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Abstract

In Alzheimer’s disease (AD), structural and functional brain network organization is disturbed. However, many
of the present network analysis measures require a priori assumptions and methodological choices that influence
outcomes and interpretations. Graph spectral analysis (GSA) is a more direct algebraic method that describes net-
work properties, which might lead to more reliable results. In this study, GSA was applied to magnetoencepha-
lography (MEG) data to explore functional network integrity in AD. Sensor-level resting-state MEG was
performed in 18 Alzheimer patients (age 67 – 9, 6 women) and 18 healthy controls (age 66 – 9, 11 women).
Weighted, undirected graphs were constructed based on functional connectivity analysis using the Synchroniza-
tion likelihood, and GSA was performed with a focus on network connectivity, synchronizability, and node cen-
trality. The main outcomes were a global loss of network connectivity and altered synchronizability in most
frequency bands. Eigenvector centrality mapping confirmed the hub status of the parietal areas, and demon-
strated a low centrality of the left temporal region in the theta band in AD patients that was strongly related
to the mini mental state examination (global cognitive function test) score (r = 0.67, p = 0.001). Summarizing,
GSA is a theoretically solid approach that is able to detect the disruption of functional network topology in
AD. In addition to the previously reported overall connectivity losses and parietal area hub status, impaired net-
work synchronizability and a clinically relevant left temporal centrality loss were found in AD patients. Our find-
ings imply that GSA is valuable for the purpose of studying altered brain network topology and dynamics in AD.

Key words: dementia; eigenvector centrality; electrophysiology; functional connectivity; magnetoencephalogra-
phy; network; neurophysiology; resting-state

Introduction

In Alzheimer’s disease (AD), the most prevalent form of
dementia, imaging techniques have been successful in

demonstrating local brain changes such as atrophy, hypome-
tabolism, and protein deposition, but these phenomena do
not express a straightforward relation with the gradually pro-
gressing severity of cognitive symptoms in AD (Pievani et al.,
2011). Since cognition depends heavily on an efficient interac-
tion between brain areas, changes in brain network connec-
tivity might reflect cognitive decline more accurately. Both
the investigation of the physical network wiring in the
brain and the superimposed network dynamics (‘‘functional’’

networks) may help in relating symptoms in AD to the under-
lying neurodegenerative processes.

In recent years, the graph theory has been increasingly
used as a theoretical framework that describes brain network
characteristics (Sporns, 2010). Graph theoretical studies in AD
demonstrate the disruption of large-scale brain network in-
tegrity (de Haan et al., 2009; He et al., 2009; Lo et al., 2010;
Sanz-Arigita et al., 2010; Stam et al., 2007, 2009; Supekar
et al., 2008). However, applying graph theoretical concepts
to neuroscience also poses methodological dilemmas. A
growing number of measures is being developed (Rubinov
and Sporns, 2010), and although the reproducibility of
graph measures is good (Deuker et al., 2009), varying
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definitions can bias outcomes and interpretations. For exam-
ple, many graph measures are directly dependent on network
size and density, demanding arbitrary normalization or
thresholding procedures (van Wijk et al., 2010).

Graph spectral analysis (GSA) is a technique that is known
in fields such as mathematics, chemistry, and engineering for
its powerful characterization of network features (Van Mie-
ghem, 2011). In short, GSA investigates the spectrum of a net-
work, which is the set of eigenvectors and corresponding
eigenvalues that are mathematically derived from the adja-
cency or Laplacian matrix of the network. The spectrum not
only contains considerable information on relevant network
properties such as connectivity levels and resilience to dam-
age, but also provides measures that are directly related to
network dynamics, such as the spread of information
throughout a network (Bonacich and Lloyd, 2001; Van Mie-
ghem et al., 2009). Since the interaction between distant
brain regions is essential for cognition, dynamical efficiency
is probably an important aspect of large-scale brain network
topology (Arenas et al., 2008). Two graph spectral measures
described in this study, the spectral gap and eigenratio,
make predictions about the dynamical behavior in a network
based on its topology. Another relatively familiar graph spec-
tral measure is the eigenvector centrality (EC), which is used
to identify highly connected ‘‘hub’’ regions in networks
(Bonacich, 2007; Lohmann et al., 2010). Since hub region vul-
nerability has been repeatedly reported in AD (Buckner et al.,
2005; Stam et al., 2009), the further exploration of hub struc-
ture is very relevant, as it could point toward an explanation
for this fundamental pathophysiologic phenomenon.

The deterministic nature of GSA and its solid theoretical
background might make it a promising complement to the
commonly used graph measures. We set out to investigate
the AD-related changes in five spectral measures that de-
scribe network topology and hub status. To evaluate the clin-
ical value of this approach, the relationship between regional
EC and cognitive test scores was also examined. Our hypoth-
esis was that, in addition to the previously reported loss-of-
functional network connectivity, graph spectral measures
would be able to detect impaired network synchronizability.
In addition, we expected to find parietal hub region vulnera-
bility and a corresponding decrease in the regional EC values
in AD.

Materials and Methods

Patients and controls

The study involved 18 patients with a diagnosis of prob-
able AD according to the NINCDS–ADRDA criteria
(McKhann et al., 1984) who had been recruited from the Alz-
heimer Center of the VU University Medical Center. The AD
patients were assessed according to a standard diagnostic
workup, which involved history taking, physical and neuro-
logical examinations, an interview with a spouse or close
family member, a neuropsychological assessment, blood
tests, magnetic resonance imaging (MRI) of the brain, and
electroencephalography. The diagnosis was made in a con-
sensus meeting during which all the available clinical data
were considered by a multidisciplinary team. The exclusion
criteria for this study were active psychiatric or neurologic
disease, or a mini mental state examination (MMSE) score
below 16. Eighteen healthy controls, often spouses of patients,

were also included. No structural (MRI) scans of the control
subjects were made, but they were screened by a neurologist
and underwent the same neuropsychological test battery as
the patients. In both groups, the use of psychoactive medica-
tion was incidentally reported: antidepressants (specific sero-
tonine reuptake inhibitors and tricyclic antidepressants, AD
n = 3: controls n = 1) and sleep medication (benzodiazepines,
AD n = 1: controls n = 2). Since AD patients had been diag-
nosed shortly before the magnetoencephalography (MEG) re-
cording was performed, a few of them reported having used
cholinesterase inhibitors (galantamine, n = 2). Most frequent
comorbidities were hypertension (AD n = 6; controls n = 3)
and diabetes mellitus type 2 (AD n = 4: controls n = 0). The
main subject characteristics are summarized in Table 1.

Global cognitive functioning was assessed with the MMSE
(Folstein et al., 1983). The level of education was classified
according to the system of Verhage ranging from 1 to 7
(low to highly educated) (Verhage, 1965). The Local Research
Ethics Committee approved the study, and all participants
provided written informed consent. The subjects and record-
ings were identical to a recent graph theoretical study focus-
ing on modularity (de Haan et al., 2012).

MEG recording and post-processing

Magnetic fields were recorded while the subjects were
seated in a magnetically shielded room (Vacuumschmelze
GmbH, Hanau, Germany) using a 151-channel whole-head
MEG system (CTF Systems, Inc., Port Coquitlam, BC, Canada).
A third-order software gradient (Vrba and Robinson, 2001)
was used after online band-pass filtering between 0.25 and
125 Hz. The sample frequency was 625 Hz. For technical rea-
sons, two channels had to be omitted, leaving 149 channels
for analysis. The subjects were measured during a no-task,
eyes-closed condition. At the beginning and at the ending of
the recording, the head position relative to the coordinate sys-
tem of the helmet was recorded by leading small, alternating
currents through three head-position coils attached to the left
and right pre-auricular points and the nasion on the subject’s
head. During the recording, the head-position changes up to
*1.5 cm were accepted. During the MEG recording, the sub-
jects were instructed to close their eyes, stay awake, and reduce
eye movements. In addition, they were instructed to just let
their minds wander, and certainly not to perform specific cog-
nitive tasks such as counting.

Typical artifacts were due to (eye) movements, swallow-
ing, dental prosthetics, or drowsiness. For each subject, care
was taken to select four artifact-free epochs of 4096 samples

Table 1. Subject Characteristics

Controls Alzheimer patients

N 18 18
Age 66 – 9 67 – 9 p = 0.82
Gender (M/F) 7/11 12/6 p = 0.16
MMSE 29 – 1 23 – 1 p < 0.001
Education 5 – 1 5 – 1 p = 0.89

Education score is based on Verhage index (Verhage, 1965). Data
are represented as mean – standard deviation unless indicated other-
wise.

N, number of subjects; M, males; F, females; MMSE, mini mental
state examination.
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(*6.5 sec) by two of the investigators (W.D.H. and C.S.) who
had been blinded to the diagnosis. All further analyses were
performed in the following frequency bands: delta (0.5–4 Hz),
theta (4–8 Hz), lower alpha (8–10 Hz), higher alpha (10–
13 Hz), beta (13–30 Hz), and gamma (30–45 Hz). All func-
tional connectivity and graph analyses were separately
performed for each epoch, and before the statistical analysis,
the four epoch results of each person were averaged.

All functional connectivity and subsequent graph spec-
tral analyses were performed with an in-house developed soft-
ware (BrainWave version 0.8.68, CS. Software available at:
http://home.kpn.nl/stam7883/brainwave.html). The graph
spectral measures described next were implemented using
an open access JAVA library called JAMA (www.cs.princeton
.edu/introcs/95linear/Eigenvalues.java.html).

Functional connectivity analysis

Correlations between all pair-wise combinations of MEG
channels were computed with the Synchronization Likeli-
hood (SL). Mathematical details can be found in previous
works (Montez et al., 2006; Stam and Dijk, 2002) and in the
appendix; here, a brief description is provided. The SL is a
general measure of the correlation or synchronization be-
tween two time series that is sensitive to linear as well as non-

linear interdependencies. The basic principle of the SL is to
divide each time series into a series of ‘‘patterns’’ (roughly,
brief pieces of time series containing a few cycles of the dom-
inant frequency) and to search for a recurrence of these pat-
terns. The SL is then the probability that the pattern
recurrence in time series X coincides in time with the pattern
recurrence in time series Y. The end result of computing the
SL for all pair-wise combinations of channels is a square ma-
trix (with 149 rows and columns, equal to the number of MEG
channels), where each entry contains the resulting SL value of
the sensor pair. This matrix is called the weighted (connections
strengths or weights are included) adjacency or connectivity ma-
trix A. Note that any connectivity measure could be used for
this purpose. Since all connections in our network are bidirec-
tional, the adjacency matrix is symmetrical along its diagonal
axis.

Graph spectral analysis

In this section, a brief explanation of the concepts and mea-
sures used in this study is provided; for a more extensive
technical background, please see (Bonacich and Lloyd, 2001;
Brouwer and Haemers, 2011; Farkas et al., 2001; Newman,
2007; Van Mieghem, 2011). The multi-step procedure from the
MEG recording to spectral analysis is summarized in Figure 1.

FIG. 1. Multi-step procedure from MEG recording to the computation of graph spectral measures. For this study, brain activ-
ity was recorded in an eyes-closed resting-state condition. Functional connectivity analysis was performed on 4 time segments
(ca. 6.5 sec) per person. Subsequently, weighted functional brain networks were formed, and from the corresponding adjacency
matrices, the Laplacian matrices were constructed. For each network, from both the adjacency and Laplacian matrices, the spec-
trum was calculated, and the eigenvalues from these spectra were used to compute various spectral measures. Spectral mea-
sures were then used in statistical analysis to compare group averages and correlations with cognition. It should be noted
that once a network is constructed, its eigenvectors and eigenvalues will be determined. MEG, magnetoencephalography.
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Graph spectral measures are derived from the adjacency or
Laplacian matrix Q. This is done by subtracting the adjacency
matrix from the degree matrix D (Q =D� A), which is the diag-
onal matrix with the nodal degrees (equal to the rowsum of
the adjacency matrix); see Figure 1 for an example. The Lap-
lacian matrix can be regarded as a manner of combining both
connectivity and degree information (all relevant informa-
tion) in the same matrix. Both the adjacency and the Laplacian
matrix can be written in terms of their eigenvectors and cor-
responding eigenvalues, for example, A = XLXT, where the
matrix X consists of all the eigenvectors in columns, and the
diagonal matrix L contains the corresponding eigenvalues.
The spectral information (X and L), thus, contains the same
information as the topology, or adjacency matrix (Van Mie-
ghem, 2011). The spectrum of a graph can be regarded as a
unique ‘‘fingerprint.’’ Especially the different eigenvalues
contain precise information on network properties, and can
be used to quantitatively classify network topologies. Here,
we briefly describe four graph spectral measures that contain
meaningful information on the network as a whole (two de-
rived from the adjacency matrix, two from the Laplacian ma-
trix) and one measure with a more local focus.

Global analysis

The spectral radius k is the largest eigenvalue of the adjacency
matrix, and it obeys 2L/N £k£ dmax, where N and L are the
number of links and nodes, respectively, and dmax is the maxi-
mum degree in the graph (Van Mieghem, 2011). For a fixed
size N of the network, the larger k is, the more links L, and
the better connected the network (Brouwer and Haemers,
2011; Dvorák and Mohar, 2009). The inverse of the spectral ra-
dius equals the epidemic threshold in a network (Van Mieghem
et al., 2009), and is proportional to the synchronization threshold
of a network (Restrepo et al., 2005). It is also related to kappa, the
ratio of the average squared degree and the average degree.

The spectral gap describes how fast a dynamic process in a
network will converge to the steady state (Van Mieghem,
2011). It is equal to the difference between the two largest ei-
genvalues of the adjacency matrix. It should be noted that the
spectral gap and the eigenratio (introduced next) are graph
spectral measures that deal with synchronized states of a net-
work, as opposed to the underlying synchronization measure
between nodes (SL in this case) that is used to determine the
connectivity matrix.

The algebraic connectivity, introduced by Fiedler in 1973,
measures how difficult it is to tear a network apart. If the net-
work is fully connected, then the algebraic connectivity is > 0.
The magnitude of the algebraic connectivity can also be regarded
as a measure for network ‘‘robustness.’’ The algebraic connectiv-
ity is equal to the second-smallest eigenvalue of the Laplacian
matrix (Fiedler, 1973; Mohar, 1991; Van Mieghem, 2011).

The eigenratio expresses the stability of a synchronized
state in a dynamical network. It is the ratio of the largest
and the second-smallest eigenvalue of the Laplacian matrix.
The smaller it is, the more stable the network synchroniza-
tion (Arenas et al., 2008). In this study, we use its inverse
(1/eigenratio) to obtain a value between 0 and 1.

Regional analysis

The EC is a measure of the relative importance (or hub sta-
tus) of a node within a network (Bonacich, 2007; Bonacich and

Lloyd, 2001). The most straightforward method of identifying
hubs is by their degree centrality, which assigns a hub status to
nodes with the highest number of connections (or the highest
sum of all weighted connections). However, this measure
only takes a node’s direct connections into account. Popular
alternative centrality measures that have a wider scope are
the betweenness centrality and closeness centrality; however,
they also have some drawbacks, such as their dependency
on path length and considerable computational demands
(Rubinov et al., 2009; Rubinov and Sporns, 2011). In contrast,
the defining characteristic of the EC is that it takes into ac-
count both the degree of a node and the degrees of its neigh-
bors. It, therefore, recognizes the fact that having important
nodes as immediate neighbors makes a node more important
in the network. Actually, the largest eigenvector component
i is a ‘‘dynamic’’ degree, where ‘‘dynamic’’ refers to all
walks in the graph that traverse the node i. EC xi for node
i is the ith component of the eigenvector corresponding to
the largest eigenvalue of the adjacency matrix, and is equal to:

xi =
1

k
+
N

j = 1

Aijxj (1)

where k is the largest eigenvalue of the adjacency matrix, N is
the total number of nodes, and A is the adjacency matrix of
the network. It should be noted that xi is proportional to
the sum of weights of all the nodes connected to it. EC is cal-
culated per node, but we averaged values over ten sensor
groups (left and right frontal, temporal, central, parietal and
occipital) to obtain a centrality distribution on a larger scale.

Statistical analysis

The statistical analysis was performed with SPSS for Mac
(version 18.0). The normal distribution of all measures was
checked with the Kolmogorov–Smirnov tests. For testing
group differences with regard to spectral radius, spectral
gap, algebraic connectivity, and eigenratio, we performed in-
dependent sample t-tests and nonparametric Mann–Whitney
U tests, which produced very similar results. We analyzed
regional EC results using analysis of variance (ANOVA) for
repeated measures (Greenhouse-Geisser corrected) with a
group as a between-subjects factor, and hemisphere (left
and right) and sensor region (frontal, central, temporal, pari-
etal, and occipital) as within-subjects factors. Gender was in-
cluded as covariate. Correlations between the regional EC
values and MMSE scores were evaluated with the Pearson’s
test. Analyses were separately performed for all frequency
bands. For all tests, a significance level of a £ 0.05 was used,
and no correction for multiple comparisons was applied.

Results

Global analysis

The spectral radius was generally lower in AD patients, but
this difference reached significance only in the gamma band
( p < 0.01, see Fig. 2). This indicates a higher network synchro-
nizability threshold in the gamma band.

The spectral gap was lower in AD patients in all frequency
bands except for the theta band, which was only significant in
the gamma band ( p < 0.01, see Fig. 3). This indicates that func-
tional network dynamics in the gamma band will take longer
to reach a steady, synchronized state in AD.
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The algebraic connectivity in AD patients was lower in the
lower alpha ( p < 0.05), beta ( p < 0.01), and gamma bands
( p < 0.01, see Fig. 4). No differences were found in the remain-
ing three bands. The decrease in multiple frequency bands
can be interpreted as a loss of overall connectivity in AD.

The eigenratio was lower in the theta band ( p < 0.05), and
higher in the gamma band ( p < 0.01) in AD when compared
with controls (see Fig. 5). No differences were found in the
other frequency bands. This implies that overall network syn-
chronizability decreases in the theta band, but increases in the
gamma band in AD.

Regional analysis

The ANOVA for repeated measures of regional EC results
(see Table 2) showed no main effect of the group, but instead
showed a main effect of the region in all bands except for the
delta band. In the gamma band, a main effect of the hemi-
sphere was found, but no effects were found in any of the
other frequency bands. Moreover, higher alpha and gamma
bands showed region–hemisphere interactions, indicating dis-

similar regional differences for each hemisphere in those
bands. Region–group interactions were found in the theta
and beta bands, as well as a hemisphere–group interaction in
the beta band, pointing to changes in the EC distribution in AD.

In Figure 6, the regional EC averages in all the frequency
bands are displayed. In most bands, the EC was highest in
the parietal sensors, confirming the previously reported hub
status of this region (Buckner et al., 2005; Tomasi and Vol-
kow, 2011). In this band, temporal sensor EC values were rel-
atively low in both groups, and were even lower in AD
patients. This indicates a diminishing network role of those
regions in the AD patients in the theta band. In the beta
band, the parietal EC values were lower in AD, while the tem-
poral and particularly occipital values were higher. In the
gamma band, the hemispherical differences were marked,
with lower frontal EC but higher EC values in the sensors
over the left posterior hemisphere.

EC and cognition

Finally, we assessed the correlations between regional EC
values and MMSE score for the different frequency bands.
The results are displayed in Table 3.

FIG. 2. Spectral radius results for the different frequency
bands. Error bars indicate standard deviation. **p < 0.01 (un-
corrected). AD, Alzheimer patient group; C, control group;
a1, lower alpha band; a2, higher alpha band.

FIG. 3. Spectral gap results for the different frequency
bands. Error bars indicate standard deviation. **p < 0.01 (un-
corrected).

FIG. 4. Algebraic connectivity results for the different fre-
quency bands. Error bars indicate standard deviation.
*p < 0.05, **p < 0.01 (uncorrected).

FIG. 5. Eigenratio results for the different frequency bands.
It should be noted that the depicted results are based on the
inverse of the original eigenratio (1/eigenratio) to obtain a
value between 0 and 1. Error bars indicate standard devia-
tion. *p < 0.05, **p < 0.01 (uncorrected).
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The left temporal regional EC in the theta band was
strongly associated with the MMSE score in AD patients
(r = 0.67, p = 0.001) (see Fig. 7). In the other bands, the left tem-
poral EC showed the same trend but with weaker, nonsignif-
icant correlations. The right central EC in the theta band was
negatively correlated to the MMSE score in AD patients
(r =�0.66, p = 0.003), but not in the other bands.

In the lower alpha band, the pattern of EC values and
changes in AD was similar. In the gamma band, the right pa-
rietal EC and MMSE were strongly correlated (r = 0.68,
p = 0.009).

Discussion

In this first application of GSA to MEG patient data, it is
demonstrated that this technique is able to detect changes
in the resting-state functional network integrity of early-
stage Alzheimer patients. The main outcomes are a general
loss of network integrity in the AD patients, especially in
the higher frequency bands, and a distinct pattern of regional
connectivity changes that are correlated to cognitive impair-
ment. These findings are generally in line with previous liter-
ature and our hypotheses, although a few discrepancies were
encountered as well.

Global network topology

The decreases in algebraic connectivity and spectral radius
in several frequency bands in the AD patient group can be
interpreted as a loss-of-network robustness and a deviation
from the optimal configuration for dynamic processing.
This agrees with related graph theoretical studies in AD
that have been conducted so far (He et al., 2009; Stam,
2010), and supports the notion that in AD, a functional dis-
connection between regions is taking place, leading to subop-
timal cognitive processing. The finding that these different
methods point in the same direction provides a degree of val-
idation. The results of topological and spectral graph mea-
sures cannot be directly compared, but the decrease in
algebraic connectivity can be taken as a stronger and theoret-
ically sounder sign of network breakdown than the previ-
ously reported loss of a small-world network structure. In
the spectral approach, no previous model (e.g., Watts and
Strogatz, 1998), normalization of graph measures (e.g., clus-
tering coefficient and path length) through a comparison
with random surrogate networks, or other additional meth-
odological choices are required.

Theoretically, the relationship between network topology
and network synchronizability is not straightforward (Arenas
et al., 2008), and increased network stability might also be
pathological, for example, by contributing to epileptic seizures.
The prevalence of epilepsy in AD patients is higher than in the
healthy population, and it is thought to be directly related to
neurodegenerative pathophysiological processes (Larner,
2010; Palop and Mucke, 2009). The observed eigenratio de-
crease (increase of 1/eigenratio in Fig. 5) in the gamma band
in AD indeed suggests higher network synchronization stabil-
ity in AD. In the theta band, the eigenratio increases in AD pa-
tients, suggesting lower network synchronization stability in
this band. This shift, contrary to the gamma-band findings,
could also point to different network functions of the fre-
quency bands, or to cross-frequency coupling effects; the
theta-gamma-band relation with regard to memory processes
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FIG. 6. Regional sensor-space ECM results for all frequency bands, Alzheimer patients versus control subjects. Error bars
indicate standard deviation. ECM, eigenvector centrality mapping.
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has been repeatedly described, and is very relevant in AD,
where memory impairment is often the main symptom. On
the other hand, the observed spectral gap decrease in the AD
gamma band indicates that reaching a synchronized state
will be harder for the network. This finding supports the loss
of large-scale network synchronizability in AD.

Regional EC

In the present study, parietal sensors had the largest EC
values in almost all frequency bands, characterizing them
as main hub regions. This is in line with previous findings
(Lo et al., 2010; Stam et al., 2009; Tomasi and Volkow,
2011), and with the presumed integrative function of the
parietal association areas (Mesulam, 1998). In a recent func-
tional MRI (fMRI) study, the EC was applied to resting-
state voxel-based fMRI networks of healthy subjects to
explore differences between individuals in various satiety
states (Lohmann et al., 2010). Besides confirming the hub

status of the posterior cortical area, Lohmann and associates
stress advantages such as the parameter- and assumption-
free nature of EC, as well as its computational efficiency com-
pared with other centrality algorithms when investigating
very large networks.

An intriguing recent insight that has emerged from net-
work analysis in AD is that hub regions (especially parietal)
are selectively vulnerable, and overlap strongly with re-
gions of amyloid deposition, hypometabolism, and atrophy
(Buckner et al., 2005; Drzezga et al., 2011). The vulnerability
of parietal hub areas was reflected in our EC mapping find-
ings by a parietal EC decrease in higher frequency bands
and an increase in lower bands, that is, a loss of high fre-
quency centrality. In addition, a notable regional EC change
in AD took place in the theta band in both temporal areas,
which already have a relatively low EC in healthy controls.
On the one hand, this might be a sign of the known (medio-
) temporal atrophy and dysfunction in AD, and fit the ob-
served decrease in theta band synchronizability. However,
if a major part of the temporal connections are to and from
the vulnerable parietal hub areas, then the EC decrease may
be mainly due to the weakening of the parietal hub nodes.
Thus, a possible explanation of this difference is the more in-
direct character of EC compared with degree centrality.

The striking correlation that was found in the theta band
between the left temporal EC and MMSE score (see Table 3
and Fig. 7) suggests that the drop in the network centrality
of the left temporal region in AD patients reflects the severity
of cognitive symptoms. Overall, only a few clear correlations
were found between the regional EC and MMSE score, even
without a correction for multiple testing. Nevertheless, the
temporal lobe association in the theta band is remarkably
strong, and might hold most promise as a functional (bio-)
marker of AD progression. It is well known that changes in
theta activity are among the earliest neurophysiological
signs that accompany AD, and in previous studies, left tem-
poral lobe characteristics were specifically suggested as
being AD disease progression markers (Fernandez et al.,
2003; Gianotti et al., 2007; Osipova et al., 2005).

Limitations and future directions

Several potential limitations of this study should be taken
into account. First of all, methodological choices might have

Table 3. Relation Between Eigenvector Centrality and Mini Mental State Examination

in Alzheimer’s Disease Patients

EC Delta Theta Lower alpha Higher alpha Beta Gamma

Left frontal 0.03 �0.02 �0.25 �0.25 0.09 �0.18
Right frontal �0.30 0.05 �0.09 �0.28 �0.01 �0.29
Left central 0.09 0.27 �0.14 0.15 �0.05 �0.14
Right central �0.42 �0.66** �0.26 �0.16 �0.04 �0.16
Left temporal 0.21 0.67** 0.55* 0.38 0.25 0.26
Right temporal 0.13 �0.02 0.16 0.04 0.03 �0.21
Left parietal 0.14 0.32 0.47 0.21 �0.33 �0.07
Right parietal �0.06 �0.39 0.08 0.17 �0.06 0.62**
Left occipital 0.22 0.19 0.00 0.02 0.12 0.30
Right occipital 0.22 �0.04 �0.18 0.12 0.02 0.23

Pearson’s bivariate correlations between regional EC values in 10 sensor regions and MMSE score (AD patient group). Significant findings
are printed in bold.

*p < 0.05, **p < 0.01 (uncorrected).

FIG. 7. Correlation between left temporal EC and MMSE
score in the theta band (Alzheimer patient group only).
r = 0.67, p = 0.001 (uncorrected). MMSE, mini mental state ex-
amination.
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influenced our outcome measures and subsequent interpreta-
tions: the use of resting-state data, the influence of volume
conduction in MEG sensor-space analysis, and epoch selec-
tion. Another limitation could be our choice of the SL as a
functional connectivity measure. Although we think that it
is the most appropriate measure for our purpose given earlier
SL-based studies, different functional connectivity measures
could lead to different results. The influence of coupling mea-
sures on subsequent graph analysis results has not yet been
investigated in a systematic way, but since a similar pattern
of functional connectivity loss has been reported using differ-
ent measures, we feel confident that the observed group
differences cannot be explained by this choice. In this explor-
atory study, we opted for several commonly used and well-
understood graph spectral measures that describe relevant
properties with regard to brain network analysis. However,
other measures, for example, describing network cluster-
ing properties, might be of special interest in future studies
(Bialonski and Lehnertz, 2006). In addition, it would be
interesting to compare the findings obtained in this study
with the graph spectral results based on different func-
tional connectivity measures, task-based datasets, or disease
conditions.

From a clinical perspective, several limiting factors may
have played a role: modest sample size, comorbidity, disease
heterogeneity, and the use of psychoactive medication, as de-
scribed in the methods section. However, since the occurrence
of these phenomena were infrequent and distributed across
both groups, it is not likely that they had a large influence
on the observed group differences. People possessing any of
these factors were not identified as outliers.

Conclusion

GSA detects changes in the resting-state functional net-
work integrity of mild-to-moderate Alzheimer patients. The
changes in AD patients point toward a less-efficient network
configuration for dynamic processing. Moreover, the rela-
tionship between the loss of temporal lobe centrality and
the cognitive impairment in AD indicates a potential value
for tracking the disease course. These clinically relevant re-
sults, based on a solid, computationally efficient theoretical
background that does not require a priori assumptions or ar-
bitrary parameter settings, make GSA, in our opinion, a
valid approach for exploring brain network integrity.
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Appendix

Mathematical Background of Synchronization Likelihood

The synchronization likelihood (SL) is a measure of the
generalized synchronization between two dynamical systems
X and Y (Stam and Dijk, 2002). A generalized synchronization
(Rulkov et al., 1995) exists between X and Y of the state-of-
the-response system and is a function of the driver system:
Y = F(X). The first step in the computation of the SL is to con-
vert the time series xi and yi recorded from X and Y as a series
of state-space vectors using the method of time-delay embed-
ding (Takens, 1981):

Xi = (xi, xiþL, xiþ 2 · L, xiþ 3 · L..., xiþ (m� 1) · L) (1)

where L is the time lag, and m is the embedding dimension.

From a time series of N samples, N � (m · L) vectors can be
reconstructed. State-space vectors Yi are reconstructed in
the same way.

Synchronization likelihood is defined as the conditional
likelihood that the distance between Yi and Yj will be smaller
than a cutoff distance ry, given that the distance between Xi

and Xj is smaller than a cutoff distance rx. In the case of
maximal synchronization, this likelihood is 1; in the case
of independent systems, it is a small, but nonzero, number,
namely Pref. This small number is the likelihood that two
randomly chosen vectors Y (or X) will be closer than the cut-
off distance r. In practice, the cutoff distance is chosen such
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that the likelihood of the random vectors being close is fixed
at Pref, which is the same for X and Y. To understand how
Pref is used to fix rx and ry, we first consider the correlation
integral:

Cr =
2

N(N�w)
+
N

i = 1

+
N�w

j = iþw

h(r� jXi�Xjj) (2)

Here, the correlation integral Cr is the likelihood that two ran-
domly chosen vectors X will be closer than r. The vertical bars
represent the Euclidean distance between the vectors. N is the
number of vectors, w is the Theiler correction for autocorrela-
tion (Theiler, 1986), and h is the Heaviside function: h(X) = 0 if
X ‡ 0, and h(X) = 1 if X < 0. Now, rx is chosen such that Crx =
Pref, and ry is chosen such that Cry = Pref. The SL between X
and Y can now be formally defined as:

SL =
2

N(N�w)Pref

· +
N

i = 1

+
N�w

j = iþw

h(rx� jXi�Xjj)h(ry� jYi�Yjj) (3)

SL is a symmetric measure of the strength of synchroniza-
tion between X and Y (SLXY = SLYX). In equation (3), the aver-
aging is done all over i and j; by doing the averaging only over j,
SL can be computed as a function of time i. From equation (3), it
can be seen that in the case of complete synchronization, SL = 1;
in the case of complete independence, SL = Pref. In the case of in-
termediate levels of synchronization, Pref < SL < 1. In the present
study, the following parameters were used: Pref was set at 0.01,
for the state space embedding a time lag of 10 samples, an em-
bedding dimension of 10, and a Theiler correction (W2) of 0.1.
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