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Abstract

The last 10 years witnessed a considerable increase in our knowledge of brain function in survivors to severe brain
injuries with disorders of consciousness (DOC). At the same time, a growing interest developed for the use of
functional neuroimaging as a new diagnostic tool in these patients. In this context, particular attention has
been devoted to connectivity studies—as these, more than measures of brain metabolism, may be more appropri-
ate to capture the dynamics of large populations of neurons. Here, we will review the pros and cons of various
connectivity methods as potential diagnostic tools in brain-damaged patients with DOC. We will also discuss the
relevance of the study of the level versus the contents of consciousness in this context.
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Introduction

This review attempts to discuss the different approaches
that may be used to investigate connectivity in patients

with disorders of consciousness (DOC). We will first define
the different common clinical entities considered as patholog-
ical DOC. We will then discuss the possible approaches that
can be used to study brain connectivity in these severely
brain-damaged patients. We will then consider conceptual
differences between the study of neural correlates of con-
sciousness (NCC) in DOC and in healthy awake volunteers
(HV)—referring to the study of the level versus the contents
of human consciousness. Finally, we will briefly discuss the
need for the validation of different diagnostic techniques, be-
fore their application at the patients’ bedside, and review po-
tential steps toward achieving this goal.

DOC remain among the most poorly understood and less
treatable conditions of modern neurology. They are com-
monly divided into three main clinical entities. Coma is de-
fined by a lack of both arousal and awareness. Vegetative
state (VS) is defined by a lack of behavioral signs of con-
sciousness, while arousal (defined as an alternation of eye
opening and closing) is preserved (Laureys et al., 2004). In
contrast, a minimally conscious state (MCS) is defined by
the presence of nonreflexive behaviors, although patients re-
main unable to communicate (Giacino et al., 2002). Recent
studies showed that in the absence of use of an appropriate
clinical scale such as the Coma Recovery Scale–Revised

(CRS-R), the risk of underestimating the level of conscious-
ness in DOC patients is about 40% (Schnakers et al., 2009).
This fact illustrates the difficulties inherent to the behavioral
assessment in these patients. Many patients’ behaviors, such
as grimacing or localization of sounds, for example, remain
equivocal and difficult to interpret as evidence for the pres-
ence or absence of consciousness. Research, therefore, aims
at finding reliable brain activity markers of consciousness
that are applicable to these patients. Finding such markers
would improve both diagnosis and disease understanding,
bringing possibilities for the setup of new treatments (Boly,
2011). Functional neuroimaging studies performed in unre-
sponsive brain-damaged patients can be categorized into
two main classes: active and passive paradigms (Boly and
Seth, 2012). Active paradigms aim at obtaining a response to
command in patients, while bypassing the motor response
itself (Boly et al., 2007; Owen et al., 2006). Passive paradigms
gather information on the patients’ brain function, identifying
neural activation reflecting ‘‘automatic’’ processing, that is, oc-
curring without the patients’ willful intervention (Boly et al.,
2009a). [18F]-fluorodeoxyglucose positron emission tomogra-
phy (PET) studies showed a widespread impairment of
fronto-parietal cortices in VS patients as compared with con-
trols (Laureys, 2005; Laureys et al., 1999). Although metabolic
studies certainly provide valuable information, connectivity
may, however, better grasp the neurons’ collective behavior.
Brain connectivity can be studied at both the structural
(Fernandez-Espejo et al., 2011) and functional (Noirhomme
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et al., 2010; Soddu et al., 2009, 2011) levels. Functional studies
are not necessarily trying to univocally reflect structural con-
nectivity. Although recent attempts at predicting functional
from structural connectivity are very promising (Honey
et al., 2007), some discrepancies may exist when comparing
the predicted functional connectivity with the empirical re-
sults obtained by measuring the resting-state blood-oxygen-
level-dependent (BOLD) signal through functional magnetic
resonance imaging (fMRI). The present review will focus on
the functional aspects.

On the functional side, it may be useful to introduce here
some relevant concepts that will be further discussed. Func-
tional connectivity measures the deviations from statistical in-
dependence among distant neural populations. Statistical
dependence is estimated based on temporal relationships, by
applying nondirected (for example, linear correlation and co-
herence-based analyses) or directed (Granger causality and
transfer entropy) measures to time series of neuronal activity
(Bressler and Seth, 2011). Measures of functional connectivity
are largely model free but do not make any explicit reference
to the underlying structural model. Hence, for instance, func-
tional connectivity among distant elements may be high either
because these elements are actually connected by direct struc-
tural links or just because they share a common input. On
the other hand, effective connectivity attempts to extract net-
works of causal effects among neural elements. Causal effects
can be inferred directly by detecting the large-scale effects pro-
duced by a controlled (peripheral, cortical-electric, and cortical-
magnetic) perturbation of the system. Alternatively, patterns of

effective connectivity can be extracted from spontaneous or
evoked activity by means of dynamic causal modeling
(DCM). This approach requires specifying a model, including
structural parameters, that informs on the original neuronal
mechanism at the basis of the observed signals. The next section
will review how these different approaches to the study of con-
nectivity may be employed in DOC patients.

Studying Brain Connectivity
in DOC—the Different Approaches

To date, three different connectivity approaches have been
used in patients with DOC: (1) functional connectivity or
‘‘resting state’’ studies using, for example, fMRI; (2) a pertur-
bational approach using transcranial magnetic stimulation
(TMS) combined with electroencephalography (EEG); and
(3) other perturbational approaches investigating brain re-
sponses to external stimuli, including sensory evoked poten-
tials (ERP). After summarizing the findings obtained in DOC
with each of these techniques, we will review their respective
practical strengths and weaknesses. Figure 1 condenses the
main concepts of the present section.

Functional connectivity studies

Functional connectivity investigates linear relationships
among the measured activities in the different regions of in-
terest of the brain. Both univariate, comparing each time
pairs of regions, and multivariate, assessing all the regions
at the same time, approaches are nowadays available, each

FIG. 1. Pro ( + ) and cons (�) of different approaches applicable to the study of brain connectivity in patients with disorders of
consciousness. Detailed description can be found in the main text. Upper panels are reproduced with permission from (Boly et al.,
2011; Massimini et al., 2009; Vanhaudenhuyse et al., 2010). fMRI, functional magnetic resonance imaging; TMS, transcranial mag-
netic stimulation; EEG, electroencephalography; ERP, evoked potentials; DCM, dynamic causal modeling; BA, Brodmann area;
A1, primary auditory cortex; STG, superior temporal gyrus; IFG, inferior frontal gyrus. Right panel: brain area 1 = A1, area
2 = STG, area 3 = IFG. Arrows represents connection between the different network nodes as for example studied by DCM.
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with its own advantages and limitations. Functional connec-
tivity can, in theory, be applied to a variety of brain imaging
techniques. Resting-state fMRI functional connectivity has
proved useful in the identification of a correlation between
the fronto-parietal networks connectivity and the level of con-
sciousness in DOC patients (Boly et al., 2009b; Fernandez-
Espejo et al., 2010; Vanhaudenhuyse et al., 2010) or anesthesia
(Boveroux et al., 2010; Martuzzi et al., 2010; Schrouff et al.,
2011). Some decreases in fronto-parietal connectivity have
been described in deep nonrapid eye movement (non-REM)
sleep (Horovitz et al., 2009; Samann et al., 2011). Other stud-
ies, however, show globally preserved connectivity across
sleep stages (Koike et al., 2011). Anticorrelations between a
default network and lateral fronto-parietal cortices have
also been shown to decrease in VS (Boly et al., 2009b), anes-
thesia (Boveroux et al., 2010), and non-REM sleep (Samann
et al., 2011) as compared with normal wakefulness.

Although this technique is very useful in collecting infor-
mation about whole-brain function in one single data set,
the functional significance of resting-state fMRI signals has
been debated (Birn et al., 2008). It is now commonly accepted
that the BOLD signal tightly correlates with population-level
neuronal activity, especially with regard to local field poten-
tials (Nir et al., 2007, 2008). The relationship between the
BOLD signal and regional electrophysiological activity is
likely to be similar for task-related fMRI or the resting state.
Consequently, the functional significance of spontaneous or
task-evoked BOLD fluctuations is also likely to be similar.
Resting-state and task-related fMRI are prone to noise con-
tamination, such as by movement and physiological artifacts,
which are difficult to avoid in HV as in DOC patients (Soddu
et al., 2011, 2012). Indeed, DOC patients are noncollaborative
and may present uncontrollable reflexive movements. Even if
different methods exist for dealing with them (Fox et al., 2005;
Jones et al., 2008; Perlbarg et al., 2007; Soddu et al., 2012),
none of them are completely satisfactory. fMRI temporal res-
olution is also slower than the temporal scale where con-
scious scenes are likely to arise. This temporal scale is
indeed thought to be of the order of hundreds of milliseconds,
rather than seconds. fMRI studies could, thus, be usefully
complemented by EEG.

Resting-state spontaneous brain activity analyses can also
be performed using EEG. The loss of consciousness during
non-REM sleep or anesthesia is usually associated with a
raise of delta power and the occurrence of slow waves in
the EEG (Murphy et al., 2011). These slow waves travel across
a wide range of brain areas, especially in the default network
(Murphy et al., 2009, 2011). The bispectral index is a commer-
cial EEG-based measure that is mainly based on power spec-
tral changes in the EEG between different states, and for small
value ranges is largely based on changes in power in the delta
band. The fact that the bispectral index can differentiate be-
tween MCS and VS patients (Schnakers et al., 2008) also sug-
gests a negative correlation between the EEG delta power and
the level of consciousness in DOC patients. A small number
of studies have described decreased scalp EEG coherence in
coma (Kane et al., 1998), and in one VS (Davey et al., 2000)
and one MCS (Kobylarz and Schiff, 2005) patient. Recent re-
ports have, however, described increased EEG coherence
during propofol-induced loss of consciousness (Murphy
et al., 2011; Supp et al., 2011). Granger causality estimates
causal statistical influences between simultaneously recorded

EEG time series data, either in the absence of identifiable be-
havioral events or in the context of task performance. Granger
causality measures between default network areas and sig-
nals reconstructed from spontaneous high-density EEG re-
cordings have been reported to be increased during
propofol-induced loss of consciousness (Barrett et al., 2012).
On the other hand, connectivity assessment using Transfer
Entropy, a method used to measure directional information
transfer between the EEG signals recorded from different
scalp electrodes (Schreiber, 2000), suggests a decrease of
front-to-back connectivity in this state (Ku et al., 2011; Lee
et al., 2009). This result suggests a possible impairment of
top-down cerebral processes during propofol sedation. EEG
coherence and Granger Causality connectivity also seem de-
creased in MCS patients as compared with severely disabled
patients who emerged from DOC (Pollonini et al., 2010). Fur-
ther studies using, for example, intracranial data are war-
ranted to complement these findings.

The limitation of spontaneous brain activity connectivity
measures (and related graphical approaches) of not being
able to infer the underlying neuronal mechanism can be par-
tially resolved by the use of mathematical models such as
DCM (Friston et al., 2003). Correlation-based measures and
their variants are also prone to third driver effects, that is,
they cannot differentiate between direct causal interactions
in brain areas and the influence of a third common generator
driving the observed correlation, which would be located
somewhere else in the brain. Perturbational approaches
may help in reducing this bias by recording brain activity
changes directly due to experimentally induced causal neuro-
nal interactions.

Perturbational approach I: TMS-EEG studies

Consciousness is considered as emerging from fast, effec-
tive interactions among distributed areas, especially within
a cortico-thalamic neuronal complex (Tononi, 2008). One
way of effectively gauging connectivity within human tha-
lamo-cortical networks involves directly perturbing a subset
of cortical neurons with TMS and performing the source
modeling of high-density EEG data to detect, on a millisecond
time scale, the chain of effects triggered in the rest of the brain
by this initial perturbation (Casali et al., 2010; Ilmoniemi et al.,
1997; Litvak et al., 2007; Morishima et al., 2009; Stamm et al.,
2011). Since TMS tends to activate a large set of cortical axons
in a way that is difficult to fully control (Wagner et al., 2007),
TMS-EEG is not ideally suited for capturing causal interac-
tions within specific cortico-cortical circuits. On the other
hand, TMS-evoked activations provide an overall, broad esti-
mation of the effective connectivity that may constitute an ad-
vantage when studying DOC; indeed, theoretical works
(Tononi, 2004; Tononi and Koch, 2008), experimental data
(Alkire et al., 2008), and clinical evidence (Markowitsch and
Kessler, 2000; Mataro et al., 2001; Schiff, 2010) suggest that
consciousness does not depend so much on some specific cir-
cuits, but rather on the capacity of distributed regions of
the brain to interact through divergent cortico-cortical and
cortico-thalamo-cortical connections. Thus, the combination
of TMS and EEG was tested in different conditions in which
consciousness was physiologically or pharmacologically al-
tered. First, TMS-evoked cortical activations were recorded
during the transition from wakefulness to deep non-REM
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sleep early in the night, when consciousness fades. These
measurements showed that, while during wakefulness the
brain is able to sustain long-range, complex patterns of activa-
tion, during non-REM sleep, this ability is lost: The thalamo-
cortical system, despite being active and reactive, either
breaks down into causally independent modules (producing
a local response) (Massimini et al., 2005), or bursts into an
explosive and nonspecific response (producing a simple,
global slow wave that invades most of the cortex) (Berg-
mann et al., 2012; Massimini et al., 2005, 2007). In a subse-
quent study, TMS-evoked activations were recorded
during REM sleep, when the brain is still disconnected
from the external world but consciousness returns in the
form of a dream (Massimini et al., 2010). In this condition,
TMS-EEG responses were similar to the ones observed dur-
ing wakefulness. Finally, the spread of TMS-evoked cortical
activations was studied during LOC induced by a pharma-
cological agent, midazolam, at anesthetic concentrations
(Ferrarelli et al., 2010). In this case, unconsciousness was
associated with a breakdown of the long-range pattern of
cortical effective connectivity. Based on these findings
TMS-EEG has been proposed as a tool to investigate effec-
tive connectivity at the bedside of DOC patients (Massimini
et al., 2009). In this category of patients, TMS-EEG may be
especially useful, because it does not rely on a subject’s abil-
ity to process sensory stimuli, to understand and follow in-
structions, or to communicate. Notably, a recent TMS-EEG
study demonstrated a clear-cut recovery of effective connec-
tivity in the brain of noncommunicating patients that paral-
leled the recovery of consciousness from the VS (Rosanova
et al., 2012). Practically, TMS-EEG is still a rather challeng-
ing technique that requires the implementation of a complex
set-up in the intensive care environment. Hence, simpler
ways of estimating effective connectivity in DOC patients
should be developed in parallel; this could be achieved by
using standard sensory stimulation.

Perturbational approach II: response to external stimuli

Responses to external stimuli have been studied for quite a
while in patients with DOC. The first H2

15O-PET studies per-
formed in DOC patients, measuring changes in regional cere-
bral blood flow, showed that at the group level, VS activation
in response to simple auditory and somatosensory stimula-
tion was restricted to primary sensory cortices (Laureys
et al., 2000, 2002). Patients in MCS showed a more wide-
spread activation, including fronto-parietal cortices, as well
as default network deactivation, in response to external stim-
uli (Boly et al., 2004, 2008a). fMRI studies showed the pres-
ence of the activation of higher-order cortices in some VS
patients, which is often correlated with a good prognosis
(Coleman et al., 2009; Di et al., 2007).

Recent EEG studies suggested the importance of long-
latency components (of more than 100–200 msec delay after
the onset of stimuli) in normal conscious perception (Del
Cul et al., 2007; Fitzgerald et al., 2001). The amplitude of
these long-latency components indeed selectively increases
with the probability of perception of a given stimulus. This
amplitude also correlates with the level of consciousness in
VS and MCS patients (Boly et al., 2011), during propofol an-
esthesia (Heinke et al., 2004) or during non-REM sleep (Ruby
et al., 2008). Previous studies using DCM in HV suggested a

privileged role of backward connectivity in the generation of
long-latency ERP components (Garrido et al., 2007). Indeed,
this work suggests that while the modulation of forward con-
nections is sufficient in a cortical model to explain the gener-
ation of the early components of ERP responses, the activity
of backward connections is necessary to generate longer-
latency responses. Since long-latency components have also
been found to correlate with conscious perception, this result
suggests that the activity of backward connections could also
be important for consciousness. Correspondingly, a recent
DCM analysis suggested that backward connectivity from
frontal to temporal cortices could be impaired in VS as com-
pared with MCS and controls (Boly et al., 2011). Altogether,
these results stress the likely importance of backward connec-
tivity in higher-order cortices for conscious processing (Crick
and Koch, 1995; Lamme, 2006). Further studies conducted on
sleep and anesthesia, as well as the use of other ERP para-
digms (King et al., 2011), will attempt at evaluating the gen-
eralizability and diagnostic value of these findings. In
addition, other connectivity assessment methods—such as
correlation, coherence, Granger Causality, partial directed co-
herence, or transfer entropy—should also be used to identify
dynamical connectivity changes during external stimulation
(Bressler and Seth, 2011) in MCS and VS.

The advantages of external stimuli, thus, rely on providing
a perturbational approach that investigates cortical connec-
tivity, without the technical burden of TMS-EEG stimulation.
ERP amplitudes are more comparable from one subject to
another in a between-subject setting, allowing straightfor-
ward statistics at the group level (Boly et al., 2011). However,
responses to external stimuli may be filtered through affer-
ent pathways and subcortical gates before reaching the
thalamo-cortical system. This means, for instance, that brain-
stem lesions may obliterate response to external stimuli
even though thalamo-cortical interactions are not impaired
(Massimini et al., 2009). The brainstem function is, however,
thought to be essentially preserved in VS and MCS (Laureys
et al., 2004).

The temporal blurring of ERP responses to external
stimuli—that is, the observed ERP impulse-response duration
for a given single input—is much bigger than that of TMS-
EEG stimuli. This blurring increases the overlap between
the responses in the different brain areas. This potentially de-
creases the utility of auditory ERP that investigates cortical re-
sponse differentiation, based on a time series examination of
brain activity. An alternative method of studying the com-
plexity of brain responses to external stimuli could be, for ex-
ample, to study the nonlinearity of the brain responses during
responses to stimuli. For example, in the presence or loss of
cortical differentiation, the activity in one brain area would
be expected to elicit a similar brain activity pattern, with a
similar frequency content, in surrounding regions (Boly
et al., 2009a). In contrast, the observed brain activity pattern
would be very different in the presence of differentiated
and integrated cerebral activity (Alkire et al., 2008). Investi-
gating cross-frequency interactions between brain regions
could, therefore, be another way of investigating the com-
plexity of cerebral activity in response to stimulation (Ahrens
et al., 2008). Following this logic, cross-frequency interac-
tions could be expected to decrease in anesthesia, sleep, and
DOC. Previous studies suggested the preponderance of non-
linearity in backward connections, as compared with forward
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connections (Chen et al., 2009). The integrity of cerebral back-
ward connectivity could, thus, be hypothesized as being cor-
related with preserved brain activity complexity in patients
with DOC. Further studies should, however, investigate
this issue in greater detail.

Diagnosing Consciousness: Level Versus Contents

Figure 2 summarizes the present section—which will aim
at reviewing the conceptual and practical differences between
the study of the level versus the contents of human conscious-
ness, and at emphasizing their relevance for the study of
brain function in DOC patients.

As previously discussed by several authors in the litera-
ture (Baars, 1988; Frith, 2011; Zeman, 2001), consciousness
continues to be an ill-defined concept. When scientifically
approaching NCC, there is an important distinction to be
made between the level and the contents of consciousness
(Dehaene and Changeux, 2005; Frith, 2011; Overgaard and
Overgaard, 2010). In the present context, consciousness is de-
fined as what disappears during dreamless sleep (Tononi,
2008): the ability to perceive anything. The contents of con-
sciousness refer to any of the particular perceptions that can
be experienced during a normal wakefulness state. These con-
tents may be internally driven or generated through an inter-
action with the environment (Vanhaudenhuyse et al., 2011).
The level of consciousness refers to a dimension that varies
from coma at one extreme, through sleep, and to alert wake-
fulness at the other extreme (Frith, 2011). The level of con-
sciousness can in this view be compared with a potential to
experience a lot of different contents, though each cognitive
or sensory function by itself would not be necessary for the
existence of consciousness (Boly and Seth, 2012). By defini-
tion, this potential would disappear in unconscious states.
Understanding the levels of consciousness is of particular rel-
evance to the studies of DOC patients, as well as to brain

function in different stages of anesthesia and sleep. Ethically,
detecting a potential ability to perceive—anything—is a very
important question in noncommunicative severely brain-
damaged patients.

Alert wakefulness is characterized by a consciousness of an
ever-changing stream of specific mental states—comparable
to a wandering exploration of the potential repertoire of states
available to our consciousness at each single moment (Sada-
ghiani et al., 2010). These transient states that we are aware
of at each instant determine the contents of our conscious-
ness. In studies of the NCC in HV, there is great interest in
contrasting the neural activity associated with stimuli that in-
fluence the contents of consciousness with the neural activity
associated with the same stimuli when they affect behavior in
the absence of any change in the content of consciousness
(Frith et al., 1999). The key difference between the study of
NCC in HV and DOC patients is, however, that in the first
case, subjects are basically conscious all the time—what
changes is the content of their experiences at particular exper-
imentally controlled moments (Boly and Seth, 2012). As noted
by (Frith, 2011), though a certain minimal level of conscious-
ness is necessary for there to be any contents of consciousness,
the level of consciousness does not determine what the con-
tents of consciousness will be. A certain level of consciousness
is prerequisite to any perception, but a series of other
factors—such as stimulus intensity, duration or emotional
valence, underlying brain activity shaped by previous learn-
ing, and ongoing spontaneous brain activity fluctuations—
can also influence the conscious access of some given stimuli
(Boly et al., 2008b; Dehaene and Changeux, 2005). As stated in
(Dehaene and Changeux, 2011), theoretical approaches to
NCC in HV—that is, NCC of conscious access, or conscious-
ness contents—and in DOC—that is, NCC of the conscious
level—are from two different scopes. In principle, theoretical
predictions in terms of NCC for these two aspects could, thus,
be different.

FIG. 2. Conceptual and
practical differences in the
study of NCC in states such
as coma, anesthesia, and
sleep, or in healthy awake
volunteers. Detailed
description can be found in
the main text. Upper panels
are reproduced with
permission from (Alkire et al.,
2008; Del Cul et al., 2007).
NCC, neural correlates of
consciousness; HV, healthy
awake volunteers.
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In practice, there exists some possible dissociation between
the experimental study of consciousness level and that of con-
sciousness contents. One can, for example, differentiate vari-
ous levels of consciousness, without asking any questions
about conscious contents. In principle, this question can be
addressed via the study of spontaneous brain activity, in an
experimental setup lacking control on the subjects’ conscious
contents. This approach is commonly used in resting-state
fMRI or spontaneous EEG acquisition studies. In the context
of perturbational approaches, some subliminal stimulations
have also been shown to efficiently differentiate the levels
of consciousness across different conditions. The TMS-EEG
stimulation is typically not perceived by HV and, in common
experimental settings, does not overtly affect the subjects’
conscious contents. Despite its subliminal characteristic,
TMS responses to stimulation have been shown as efficiently
discriminating the levels of consciousness in states such as an-
esthesia (Ferrarelli et al., 2010), severely brain-damaged pa-
tients (Rosanova et al., 2012), or sleep (Massimini et al.,
2005). Similarly, simple auditory stimulations such as clicks
(Boly et al., 2004) or beeps used in a mismatch negativity par-
adigm (Boly et al., 2011; Heinke et al., 2004; Ruby et al.,
2008)—in which processing is commonly considered to be
pre-attentive—could act by probing some basic characteris-
tics of the system that are necessary for some level of con-
sciousness to emerge (Massimini et al., 2009), without
necessarily significantly influencing the subjects’ conscious
contents. Another example can be found in the results of
some experiments performed during REM sleep. During
this sleep stage, external sounds are usually hardly per-
ceived, but ERP still look very similar to those observed in
wakefulness. The observed brain response to auditory stim-
ulation is, thus, likely uncovering a relatively preserved
level of consciousness, without being a signature of a mod-
ification of its contents (Nir and Tononi, 2010). These differ-
ent examples show that, in practice, the basic NCC of the
level of consciousness can be studied independently of con-
sciousness contents.

As shown in Figure 2 (left panel), the neural correlates of a
reduced level of consciousness consist either in a local re-
sponse to the stimulation (Massimini et al., 2005) or in a
global, nonspecific response (Alkire et al., 2008; Kroeger
and Amzica, 2007; Massimini et al., 2007). This phenomenon
is generally thought to be due to the presence of bistable dy-
namics in the system (Massimini et al., 2012), which would
prevent the emergence of complex spatiotemporal patterns
of effective connectivity that are widespread and differenti-
ated at the same time. Similarly, patterns of activity that are
widespread, but stereotypical, should be expected during
the loss of consciousness in epileptic patients. From this per-
spective, the level of consciousness seems to correlate better
with the complexity of brain activation than with their spatial
extent. Thus, quantifying the complexity of brain responses
may be a necessary step if one wants to reliably assess the
level of consciousness in noncommunicative brain-damaged
patients (Boly, 2011; Boly et al., 2009a; Massimini et al.,
2009). On the other hand (Fig. 2, right panel), the neural cor-
relates of conscious perception of a specific stimulus in HV
invariably consist of a stronger, and more diffuse, activation
for perceived stimuli as compared with subliminal stimuli.
This ‘‘ignition’’ process is characterized by the presence of
stronger long-range coherence and fast frequency responses

involving fronto-parietal cortices for stimuli that reach the
threshold for consciousness (Dehaene et al., 2006). In this
case, observing a widespread response may immediately
signal that a subject consciously perceives the particular
stimulus she/he is presented with. In unconscious subjects,
it will certainly be important to better understand, and to
better conceptualize, the possible dissociations between
the neural correlates of the level of consciousness and the
neural correlates of a specific aspect of consciousness. If
used in severely brain-damaged patients, a single criteria
of big response/activation for deciding the presence of con-
sciousness presents, however, a risk of false positive, due to
the occurrence of high amplitude responses commonly pres-
ent in DOC—similar to the K-complex responses observed
during non-REM sleep (Boly et al., 2009a). An additional
check for the complexity of brain response and the presence
of brain activity differentiation would, thus, be a safer bet in
order to reliably detect the consciousness in DOC patients
(Boly, 2011).

Toward the Use of Neuroimaging as a Diagnostic Test?

To date, the gold standard for diagnosis of the level of con-
sciousness is behavioral. Clinical assessment is based on crite-
ria described by (Giacino et al., 2002) to distinguish MCS from
VS. However, this clinical diagnosis itself has its ownlimita-
tions. If not using an appropriate behavioral scale, clinical mis-
diagnosis reaches up to 41% (Schnakers et al., 2009). Clinical
scales themselves are quite variable in their reliability. A re-
cent meta-analysis revealed that the CRS-R was the best at-
tempt that explicitly incorporates the diagnostic criteria for
MCS in clinical diagnosis (Seel et al., 2010). However, the reli-
ability of the CRS-R itself depends on examiner experience
(Lovstad et al., 2010), and this scale is quite long and heavy
to administer in a routine basis in acute patients. Even if this
gold-standard behavioral assessment is repetitively and care-
fully performed in DOC patients, it can also sometimes lead to
some underestimation of the patients’ level of consciousness.
It has indeed been shown that a minority of patients who
are behaviorally totally unresponsive instead become con-
scious when assessed with active paradigms using fMRI
(Bardin et al., 2011; Monti et al., 2010; Owen et al., 2006) or
EEG (Cruse et al., 2011). On the other hand, the active neuro-
imaging paradigms used to detect these patients are also
prone to false negatives (Bardin et al., 2011). In fact, in princi-
ple, paradigms that are based on response to command,
being clinical or neuroimaging based, are not sufficient to
systematically detect consciousness in each individual case
(Boly, 2011). Indeed, volition does not equate consciousness:
The absence of a response from the patient does not neces-
sarily mean that the patient is unconscious (Boly et al.,
2007) and even in HV, volitional activity and consciousness
can, in many cases, be dissociated (Boly and Seth, 2012; Soon
et al., 2008). Recent results obtained using the isolated fore-
arm technique during anesthesia (Russell and Wang, 1996)
raise even more debate on this topic, by showing frequent
responses to command in the absence of a subsequent re-
port. To date, there is also a need to fill the gap between clin-
ical behavioral studies and neuroimaging studies by
comparing the results obtained using these two approaches
on a single-subject basis and identifying typical VS and MCS
patterns, versus outlier patterns. Different neuroimaging
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techniques could, thus be compared in terms of their perfor-
mance—false-positive and false-negative rates, sensitivity,
specificity, and so on—if used in sufficiently large popula-
tions. Inter-assessor and inter-site reliabilities should also
be assessed in order to evaluate the reproducibility of differ-
ent techniques results on a larger scale. Finally, the use of au-
tomated procedures (Soddu et al., 2012), as well as the use of
classifiers (Phillips et al., 2011), and of a combined study of
different imaging techniques (Bruno et al., 2011) could also
reduce observer-dependent bias in neuroimaging-based
diagnosis.

Ultimately, a most accurate diagnosis of consciousness
would require first knowing the mechanisms bridging con-
scious perception to the brain and then using neuroimaging
techniques as a way of objectifying the presence of this mech-
anism. To achieve this aim, theoretical approaches attempting
at describing the general mechanism underlying conscious
experiences (Dehaene and Changeux, 2011; Tononi, 2008),
as well as the potential use of theoretically grounded indexes
for the neuroimaging-based diagnosis of consciousness
(Seth et al., 2008, 2011), are of great interest. However, a
lot more work is needed in this field, and we are still a
long way from bringing these theories to truly testable pre-
dictions (Boly and Seth, 2012). Meanwhile, an NCC-based
assessment approach, optimally using the vast information
already present in the literature concerning brain function
in different DOC states, may provide valuable information
about the potential ability of a noncommunicative patient’s
brain to allow consciousness—information that could use-
fully complement the clinical diagnosis.
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