend the WS-Agreement’s
sub-element CustomBusinessValue of element BusinessValueList. Our ex-
tension permits to express different types of actions that should be triggered
by each GT violation, or by any other conditions specified in an Sla. Two
predefined actions exist: i) renegotiate Pred, which causes the Sla to be
renegotiated when the guard Pred is satisfied and ii) penalty Pred Int, which
causes a penalty (or reward if negative) to be incurred. Even though WS-
Agreement supports the specification of penalties, our extension makes a
more precise penalty specification. Sla modellers are also free to use any
other action name they wish and can also guard all actions with a predicate.
A guard predicate declares conditions that should be satisfied, in addition to
the GT violations triggering the action.

6. SLA Negotiation

Sla negotiation is characterized by the observation that a customer and
a service provider are separated by a knowledge gap when initiating the
Sla negotiation process. This knowledge gap may be due to lack of ex-
perience, lack of knowledge about the organizational structure, and lack of
general knowledge with respect to the service, the service environment, or
the deployment of the service, as follows: i) general knowledge about a used
software; ii) deployment-dependent knowledge about the use, development,

17

Listing 2: Jess Rule
<tnsr:NegotiationRule name="rule1">

<tnsr:If >
<tnsr:LogicalExpression >

<slac:Condition relation="LESS -THAN">
<slac:Arg1 ><slac:QualityAttribute
name="PENALTY -AMOUNT" party="CONSUMER"/>

</slac:Arg1 >
<slac:Arg2 ><slac:Constant
type="NUMERICAL" unit="EUR"> 100
</slac:Constant ></slac:Arg2 >

</slac:Condition >
<slac:LogicalOperator > AND </slac:LogicalOperator >
<slac:Condition relation="EQUALS">

<slac:Arg1 ><slac:QualityAttribute
name="PSEUDONYMIZATION" party="CONSUMER"
unit="SHA -256"/>

</slac:Arg1 >
<slac:Arg2 ><slac:Constant

type="BOOLEAN">TRUE</slac:Constant >
</slac:Arg2 >

</slac:Condition >
</tnsr:LogicalExpression >

</tnsr:If >
<tnsr:Then >

<tnsr:Action >
<tnsr:Accept >

<tnsr:QualityAttribute
name="PENALTY -AMOUNT" party="CONSUMER"/>

<tnsr:QualityAttribute
name="PSEUDONYMIZATION" party="CONSUMER"/>

</tnsr:Accept >
</tnsr:Action >

</tnsr:Then >
</tnsr:NegotiationRule >

or testing of the service; iii) organization-dependent knowledge about the
way the software fits into the enterprise structure [43]. By decreasing this
knowledge gap, customers and service providers can successfully negotiate a
reasonable Sla for a specific service provision.

6.1. SLA Negotiation Framework
Different negotiation frameworks have been developed so far, each of

which has different characteristics and can support different functionalities.
Our approach is based on the PROSDIN negotiation framework, a proactive
run-time Sla negotiation tool ([44]). The Sla negotiation process in PROS-
DIN is executed by a component called negotiation broker and according to
specific negotiation rules. The negotiation broker manages the negotiation
process on behalf of the interested parties, by providing access to different
negotiation engines and by translating negotiation rules into the different
negotiation specifications, accepted by these engines.

Our negotiation rules are Jess rules ([45]) that are defined in XML. These

18

rules are condition-action rules of the form:

IF(condition)THEN(action)ELSE(action)

Conditions are either atomic conditions or logical combinations of atomic
conditions over specific property attributes of the relevant services. Rule
actions can be of three types: i) accept actions that are used to accept the
value of one or more property attributes in a given Sla offer; ii) reject actions
that are used to reject the value of one or more property attributes in a given
Sla offer; and iii) set actions that are used to propose a new value or range
of values for one or more property attributes as part of an Sla offer. Our
approach is similar to the one described above, as we are using Jess rules
([45]) for accepting or rejecting an Sla offer, or for setting new values to an
offer. An example of a Jess negotiation rule is shown in Listing 2.

This rule states that if a consumer of a service has made an offer (or
counter-offer) where the overall price to be paid for penalties is less than 100
euros and an SHA-256 encryption mechanism is used to pseudonymize data,
then the offered values can be accepted.

6.2. SLA Negotiation Process
We define two types of Sla negotiation processes, varying the role of

the MBDAaaS platform: i) Client-Middleware-Server Negotiation, where the
MBDAaaS platform works as middleman between the client and the avail-
able service providers (e.g., AWS), ii) Client-Server Negotiation, where the
MBDAaaS platform plays the role of the service provider. In the first case,
two different negotiation process can be implemented: i) the MBDAaaS plat-
form performs a simple matching of the terms between the new Sla offer and
existing Slas from the other involved party (i.e., a new client provides and
Sla offer and a simple match of its terms is performed with existing service
providers’ Sla terms); ii) a negotiation process needs to be performed (i.e.,
to provide counteroffers to change the terms of the offer and match existing
Slas) between the platform and the involved parties.

Client-Middleware-Server Negotiation. It takes the viewpoint of a mid-
dleman (i.e., the MBDAaaS platform) between service consumers and service
providers. When negotiating an Sla, there are two main types of Slas we
consider: (i) pay–as–you–go (PAYG) and (ii) subscription. They both as-
sume an average rate of service use (what is known as "fair–use policies" in
subscription contracts) and differ on how a service is charged. In PAYG,

19

the consumer pays a price each time a service is used, while, in subscription,
they pay a subscription each interval (e.g., week, month). For conciseness, we
consider PAYG Slas only in two scenarios: when we can reach to an agree-
ment between the involved parties by simply matching the terms (assurance
requirements Λ in Section 4.2) and when some terms cannot be matched and
their values need to be adjusted.

• Simple matching at middleware side. The MBDAaaS platform gets
the terms (assurance requirements Λ in Section 4.2) of the offer made
by the relevant party (service consumer or service provider) and tries
to match them with the existing Sla terms from other parties, which
have already signed Slas with the platform. Thus, the Jess rules of the
offer are generated and checked based on the process described in the
previous section. However, in this case action set would not be applied,
as a simple matching is performed without providing a counter-offer to
change the terms. This is the simplest type of Sla negotiation process
that can be performed by the MBDAaaS platform.

• Negotiation between middleware and the relevant party. The MBDAaaS
platform tries to negotiate the terms (assurance requirements Λ in Sec-
tion 4.2) of the offer made by one party in case they do not match
existing ones from other parties. Thus, action set of the Jess rules is
performed to match the terms that cannot be matched; if not possible,
the offer is rejected, and a counter-offer to be agreed by the interested
party sent back.

Client-Server Negotiation. The MBDAaaS platform provides the Big
Data-Analytics services required by a client. It is the simplest type of nego-
tiation as no service providers are involved. Thus, it just checks if the terms
(assurance requirements Λ in Section 4.2) are convenient and supported, and
respond backs whether the offer is accepted/rejected or with a counter-offer.

In all the above cases, we assume that for each consumer ci we know the:

• Cin
i : income received per request;

• P in
i : penalty paid when a request is not serviced;

• CRin
i : contractually agreed/negotiated average rate of service requests;

and

20

• ORin
i : its observed/assumed average request rate.

Thus, for a new consumer, we might negotiate for a rate CRin
i , when

we actually assume that they only have a lesser rate ORin
i . Similarly, for

a consumer we have an Sla with, we would have agreed upon a CRin
i but

observe that she actually has a lesser rate ORin
i . It is always the case that

ORin
i <= CRin

i , otherwise our Sla would be violated by the consumer — she
would be making requests at a higher rate than agreed and would have the
right to reject them without paying a fine. Furthermore, we assume that for
each cloud service provider pj we know the:

• Cout
j : income received per request;

• P out
j : penalty paid when a request is not serviced;

• CRout
j : contractually agreed/negotiated average rate of service requests;

and

• ORout
j : its observed/assumed average request rate.

Our observed/assumed rate ORout
j may be greater than CRout

j , as there is
nothing forbidding the provider to serve requests faster than promised. If it
is lesser than CRout

j , then the provider may end up paying a penalty, assuming
that consumer requests are forwarded at the agreed rate CRout

j .
However, it is not possible to know the actual provider’s rate of service

processing or how likely it fails to serve a request. This would require know-
ing the length of its internal buffer, which is part of the provider’s internal
business information that we cannot know. We can however consider differ-
ent scenarios for the number of lost service requests at the provider’s side
Lout
j . It should be stressed that all rates are average rates, so there are situ-

ations where they arrive too fast/slow or they can take more/less time to be
served than the average. Thus, for an Sla to be agreed, we need to know:

• max consumer request(/min service) rate;

• penalty amount; and

• payment for the service.

21

7. SLA Monitoring

Monitoring an Sla is a critical process for the validation of the Sla
guarantee terms. To initiate the monitoring process, a clear definition of
the components of a Big Data analytics service is required, to know which
operations or assets of the service need to be monitored. Once the service
has been defined, the service user must be able to stipulate what functional
and non-functional properties need to be associated with specific service op-
erations.

In our approach, we use the EVEREST monitoring tool [42] to moni-
tor the relevant service in a MBDAaaS computation, based on the defined
guarantee terms of the Sla. Therefore, we assign the monitoring task to
the EVEREST monitoring tool, but we also need to assign a task for the
event capturing, so as the monitor receives all the events of the service and
checks them against the monitoring rules. Capturing events is an important
operation for the implementation of the monitoring process. Collecting the
events at the right point of execution is crucial for the correct evaluation of
the security properties that are monitored. Each property usually requires
its own types of events that need to be captured and monitored. When the
big data analytics service gets executed, a series of operations get executed
and therefore multiple event captors might need to be installed. The events
that are going to be captured are going to be either information with re-
spect to the data that are processed itself or other metadata referring to
the execution context of the operations. We decided to assign the task of
the event capturing to the MBDAaaS platform for accuracy and flexibility
reasons, since both the monitoring and the event capturing process should
not be part of the actual service execution.

For the monitor to operate, a set of monitoring rules must be defined
to decide upon possible violations or satisfactions. The definition of the
monitoring rules, however, is intrinsically connected with the structure of
the service. This is because the definition of the rules is dictated by the big
data analytics operations that the service is comprised of. In our case, the
generation of the monitoring rules and the installation of the event captors
is an automated process that requires no intervention from the user. Every
time a new instance of a service runs, it is the responsibility of the monitoring
framework to find the relevant operations or data assets, generate the rules
and based on the rules to enable the event capturing capabilities and then
perform the monitoring process.

22

Table 2: Event Calculus fundamental axioms
Predicate Description
Initially(f) f is true at time 0
HoldsAt(f, t) f is true at time t
Happens(e, t) Event e occurs at time t
Initiates(e, f, t) If event e occurs, then f is true

after t
Terminates(e, f,
t)

If event e occurs, then f is
false after t

To implement an Sla monitoring solution, we need to first provide a set
of semantics that allow the user to express the guarantee terms of the Sla.
Our monitor is a run-time monitoring engine built in Java that can reason
on events against rules that are based on Event Calculus (EC) [41]. Event
calculus is a first-order temporal formal language that can be used to specify
properties of dynamic systems, which change over time. Such properties are
specified in terms of events and fluents. Events are what cause a change to
the state of the system that is monitored; fluents are used to keep track of
the state of a system, which are initiated and terminated by events. For
instance, the Integrity rule, utilizes the fluents to check if prior to a read
event, the monitor observed a write event.

Table 2 presents a list with all the available operations that can be used
in the event calculus language, to express the changes in a system through
the occurrence of events. An event is denoted by e, a fluent by f, and the time
by t. In our approach, the monitoring rules are extracted from the guarantee
terms defined in an Sla and then translated into the EC language of the
monitor. This is done based on EC templates, with the user only defining
the values of the parameters.

8. Evaluation

Following our reference scenario in Section 3.1, we define the security
properties to be monitored and propose an evaluation of the negotiation
process quality.

8.1. Settings
With the advent of the General Data Privacy Regulation (GDPR) in Eu-

rope, the problem of correctly managing sensitive data is exacerbated even
more and involves all enterprises. Privacy and security requirements can be

23

specified in the declarative model defining requirements on data anonymiza-
tion, confidentiality, and integrity. These requirements are then used by
MBDAaaS to generate an executable deployment model of the Big Data
processes, and to specify information on the target platform and its con-
figuration. All declarative and deployment information is fed into the Sla
specification and negotiation tool, to obtain the rules to be evaluated on the
Big Data infrastructure to show its level of compliance to user expectations.
In the following we consider two main GDPR requirements emerging from
our reference scenario in Section 3.1:

1. Data Integrity at rest (data and platform assurance). GDPR (articles
24 and 25) mandate to safely store usersâĂŹ data, guaranteeing their
integrity. Cryptographic techniques could be deployed to guarantee
data integrity (e.g., hash techniques). An assurance manager should
verify that data hashes are always consistent, and that the hashing
components are behaving correctly. In our approach, we are able to
verify this requirement by checking that all the data have not been
compromised during the overall process.

2. Availability. GDPR (article 32) mandates the ability to ensure the
ongoing availability of services, as well as the ability to restore the
availability in order to be able to access personal data in a timely
manner. Thus, we continuously monitor this requirement based on a
threshold defined in the Sla and notify the stakeholders for any possible
violation of it.

We note that, driven by the above declarative requirements, a deployment
model is generated specifying the details of the integrated privacy services.
These high-level requirements and information on privacy components are
the basis of the specification of Slas in Section 5 based on rules specified in
Section 8.2.

8.2. Monitoring Rules
We formally define rules for properties data integrity and availability.

8.2.1. Data Integrity Monitoring Rule
Property data integrity examines whether the data read by an operation

are the same data produced by a previous operation. To achieve this, we
intercept every read and write event of the service operations. Every time
an operation reads an input item an event is registered and logged for the

24

purpose of evaluating it against the defined monitoring rule. Similarly, every
time an operation writes data at one of its output items, those events would
also be registered and logged. In both cases, it is necessary to log the hash
code of the data item that is processed before and after the processing. It
is then possible for the monitor to compare values and evaluate whether
the data items that an operation reads are the same data items that its
previous operation has written (e.g., by comparing the associated hashes).
If this principle does not hold true, then the monitor raises a data integrity
violation. The event calculus formula that expresses the monitoring rule for
monitoring data integrity is:

Happens(READ(op2(), hc), t)→
Happens(WRITE(op1(), hc), [0, t])

The formula states that when happens an event READ of an operation op2()
that reads data with a hash code hc at time t, then it should have happened
another event WRITE of an operation op1() that wrote these data with the
same hash code hc, at time t′<t. The formula describes the fact that when
an operation reads a data item, at some earlier time, some other operation
must have written the same data item.

8.2.2. Availability Monitoring Rule
Property availability reflects how much time has elapsed from the moment

a request has been made until the time it returns its result, that is, how fast
the result of the data processing becomes available to the end-user or any
other system that might have requested it. To measure the elapsed time for
a particular operation, we need to provide timestamps for the start and end
points of execution for the methods of all RDDs that are produced during the
computation. Thus, the monitoring rule for the availability is the following:

Happens(start(appId, rddId, partId), t)→

Happens(end(appId, rddId, partId), t+ d)

The above rule states that when a start event happens in a specific appId,
rddId and partId at time t, then another end event must happen in the exact
same appId, rddId and partId within time t+d. The value of d, that is, the
elapsed time, is provided from the end user and is part of the Sla guarantee
term. If the time period that it represents is greater than the value provided,
then the monitoring rule is violated.

25

Listing 3: The consumer module
1 const double reqRate;
2 module Consumer1
3 [req1] (true) -> reqRate: true;
4 endmodule

Listing 4: The provider (server) module
1 #const s#
2 const double srvRate;
3 const int s=#s#;
4 module Provider1
5 [srv1] (true) -> srvRate: true;
6 endmodule
7 #for i=2:s#
8 module Provider#i#= Provider1 [srv1=srv#i#]
9 endmodule

10 #end#

8.3. Negotiation Process Evaluation
Based on the Platform assurance layer described in Section 4, informa-

tion regarding the deployed components and their configuration can be used
regarding the maximum/minimum request rate, which is required for the ne-
gotiation process. Reward and penalty amounts should be defined by the
Sla modeler. Thus, to start a negotiating process for a new Sla, we first
need to define the:

• boundaries of the Sla terms that can be agreed; and

• rewards — penalties and charges to be negotiated.

By defining this values, we can evaluate the Sla offer and facilitate the
Sla negotiation process, by using the Prism tool [12, 46]. Prism model
checker processes these values and produces figures of the possible behavior of
the Sla, so that we can make a decision about accepting or rejecting. Since
we need the request rate, we base our formal model on the (finite-buffer)
M/M/s/K queue [47] that has an incoming rate of requests λ, s servers
with a rate µ of servicing these requests each, and a buffer with capacity
K to help with request/service spikes (since the rates are average ones).
The resulting Prism model [46] is a continuous-time Markov chain (ctmc),
given our choice of M/M/s/K queues. Listing 3 shows the basic model for
consumers and Listing 4 for cloud service providers. Each of these has a
single transition, which fires with a specific rate (currently all consumers
have the same rate and so do all providers). All consumers use the same
module definition as consumer 1 (see Listing 3) renaming its action and rate
— similarly for providers, e.g., lines 7–10 of Listing 4.

26

Listing 5: The MBDAaaS platform module
1 const int Capacity;
2 module Queue_M_M_s_K
3 waiting : [0.. Capacity] init 0;
4 // C l i en t s d r i v e the se ac t i ons
5 [req1] (waiting <Capacity) -> 1 : (waiting ’= waiting +1);
6 [req1] (waiting=Capacity) -> 1 : true; // l o s t req
7 // Serv i ce prov ide r s d r i v e the se ac t i ons
8 #for i=1:s#
9 [srv#i#] (waiting >=#i#)

10 -> 1 : (waiting ’=waiting -1);// serve i f enough r e que s t s
11 #end#
12 endmodule

The module in Listing 5, representing the MBDAaaS platform, links con-
sumers and providers together. The transitions of this module are synchro-
nized with the same-named transitions of the other modules. This module
defines their rate as 1.0, thus their global rate is the one declared in the other
modules (rates of synchronized transitions in Prism are multiplied together).
Each time a consumer makes a request and there are free slots in the waiting
queue, the MBDAaaS module accepts the request, increasing the number of
waiting requests. If the waiting queue is full this module rejects the request.
Furthermore, it permits one provider to serve a request when its queue is not
empty and there are enough requests waiting to be served. It should be noted
that the model is parametric on the number s of servers (see lines 8–11), and
this number can be extracted from the deployment model. An example of
the effect of the buffer length is shown in Figure 5(a) and Figure 5(b) for the
cases where the incoming and outgoing rates are equal and range from 0.1
to 100.1, respectively. When the buffer capacity is set to 10 we lose ≈ 18%
of the consumer requests, while only ≈ 2% when set to 100, allowing it to
smooth out more spikes in demand.

8.4. Sla deployment
By providing information regarding the deployment of the components

and their configuration, as well as information regarding penalties or re-
wards that may apply for the specified requirements, Slas can be generated.
These agreements hold all information regarding security requirements for
the involved services or service operations. Afterwards, the Sla negotiation
process can be performed, which evaluates the proposed Slas, prior to them
being signed.

Based on our reference scenario, a service consumer (e.g., SAP) using our
MBDAaaS platform can generate an Sla and trigger the Sla negotiation
process. By providing all requirements needed to generate the three models

27

(a)

(b)

Figure 5: (a) Expected Lost Request (Capacity=10), (b) Expected Lost Request (Capac-
ity=100)

of our methodology, an Sla offer can be produced, according to the process
described in section 5. This offer is then translated into a Prism model, to
be evaluated by the Prism tool, as presented in section 6.2. When the Prism
tool validates the model, the results are translated into Jess rules (see 6) and
are sent to the Jess rule engine. The Jess rule engine checks the values of the
generated rules and tries to match them with existing values from a service
provider(s), who can provide the services required by the service consumer.
If the action from the Jess rule engine is reject, the offer is rejected and no
Sla is created. If the action is accept, the offer is accepted and a new Sla
is created. If the action is set, a counter-offer with new values is provided,
which should be checked again, by restarting the whole process.

When an Sla is signed, a run-time monitor can start monitoring the
specific services and assure that the relevant security requirements defined in
the Slas hold throughout a specified period of time (e.g., until the expiration

28

time). To this aim, the Sla terms are translated into the EC language that
the monitor understands. The monitor is then fed with translated terms and
continuously returns the monitoring results.

9. Conclusions

We provided a solution to Big Data Assurance based on Slas, which
integrates with a MBDAaaS solution. Our approach implements a Sla spec-
ification and negotiation process at all three layers of assurance, which ad-
dresses Big Data peculiarities. Furthermore, we have also integrated the Sla
management framework of the proposed MBDAaaS platform with a run-time
monitoring, to provide a complete Big Data assurance process based on con-
tinuous monitoring.

Acknowledgements

This work has received funding from European Union’s Horizon 2020
research and innovation programme under grant agreement No H2020-688797
and grant agreement no. 830927, and by the programme “Piano sostegno alla
ricerca 2018” funded by the Università degli Studi di Milano.

Bibliography

[1] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, R. Buyya,
Big data computing and clouds: Trends and future directions, Journal
of Parallel and Distributed Computing 79 (2015) 3–15.

[2] I. Hashem, I. Yaqoob, N. Anuar, S. Mokhtar, A. Gani, S. Khan, The
rise of big data on cloud computing: Review and open research issues,
Information Systems 47 (2015) 98–115.

[3] T. H. D. Patil, Data Scientist: The Sexiest Job of the
21st Century, harvard Business Review, https://hbr.org/2012/10/
data-scientist-the-sexiest-job-of-the-21st-century (October 2012).

[4] W. Markow, S. Braganza, B. Taska, S. M. Miller, D. Hughes, The Quant
Crunch – How the Demand for Data Science Skills is Disrupting the Job
Market, https://www.ibm.com/downloads/cas/3RL3VXGA (2017).

29

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://www.ibm.com/downloads/cas/3RL3VXGA

[5] C. Ardagna, V. Bellandi, M. Bezzi, P. Ceravolo, E. Damiani, C. Hebert,
Model-based big data analytics-as-a-service: Take big data to the next
level, IEEE Transactions on Services Computing (TSC) (2018).

[6] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, B. Recht,
Keystoneml: Optimizing pipelines for large-scale advanced analytics,
in: Proc. of IEEE International Conference on Data Engineering (ICDE
2017), San Diego, CA, USA, 2017.

[7] C. Ardagna, V. Bellandi, P. Ceravolo, E. Damiani, R. Finazzo, A
methodology for cross-platform, event-driven big data analytics-as-a-
service, in: Proc. of 5th International Workshop on Methodologies to
Improve Managing Big Data projects, Los Angeles, CA, USA, 2019.

[8] Improvado, All Your Marketing Data in One Place, https://improvado.
io/.

[9] Databricks, Unified Analytics, https://databricks.com/.

[10] C. Ardagna, R. Asal, E. Damiani, Q. Vu, From security to assurance in
the cloud: A survey, ACM Computing Surveys 48 (1) (2015) 2:1–2:50.

[11] C. Ardagna, E. Damiani, M. Krotsiani, C. Kloukinas, G. Spanoudakis,
Big data assurance evaluation: An sla-based approach, in: Proc. of the
IEEE International Conference on Services Computing (SCC 2018), San
Francisco, CA, USA, 2018.

[12] M. Z. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification
of probabilistic real-time systems, in: Proc. of the 23rd International
Conference on Computer Aided Verification (CAV 2011), Snowbird, UT,
USA, 2011.

[13] IATAC and DACS, Software Security Assurance: State of the Art Re-
port (SOAR), https://tinyurl.com/y9y9zvkv (July 2007).

[14] M. Anisetti, C. Ardagna, E. Damiani, F. Saonara, A test-based security
certification scheme for web services, ACM Transactions on the Web
7 (2) (2013) 1–41.

[15] M. Krotsiani, G. Spanoudakis, K. Mahbub, Incremental certification of
cloud services, in: Proc. of the 7th International Conference on Emerging

30

https://improvado.io/
https://improvado.io/
https://databricks.com/
https://tinyurl.com/y9y9zvkv

Security Information, Systems and Technologies (SECURWARE 2013),
Barcelona, Spain, 2013.

[16] M. Anisetti, C. Ardagna, E. Damiani, F. Gaudenzi, A semi-automatic
and trustworthy scheme for continuous cloud service certification, IEEE
Transactions on Services Computing (TSC) (2017).

[17] M. Anisetti, C. Ardagna, E. Damiani, A. Mana, G. Spanoudakis, To-
wards transparent and trustworthy cloud, IEEE Cloud Computing Mag-
azine 4 (3) (2017) 40–48.

[18] S. Lins, S. Schneider, A. Sunyaev, Trust is good, control is better: Cre-
ating secure clouds by continuous auditing, IEEE Transactions on Cloud
Computing PP (99) (2016) 1–1. doi:10.1109/TCC.2016.2522411.

[19] O. A. Wahab, J. Bentahar, H. Otrok, A. Mourad, Towards trustwor-
thy multi-cloud services communities: A trust-based hedonic coalitional
game, IEEE Transactions on Services Computing (TSC) 11 (1) (2016)
184–201.

[20] A. Sunyaev, S. Schneider, Cloud services certification, Communications
of the ACM 56 (2) (2013) 33–36.

[21] P. Stephanow, G. Srivastava, J. Schütte, Test-based cloud service certi-
fication of opportunistic providers, in: Proc. of the 9th IEEE Interna-
tional Conference on Cloud Computing (CLOUD 2016), San Francisco,
CA, USA, 2016.

[22] A. Verma, L. Cherkasova, R. H. Campbell, Aria: Automatic resource
inference and allocation for mapreduce environments, in: Proc. of the
8th ACM International Conference on Autonomic Computing (ICAC
2011), Karlsruhe, Germany, 2011.

[23] E. Hwang, K. H. Kim, Minimizing cost of virtual machines for deadline-
constrained mapreduce applications in the cloud, in: Proc. of the 2012
ACM/IEEE 13th International Conference on Grid Computing (GRID
2012), Beijing, China, 2012.

[24] Y. Wang, W. Shi, On scheduling algorithms for mapreduce jobs in het-
erogeneous clouds with budget constraints, in: Proc. of the 17th In-
ternational Conference on Principles of Distributed Systems (OPODIS
2013), Hong Kong, China, 2013.

31

https://doi.org/10.1109/TCC.2016.2522411

[25] P. Lama, X. Zhou, Aroma: Automated resource allocation and config-
uration of mapreduce environment in the cloud, in: Proc. of the 9th
International Conference on Autonomic Computing (ICAC 2012), San
Jose, CA, USA, 2012.

[26] S. V. Hrushikesha Mohanty (Ed.), Big Data Service Agreement,
Springer, 2015.

[27] A. Andrieux, K. Czajkowski, K. Keahey, A. Dan, K. Keahey, H. Lud-
wig, J. Pruyne, J. Rofrano, S. Tuecke, M. Xu, Web services agreement
specification (WS-Agreement), in: Global Grid Forum GRAAP-WG,
Honolulu, HI, USA, 2004.

[28] H. Ludwig, A. Keller, A. Dan, R. P. King, R. Franck, Web service
level agreement (WSLA) language specification, Tech. rep. (2002). doi:
10.1109/WECWIS.2002.1021238.

[29] S. Nepal, J. Zic, S. Chen, WSLA+: Web service level agreement lan-
guage for collaborations, in: Proc. of IEEE Internation Conference on
Services Computing (SCC 2008), Honolulu, HI, USA, 2008.

[30] K. T. Kearney, F. Torelli, C. Kotsokalis, SLA*: An abstract syntax for
service level agreements, in: Proc. of 11th ACM/IEEE International
Conference on Grid Computing (Grid 2010), Brussels, Belgium, 2010.

[31] D. D. Lamanna, J. Skene, W. Emmerich, SLAng: A language for defin-
ing service level agreements, in: Proc. of the IEEE Computer Society
Workshop on Future Trends of Distributed Computing Systems, Tunis,
Tunisia, 2003.

[32] Y. Kouki, F. A. D. Oliveira, S. Dupont, T. Ledoux, A language support
for cloud elasticity management, in: Proc. of the 14th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid
2014), Chicago, IL, USA, 2014.

[33] R. B. Uriarte, F. Tiezzi, R. De Nicola, SLAC: A formal service-level-
agreement language for cloud computing, in: Proc. of the IEEE/ACM
International Conference on Utility and Cloud Computing (UCC 2014),
London, UK, 2014.

32

https://doi.org/10.1109/WECWIS.2002.1021238
https://doi.org/10.1109/WECWIS.2002.1021238

[34] S. Madden, From databases to big data, IEEE Internet Computing
16 (3) (2012) 4–6.

[35] D. Martin, M. Paolucci, S. McIlraith, M. Burnstein, D. McDermott,
D. McGuinness, B. Parsia, T. R. Payne, M. Sabou, M. Solanki, et al.,
Bringing semantics to web services: The owl-s approach, in: Proc. of
the International Workshop on Semantic Web Services and Web Process
Composition (SWSWPC 2004), San Diego, CA, USA, 2004.

[36] J. Vaidya, B. Shafiq, A. Basu, Y. Hong, Differentially private naive bayes
classification, in: Proc. of the 2013 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technolo-
gies (IAT), Atlanta, GA, USA, 2013.

[37] Y. Demchenko, P. Membrey, P. Grosso, C. de Laat, Addressing big data
issues in scientific data infrastructure, in: Proc. of the 1st International
Symposium on Big Data and Data Analytics in Collaboration (BDDAC
2013), San Diego, CA, USA, 2013.

[38] N. Karten, How to Establish Service Level Agreements, 2003, http://
www.nkarten.com/handbook.pdf.

[39] G. Rosu, T. Serbanuta, An overview of the K semantic framework, J.
Log. Algebr. Program. 79 (6) (2010) 397–434.

[40] CUMULUS, D3.2 - core certification mechanisms v2, Tech. Rep. D3.2,
CUMULUS EU project (2013).

[41] M. Shanahan, The event calculus explained, in: Artificial Intelligence
Today, 1999, pp. 409–430.

[42] G. Spanoudakis, C. Kloukinas, K. Mahbub, The SERENITY runtime
monitoring framework, in: Security and Dependability for Ambient In-
telligence, 2009, pp. 213–237.

[43] A. Köppel, D. Böning, S. Abeck, How to support the negotiation of ser-
vice level agreements (SLAs) for your client/server application, in: Proc.
of the World Multiconference on Systemics, Cybernetics and Informatics
(SCI 1999), Orlando, FL, USA, 1999.

33

http://www.nkarten.com/handbook.pdf
http://www.nkarten.com/handbook.pdf

[44] K. Mahbub, G. Spanoudakis, Proactive SLA negotiation for service
based systems: Initial implementation and evaluation experience, in:
Proc. of the IEEE International Conference on Services Computing
(SCC 2011), Washington, DC, USA, 2011.

[45] E. F. Hill, Jess in Action: Java Rule-Based Systems, Manning Publica-
tions Co., Greenwich, CT, USA, 2003.

[46] G. Norman, D. Parker, J. Sproston, Model checking for probabilistic
timed automata, Formal Methods in System Design 43 (2) (2013) 164–
190.

[47] L. Kleinrock, Theory, Volume 1, Queueing Systems, Wiley-Interscience,
1975.

34

	Introduction
	Related Work
	MBDAaaS Methodology
	Reference Scenario
	MBDAaaS Models and Workflow

	Big Data Assurance
	Assurance Methodology and Requirements
	Assurance Requirements Specification

	SLA Specification
	SLA Negotiation
	SLA Negotiation Framework
	SLA Negotiation Process

	SLA Monitoring
	Evaluation
	Settings
	Monitoring Rules
	Data Integrity Monitoring Rule
	Availability Monitoring Rule

	Negotiation Process Evaluation
	Sla deployment

	Conclusions

