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The Ubiquity of Small-World Networks
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Abstract

Small-world networks, according to Watts and Strogatz, are a class of networks that are ‘‘highly clustered, like
regular lattices, yet have small characteristic path lengths, like random graphs.’’ These characteristics result in net-
works with unique properties of regional specialization with efficient information transfer. Social networks are
intuitive examples of this organization, in which cliques or clusters of friends being interconnected but each per-
son is really only five or six people away from anyone else. Although this qualitative definition has prevailed in
network science theory, in application, the standard quantitative application is to compare path length (a surro-
gate measure of distributed processing) and clustering (a surrogate measure of regional specialization) to an
equivalent random network. It is demonstrated here that comparing network clustering to that of a random net-
work can result in aberrant findings and that networks once thought to exhibit small-world properties may not.
We propose a new small-world metric, x (omega), which compares network clustering to an equivalent lattice
network and path length to a random network, as Watts and Strogatz originally described. Example networks
are presented that would be interpreted as small-world when clustering is compared to a random network but
are not small-world according to x. These findings have important implications in network science because
small-world networks have unique topological properties, and it is critical to accurately distinguish them from
networks without simultaneous high clustering and short path length.
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Introduction

The discovery of small-world networks has revolution-
ized research in network science. In their 1998 landmark

paper, Watts and Strogatz described networks that are
‘‘highly clustered, like regular lattices, yet have small charac-
teristic path lengths, like random graphs’’ (Watts and Stro-
gatz, 1998). In other words, small-world networks have the
unique ability to have specialized nodes or regions within a
network (e.g., a computer network with a group of machines
dedicated to a certain task) while simultaneously exhibiting
shared or distributed processing across all of the communi-
cating nodes within a network (e.g., all computers sharing
the work load). Since that original paper, numerous networks
have been described as exhibiting small-world properties, in-
cluding systems as diverse as the Internet, social groups, and
biochemical pathways. Given the unique processing or infor-
mation transfer capabilities of small-world networks, it is
vital to determine whether this is a universal property of nat-
urally occurring networks or whether small-world properties
are restricted to specialized networks. An overly liberal defi-

nition of small-worldness might miss the specific benefits of
these networks—high clustering and low path length—and
obscure them with networks more closely associated with
regular lattices and random networks.

The current accepted definition of a small-world network is
that it has clustering similar to a regular lattice and path
length similar to a random network. However, in practice,
networks are typically defined as small-world by comparing
clustering and path length to those of a comparable random
network (Humphries et al., 2006). Unfortunately, this means
that networks with very low clustering can be, and indeed
are, defined as small-world. We propose that such a method
is unable to distinguish true small-world networks from those
that are more closely aligned with random or lattice struc-
tures and overestimates the occurrence of small-world net-
works. Networks that are more similar to random or lattice
structures are interesting in their own right, but they do not
behave like small-world networks. Having a metric to accu-
rately characterize networks as small-world, random, or lat-
tice, or at least tendencies toward one of these types of
networks, is an extremely important factor in the study of
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network science. In this paper, we define a new metric is de-
fined that quantifies small-world properties and places the
network in question along a continuum from lattice to
small-world to random. This new metric clearly demonstrates
that small-world networks are not as ubiquitous as reported
and suggests that many systems originally thought to have
small-world processing capabilities may in fact not.

Identifying small-world networks

Small-world networks are distinguished from other net-
works by two specific properties, the first being high cluster-
ing (C) among nodes. Mathematically, C is the proportion of
edges ei that exist between the neighbors of a particular node
(i) relative to the total number of possible edges between
neighbors (Bullmore and Sporns, 2009). The equation for C
at an individual node of degree ki is:

Ci =
2ei

ki(ki� 1)
[1]

The overall clustering in a network can be determined by av-
eraging the clustering across all individual nodes. High clus-
tering supports specialization as local collections of strongly
interconnected nodes readily share information or resources.
Conceptually, clustering is quite straightforward to compre-
hend. In a real-world analogy, clustering represents the prob-
ability that one’s friends are also friends of each other.

Small-world networks also have short path lengths (L) as is
commonly observed in random networks. Path length is a
measure of the distance between nodes in the network, calcu-
lated as the mean of the shortest geodesic distances between
all possible node pairs:

L =
1

N(N� 1)
+ifn, i 6¼jdij [2]

where dij is the shortest geodesic distance between nodes i
and j.

Small values of L ensure that information or resources eas-
ily spreads throughout the network. This property makes dis-
tributed information processing possible on technological
networks and supports the six degrees of separation often
reported in social networks.

Decades of research has established that short path length
is a characteristic of random graphs, while high clustering is a
property of lattice networks. Watts and Strogatz developed a
network model (WS model) that resulted in the first-ever net-
works with clustering close to that of a lattice and path
lengths similar to those of random networks. The WS
model demonstrates that random rewiring of a small percent-
age of the edges in a lattice results in a precipitous decrease in
the path length, but only trivial reductions in the clustering
(Fig. 1). Across this rewiring probability, there is a range
where the discrepancy between clustering and path length
is very large, and it is in this area that the benefits of small-
world networks are realized.

In the investigation of small-world properties, it has be-
come common to compare both clustering and path length
of a network of interest to those same metrics from an equiv-
alent random network. In 2006, Humphries and colleagues
introduced a quantitative metric, small-world coefficient r,
that uses a ratio of network clustering and path length com-
pared to its random network equivalent (Humphries et al.,

2006). This metric has since gained considerable popularity
(Bassett et al., 2008; Guye et al. 2010; Liu et al., 2008), partic-
ularly among neuroscientists (Bullmore and Sporns 2009),
and has been more extensively evaluated by Humphries
and Gurney (2008). In this quantitative approach, C and L
are measured against those of their equivalent derived ran-
dom networks (Crand and Lrand, respectively) to generate the
ratios c = C/Crand and k = L/Lrand. These ratios are then used
to calculate the small-coefficient as:

r =
C=Crand

L=Lrand
=

c
k

[3]

The conditions that must be met for a network to be classified
as small-world are C[Crand and L&Lrand, which results in
r > 1. The small-world coefficient has been used to ascribe
small-world properties to numerous networks ranging from
the power grid to the actors network (Humphries and Gur-
ney, 2008).

Comparing path length to that of a random network makes
sense—the path length of a small-world network should be
short, like that of a random network. However, the compari-
son of clustering to an equivalent random network does not
properly capture small-world behavior because clustering
in a small-world network more closely mimics that of a lattice
network. Furthermore, it is generally accepted that clustering
in the original network is much greater than that of a random
network. But how much greater must this clustering be to re-
semble that of a lattice? If a random network has a Crand of
0.001, on average, only 1 of every 1000 possible connections
are present between the neighbors of a node. If the original
network has a C five to 10 times greater than Crand, there
still exists only five to 10 links out of the 1000 possible connec-
tions present. This low level of clustering has been shown in
networks (Humphries and Gurney, 2008; Newman 2003) and
exemplifies a level of clustering not typically considered for a
lattice network. Nonetheless, the magnitude difference be-
tween C and Crand shows that the original network is not com-
pletely a random network. However, given the low
clustering, the extent to which this network is considered
small-world is also unclear. It is interesting to note that

FIG. 1. Watts and Strogatz’s small-world model. A simu-
lated 1000-node lattice with average degree k = 10 was
rewired at varying probabilities p, ranging from 0 to 1. At
small values p, network small-worldness is seen in a network
with simultaneous high clustering (squares) and low path
length (circles).
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even the earliest evaluation of small-world properties in real
networks compared the clustering to a random network
(Watts and Strogatz, 1998).

As it turns out, a major issue with r is that the clustering
coefficient of the equivalent random network greatly influ-
ences the small-world coefficient. In the small-world coeffi-
cient equation (3), r uses the relationship between C and
Crand to determine the value of c. Because clustering in a ran-
dom network is typically extremely low (Humphries and
Gurney, 2008; Watts and Strogatz, 1998) the value of c can
be unduly influenced by only small changes in Crand. Con-
sider two networks, A and B, with similar path lengths yet
disparate clustering coefficients of 0.5 and 0.05, respectively.
If the clustering coefficients of the equivalent random net-
works are both 0.01, then network A clearly has greater
small-world properties. However, if the clustering of the ran-
dom networks for A and B are 0.01 and 0.001, respectively,
then the two networks will have similar values of r. Interpre-
tation of r suggests that both networks have the same small-
world characteristics even though network B has consider-
ably lower clustering. Although it is true that relative to the
comparable random networks, these two networks have the
same values of r, they clearly have different levels of cluster-
ing, and network A appears to be more closely aligned with a
lattice than does network B. This finding occurs because Crand

is in the denominator of the equation for c; thus, small
changes in Crand ultimately drive the value of r.

The comparison of clustering to a random network pres-
ents several limitations to the use of r. For example, values
of r range from 0 to N and depend on the size of the network
in question (Humphries and Gurney, 2008). Larger networks
with similar clustering and path length tend to have higher
values of r than do their smaller counterparts. Finally, it
may be valuable to know whether a network has properties
that tend to be more lattice-like or random-like. It is not pos-
sible to determine these properties if clustering and path
length are compared to a random equivalent. It is important
to determine whether networks exhibit specific behaviors,
such as specialization (lattices) or ability to effectively trans-
mit information (random networks). We explored a new met-
ric to quantify small-world properties, x, that addresses each
of the limitations described in the preceding paragraphs and
is more in keeping with the original description of small-
world networks as defined by Watts and Strogatz.

Novel small-world measurement: x

Given a graph with characteristic path length, L, and clus-
tering, C, the small-world measurement, x, is defined by
comparing the clustering of the network to that of an equiv-
alent lattice network, Clatt, and comparing path length to
that of an equivalent random network, Lrand; the relationship
is simply the difference of two ratios defined as:

x =
Lrand

L
� C

Clatt
[4]

In using the clustering of an equivalent lattice network rather
than a random network, this metric is less susceptible to the
fluctuations seen with Crand. Moreover, values of x are re-
stricted to the interval�1 to 1 regardless of network size. Val-
ues close to zero are considered small world: near zero,
L& Lrand and C&Clatt. Positive values indicate a graph

with more random characteristics: L&Lrand, and C/Clatt.
Negative values indicate a graph with more regular, or lat-
tice-like, characteristics: L[Lrand, and C&Clatt.

Methods

Well-known networks datasets

Biological, social, and technological networks were obtained
from various sources. All networks in this study were analyzed
as binary matrices with unweighted and undirected edges. For
disconnected graphs, network analysis was done on the largest
component of the network. The e-mail (Guimerà et al., 2003),
and Caenorhabditis elegans. metabolic network (Duch and Are-
nas, 2005) were obtained from Alex Arenas’s network datasets
(http://deim.urv.cat/*aarenas/data/welcome.htm). The ka-
rate (Zachary 1977), word adjacency (Newman 2006), football
(Girvan and Newman, 2002), and Internet networks were
obtained from Mark Newman’s network data sets (www-
personal.umich.edu/*mejn/netdata/). The Internet net-
work is from unpublished data by the University of Oregon
Route Views Project (http://routeviews.org/).

Brain imaging data collection

Brain imaging data were collected from 11 healthy older
adults as part of a separate study evaluating an exercise pro-
gram (Burdette et al., 2010). All data reported here are from
post-treatment scans obtained from participants in the control
or the treatment group. Whole-brain functional connectivity
was evaluated by using graph theory methods on a voxel-
by-voxel basis (Eguı́luz et al., 2005; Fox et al., 2005; Hayasaka
and Laurienti 2010; van den Heuvel et al., 2008). A correlation
matrix was produced by computing the Pearson correlation
coefficient between all voxel pairs within function magnetic
resonance imaging time series. A threshold was applied to
the correlation matrix, whereby voxel pairs above the thresh-
old were considered connected and assigned a value of 1, and
voxel pairs below the threshold were considered not con-
nected and assigned a value of 0. This binary matrix produces
an undirected, unweighted adjacency matrix (Aij) represent-
ing the whole-brain functional connectivity for each subject.
Mean graph metrics for both groups were compared for de-
gree (k), clustering coefficient (C), and minimum path length
(L). For large scale networks, L was calculated by using the
harmonic mean of geodesic distances in case of fragmentation
(Hayasaka and Laurienti 2010; Latora and Marchiori, 2001).
Scanning protocol and network analysis specifics can be
found in the supplementary materials.

Random and lattice network construction

To calculate r for a given network, an equivalent random
graph was created by assigning an edge to a node pair with
uniform probability while maintaining the degree distribu-
tion of the original graph (Maslov and Sneppen, 2002). In
this study, edges were rewired at random an average of 10
times for the entire network. Network randomization was
performed in 50 networks, with the clustering coefficient
and path length calculated for each network. The mean for
both graph metrics was calculated and served as the Crand

and Lrand of the equivalent random network. It is important
to note that x is valid only if the comparable random network
preserves the degree distribution of the original network.
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The lattice network was generated by using a modified
version of the ‘‘latticization’’ algorithm (Sporns and Zwi,
2004) found in the brain connectivity toolbox (www.brain-
connectivity-toolbox.net) (Rubinov and Sporns, 2010). This
algorithm was previously used to scale clustering and path
length between random and lattice networks (Sporns and
Zwi, 2004) and to evaluate the efficiency of networks over
varying cost (Achard and Bullmore, 2007). The procedure is
based on a Markov-chain algorithm that maintains node de-
gree and swaps edges with uniform probability; however,
swaps are carried out only if the resulting matrix has entries
that are closer to the main diagonal. To optimize the cluster-
ing coefficient of the lattice network, the latticization proce-
dure is performed over several user-defined repetitions.
Storing the initial adjacency matrix and its clustering coeffi-
cient, the latticization procedure is performed on the matrix.
If the clustering coefficient of the resulting matrix is lower,
the initial matrix is kept and latticization is performed again
on the same matrix; if the clustering coefficient is higher,
then the initial adjacency matrix is replaced. This latticization
process is repeated until clustering is maximized. This pro-
cess results in a highly clustered network with long path
length approximating a lattice topology. To decrease the pro-
cessing time in larger networks, a ‘‘sliding window’’ proce-
dure was developed. Smaller sections of the matrix are
sampled along the main diagonal, latticized, and reinserted
into the larger matrix in a step-wise fashion.

Results

Simulated networks

A 1000-node lattice with average degree k = 10 was simu-
lated by creating a 1000 · 1000 adjacency matrix and assigning
links along the five sub- and super-diagonals. The lattice was
rewired at varying probabilities p, ranging from 0 to 1,
where p = 1 resulted in a completely random graph. The rewir-
ing regime used was previously developed by Humphries and
Gurney (2008) and is described in detail in the Methods sec-
tion. The clustering coefficient, path length, and x were calcu-
lated at each rewiring probability (Fig. 2A). The small-world
regime was defined qualitatively by Watts and Strogatz
(1998) as the region in which clustering (squares) is high and
path length (circles) is low. When the plot for x is overlaid

on the Watts and Strogatz plot, three crossing points are of par-
ticular interest. When x crosses the zero point, the network
is balanced such that path length is as close to random as clus-
tering is to a lattice. This would be the point where the net-
work exhibits ideal small-world properties, with a balance
between normalized clustering and normalized path length.
As the x curve moves toward �1, the trade-off between C
and L favors C. When the x curves crosses the L curve, the
trade-off is such that the network falls out of the small-world
regime and becomes more like a lattice network. Similarly,
as the curve moves toward + 1, the balance favors L, and
when the x curves crosses the C curve, the network becomes
more like a random network. Recall that x defines a continuum
from lattice to small-world to random. No precise cut-off
points define small-worldness, but the proximity of x to 0 in-
dicates small-world tendencies. However, should one decide
that a cut-off is desirable, in this example, the small-world re-
gion approximately spans the range�0.5 £ x £ 0.5. The small-
world coefficient, r, is shown in a similar fashion (Fig. 2B).
According to the definition of the small-world coefficient, a
network is considered small-world if r > 1.However, it appears
that the network is considered small-world across all rewiring
probabilities except for p = 1. Thus, one might question the
meaning of a network that is almost completely rewired to
the level of a random network yet has r > 1.

The simulated network analysis shown in Figure 1 was re-
peated across networks having N = 100, 500, 1000, 5000, and
10,000 nodes. It is important to note the consistency of x in
the range �0.5 £ x £ 0.8 across different network sizes (Fig.
3A). This suggests that networks with different sizes, yet sim-
ilar properties, will have similar x values, thus making it eas-
ier to compare these networks. As stated earlier, values of r
trend higher as network size increases, as seen in the peak
r value range from 3 to 223 (Fig. 3B). In addition, as seen in
Figure 2B, networks are classified as small-world across
most rewiring probabilities.

Note that as the size of the network is reduced, the tails of
the x curve deviate from the bounds of the [�1,1] interval, par-
ticularly from �1. This finding is due to the fact that in a very
small network the real path length never becomes very large
relative to the path length of the random network. In the equa-
tion for x a ‘‘pure lattice’’ approaches �1 because the real path
length is so much larger than the random path length that the

FIG. 2. Dynamics of x and r. A 1000-node lattice network was simulated and rewired randomly at varying rewiring prob-
abilities ( p). (A) Clustering (squares), path length (circles), and the resulting x curve (dashed line) are shown. (B) Similarly, the
resulting r curve (dashed line) is shown. The axis on the left in both plots indicates the x and r values, respectively. The axis on
the right in both plots indicates the level of clustering or path length with respect to the C and L of the lattice at p = 0.
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Lrand/L of equation (4) approaches zero. If the network is truly
small, the path length never exceeds that of the random net-
work by orders of magnitude, as observed for large networks.
Nevertheless, the middle portion of the curve for all network
sizes overlaps. The tails of the x curve can also be affected
by the density of connections as presented in the Supplemen-
tary Materials (Fig. S1). It is important to note that similar
curve alterations were observed when the normalized cluster-
ing and path length were evaluated by using the plotting
method of Watts and Strogatz (Fig. 1). To account for these de-
viations from predicted behavior, the evaluation of the small-
world regime for x should use plots of C and L for networks
of equivalent size and edge density. This method was used
to evaluate several real-world networks, presented as follows.

Real-world networks

Comparing the r values obtained for several biological, so-
cial, and technological networks (Table 1) reveals that most
networks evaluated here have r > 1 and are, therefore, consid-
ered small-world. However, is the most highly clustered net-
work, the C. elegans metabolic network, less small-world than
the e-mail network? Clearly the size of these networks is dif-
ferent, and it is not clear how to take this difference into ac-

count when evaluating the small-world properties.
Similarly, should one interpret that the karate and protein in-
teractions networks share similar properties because their r
values are close to each other? By using the small-world mea-
surement x with a small-world criterion defined specifically
for each system based on the number of nodes and the aver-
age degree, conclusions and classification of these networks
are quite different. For example, the e-mail network achieves
the largest r value, but the x value indicates that it is closer to
a random network than to a small-world network. Likewise,
although the karate and protein interactions networks have r
values that are similar, the x values indicate that both net-
works are small-world, but the protein network trends closer
to a random topology. It is worth noting that both metrics
were able to determine that the word adjacency network is
not small-world. However, whereas r can only say the net-
work is not small-world, x indicates whether this network
is more like a lattice or random network; in this case, the
word adjacency network trends toward a random topology.

Another illustration that demonstrates the advantage of x
can be seen in the football network (Fig. 4). The original net-
work is presented here flanked by an equivalent lattice and
random network using the Kamada–Kawai model, an algo-
rithm used to optimize the spatial representation of a graph
based on the connections (Kamada and Kawai, 1989). The
small-world coefficient for each network is r = 3.49, 4.67, and
0.96 for lattice, real, and random networks, respectively.
Although the real network is classified as small-world, the
equivalent lattice network is also categorized as small-world
according to r. The aberration seen here clearly demonstrates
the drawback of comparing the network to an equivalent ran-
dom network alone. As described earlier, the clustering in a
random network, Crand, has a great influence on the value of
c, thus ultimately affecting r. This occurs because the magni-
tude difference between C and Crand is often large compared
to that of L and Lrand; thus, most lattice networks will be classi-
fied as small-world because r will always be greater than 1 un-
less the network is completely random. Such influence is not
seen with x, where x equals �0.60, 0.29, and 0.89, for lattice,
real, and random networks, respectively. It can be seen here
that x provides a quantitative measure of the small-world
properties over a spectrum of network topologies.

Brain networks

In this section, the utility of x is demonstrated by using
data from a study comparing the effects of an exercise pro-
gram in older adults previously completed by our group

Table 1. Network Statistics of Several Well-Known Biological, Social, and Technological Networks

Network N K C Crand Clatt L Lrand s o

Karate (Zachary 1977) 35 4.46 0.55 0.31 0.65 2.41 2.24 1.66 0.08
Word adjacency (Newman 2006) 112 7.59 0.17 0.19 0.69 2.54 2.49 0.89 0.73
Football (Girvan and Newman, 2002) 115 10.66 0.40 0.08 0.67 2.51 2.24 4.67 0.29
Caenorhabditis elegans (metabolic) (Duch and Arenas, 2005) 453 8.94 0.65 0.28 0.80 2.66 2.50 2.18 0.12
E-mail (Guimerà et al., 2003) 1133 9.62 0.22 0.09 0.55 3.60 3.27 8.14 0.56
Protein interactions ( Jeong et al., 2001) 1539 2.67 0.07 0.04 0.19 6.81 5.69 1.47 0.47
Internet 22,963 4.22 0.23 0.09 0.68 3.84 3.58 2.28 0.51

The networks were each obtained from previous work as referenced. N, network size; K, degree; C, clustering coefficient; Crand, clustering of
an equivalent random network; Clatt, clustering of an equivalent lattice network; L, path length; Lrand, path length of an equivalent random
network; r and x, small-worldness metrics.

FIG. 3. Demonstration of validity of x by comparing net-
works of differing sizes. Networks of varying sizes were simu-
lated and rewired over a range of probabilities as discussed
previously. For each network, an x curve (A) and a r curve
(B) are shown. Although r is highly dependent on the size of
the network, x curves demonstrate greater consistency over a
range of network sizes. This consistency demonstrates the utility
of x in making cross-subject or cross-network comparisons.
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(Burdette et al., 2010). There was no significant difference for
the graph metrics C and L between the control and exercise
group (Table 2). However, when the mean small-world coeffi-
cients for both groups were compared, they were found to be
significantly different. Such a group difference was not seen
with x, for�which there was no significant difference between
the groups. From an intuitive standpoint, if clustering in a
group of networks were to increase, then the small-world coef-
ficient should also increase. However, although the groups had
similarly sized networks, the r value in the exercise group was
lower. Given the similar levels of clustering and path length for
both groups, the significant difference seen in r suggests that
another factor might influence the calculated value.

Plotting the small-world values against the clustering of the
network provides some explanation for the differing results
for r and x (Fig. 5A). A comparison of r with network cluster-
ing reveals a weak relationship (R2 = 0.4135). In contrast, the
value for r and the equivalent random network is almost perfect
(R2 = 0.9968). A similar relationship was found in real-world net-
works, where r was more highly correlated with random clus-
tering, Crand (Fig. 5B). These results suggest that the main factor
driving changes in r is the clustering of the random network. In
contrast, when x is compared to network clustering, its value
more accurately reflects clustering in the real networks without
undue influence of clustering in the lattice network.

Discussion

We have introduced a small-world measurement, x, that
more accurately quantifies network small-world properties

as originally defined by Watts and Strogatz. In our explo-
ration of networks, the traditionally used small-world met-
ric r appears to have high sensitivity in classifying small-
world networks. However, it appears that this high sensi-
tivity is coupled with low specificity, resulting in networks
being classified as small-world when they are essentially
random, with only minor clustering present. In fact, the
small-world coefficient has been found to classify nearly
all networks as small-world (r > 1) unless the network is
a completely random graph. Another drawback of r is
that its value gives no sense of where along the spectrum
of lattice to random it falls. Greater r values are associated
with higher levels of small-worldness; however, this may
not be the case because r values do not increase monoton-
ically over varying rewiring probabilities. As seen in Fig-
ure 3B, with the exception of the peak, a particular r
value can represent networks with radically different topo-
logical properties, thus making network comparisons un-
reliable; r can determine whether a network is a random
or not, but it cannot effectively determine small-worldness
in a network. In our investigation, x was found to increase
monotonically across all networks used in this study, thus
facilitating its use as a tool for comparing networks. Unlike
the calculation of r, the calculation of x involves compar-
ing the clustering coefficient of the network to a lattice net-
work, thereby allowing one to determine how similar the
original network is to its lattice equivalent. Using this ap-
proach provides inherent scaling and determines how
much the original network is like its lattice or random
equivalents.

FIG. 4. Comparison of the football network (B) to its equivalent lattice (A) and random (C) networks. Each network is rep-
resented using the Kamada–Kawai algorithm. Although the network itself is considered small-world (r = 4.67), the latticized
network is also considered small-world (r = 3.49). Values of x were �0.60, 0.29, and 0.89 for the lattice, real, and random net-
works, respectively.

Table 2. Mean Statistics and Standard Deviations for Real Brain Data Comparing

Network Changes Due to an Exercise Regimen

Group N C L K s o

Control group 13,488 – 327 0.32 – 0.02 4.14 – 0.14 45.18 – 0.46 10.28 – 1.22 0.28 – 0.05
Exercise group 12,950 – 662 0.34 – 0.03 4.62 – 0.49 46.25 – 0.59 5.62 – 2.37 0.19 – 0.10

The exercise group showed an increase, but nonsignificant increase for both clustering and path length. An investigation of small-world
properties revealed a significant difference for r. In contrast, a nonsignificant difference was found for x, matching the findings for clustering
and path length more closely. N, network size; C, clustering coefficient; L, path length; K, degree; r and x, small-worldness metrics.
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Limitations

One possible reason why comparisons with network lat-
tices have not been used in the literature up to this point is
the length of time it takes to generate lattice networks, partic-
ularly for large networks. One appeal of comparing the orig-
inal network to only a random network is the rather fast
processing time to generate the random network. Although
latticization is fast in smaller networks, large networks such
as functional brain networks and the Internet can take several
hours to generate and optimize. The latticization procedure
described here uses an algorithm developed by Sporns and
Zwi in 2004, but the algorithm was used on much smaller
datasets. On the basis of some relatively minor modifications
(see the Methods section), we were able to use this latticiza-
tion method on brain networks with more than 15,000
nodes. As processor speed increases, or perhaps with the de-
velopment of a more computationally efficient algorithm, it
will become possible to perform latticization on very large
datasets.

Observations of x show that as network size decreases, the
range of x tends to decrease. As seen in the 100-node network
in Figure 2, the minimum x value is greater than �1. This oc-
curs because in smaller networks, the equivalent lattice tends
to have shorter path length. Because the path length in the lat-
tice network is closer to that of the random network, the
Lrand/L term in Equation 4 deviates from 0; thus, x does not
approach �1. x is also limited by networks that have very
low clustering that cannot be appreciably increased, such as

networks with ‘‘super hubs’’ or hierarchical networks. In hier-
archical networks, the nodes are often configured in branches
that contain little to no clustering. In networks with ‘‘super
hubs,’’ the network may contain a hub that has a node with
a degree that is several times in magnitude greater than the
next most connected hub. In both these networks, there are
fewer configurations to increase the clustering of the network.
Moreover, in a targeted assault of these networks, the topol-
ogy is easily destroyed (Albert et al., 2000). Such vulnerability
to attack signifies a network that may not be small-world.
However, because of the normalization of clustering in Equa-
tion 4, the closeness of C and Clatt can introduce a bias that
makes the network appear as if it has high clustering. Similar
to the WS model, x may become unreliable for very sparse
networks; thus, it is crucial to examine properties such as
edge density to determine whether x is applicable to the net-
work of interest. In our investigation, one network that may
fall into this category is the protein interactions network
due to its low edge density and 60% of its edges forming
trees. Thus, one should use caution when trying to attribute
small-world properties to such networks.

The Watts and Strogatz model is based on a regular lattice
with nodes of equal degree. Observed in it are C and L curves
in relation to a specific network size and degree distribution.
Changing the number of nodes and degree distribution will
certainly change these curves, thus affecting the extent of
the small-world criterion. For this study, the small-world
range was defined to be [�0.5,0.5], but this interval may not
be static across differently sized networks. In an ideal

FIG. 5. Correlations between small-world coefficients and clustering coefficient in brain networks (A) and real-world net-
works (B). The clustering coefficient of the original networks and clustering of equivalent random network (C and Crand, re-
spectively) were compared with r. In addition, x was compared to C and clustering of the equivalent lattice networks
(Clatt). R2 values indicate goodness of fit of the trendline (solid line). In both groups r shows a stronger association with
Crand compared to C. In contrast, x shows a strong association with C without undue influence by Clatt.
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network, x ranges from �1 to 1; a value of 0 indicates a net-
work that is in perfect balance between normalized values of
high clustering and low path length, whereas the extremes at
�1 and 1 represent a pure lattice and random network, re-
spectively. It is important to note that although x shows a
perfect balance between these normalized values, they may
not necessarily be equivalent. Values for x fall along a contin-
uum between an equivalent lattice and random network, thus
values closer to zero have more small-world tendencies.
There is no particular range or cut-off for small-worldness;
however, a network with an x of 0.6 shows more tendencies
toward a random network than a network with an x value of
0.4. If one chooses a cut-off range along this continuum, wider
ranges will be more sensitive to classifying networks as small-
world while a more narrow range will narrow increase spec-
ificity. The use of a cut-off depends on the goal of the study,
but it is important to recognize that x should be used as a
guideline for classifying small-worldness and has no explicit
cut-off range.

Future investigation of network topology, particularly in
relation to extreme hubs and the heterogeneity of node de-
gree, is warranted. However, such exploration is beyond
the scope of this work. The intention of x is to indicate the
level of small-worldness along a continuum and whether a
network exhibits more lattice-like or more random-like be-
havior. It is worth noting that x acts as a summary statistic
and estimates the overall small-world properties in a net-
work. Mean graph metrics and summary statistics should
not serve as an endpoint for network analysis. Instead,
these metrics should be used in conjunction with other analy-
ses that can provide further information about the complex
organization of the network. Nonetheless, x is an appealing
metric because networks with similar properties share the
same value regardless of network size, and in most cases, re-
searchers compare networks of similar size and topology, as
seen with brain imaging data. In this regard, x may be a bet-
ter choice because it is sensitive to changes in these networks.

Conclusion

We have introduced a new network metric, x, and have
shown that small-world networks may be less ubiquitous
than suggested in the current literature. We have demon-
strated that this metric more accurately identifies small-
world networks and it is able to determine whether a network
has more lattice- or random-like properties. In addition, this
metric is less sensitive to the size of a network and benefits
from inherent scaling, which provides a powerful tool for
comparing and ranking small-world properties in various
systems. However, the strength of this metric truly lies in
its ability to compare similarly sized networks because it al-
lows for a more direct comparison of network properties.
The capacity to describe a network as more random- or
lattice-like provides considerable benefits to studies investi-
gating dynamic changes in a network. Moreover, direct
comparison of small-world properties is useful for group
studies, such as brain networks, where understanding the
network topology in a particular population may provide fur-
ther insight into a disease or pathology. This metric provides
a useful tool for studying complex systems, but, more impor-
tant, it truly characterizes where a network falls in the Watts
and Strogatz small-world model.
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