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Abstract

The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-
state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correla-
tion between functional systems beyond the correlation that reflects their specific functional connectivity. Hence,
removal of the GAS is a common practice for facilitating the observation of network-specific functional connec-
tivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluc-
tuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of
the GAS introduces spurious negative correlations between functional systems, bringing into question the valid-
ity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive
networks. Here we present an alternative method for estimating global fluctuations, immune to the complications
associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-
signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean
correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97 – 0.05, dem-
onstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the
highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator
of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike
the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-
correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After
regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between
resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state
global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-
Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-
mode and task-positive networks show artifact-free anti-correlations.
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Introduction

Since the pioneering work of Biswal and associates
(1995), the study of spontaneous functional mag-

netic resonance imaging (fMRI) activity has emerged as
an important field of research. The correlation observed
in slow spontaneous blood oxygenation level dependent
(BOLD) fluctuations ( < 0.1 Hz) between the left and right

sensory-motor cortex (SMC) as well as between the left
SMC and medial motor areas have been replicated in
numerous studies. Moreover, it has been extended to
observations of functional connectivity within several
other resting-state networks (Biswal et al., 1995; Greicius
et al., 2003; Fox et al., 2005; Fox and Raichle, 2007;
Lowe et al., 1998). Here we investigated the relation-
ship between resting-state fluctuations that are global,
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common to all resting-state networks, and network-spe-
cific fluctuations.

fMRI-measured resting-state fluctuations correlate with
and are therefore likely to include contributions from slow,
local fluctuations in neuronal activity (Shmuel and Leopold,
2008), and fluctuations in systemic physiological parameters
(Beall and Lowe, 2007; Bianciardi et al., 2009; Birn et al.,
2006; Lund et al., 2006; Wise et al., 2004). fMRI-measured
resting-state fluctuations include a component that is com-
mon to the majority of networks, as well as network-specific
components (Fox et al., 2009). The global component includes
contributions from neurophysiological activity (Schölvinck
et al., 2010) and systemic physiological changes (Beall and
Lowe, 2007; Birn et al., 2006; Lund et al., 2006). Irrespective
of its origin, the global component might obscure resting-
state fluctuations that are more network specific. Indeed, re-
moval of the global effect in fMRI resting-state studies has
been shown to be useful in facilitating the detection of inter-
actions that are known to exist at the neurophysiological level
in animal models (Fox et al., 2009).

Previous PET and fMRI task/response-based studies char-
acterized the global average signal (GAS), defined as an aver-
age of the imaging signal over the entire brain (Aguirre et al.,
1998; Friston et al., 1990; Zarahn et al., 1997). Other response-
based studies developed suitable strategies for its removal
(Andersson et al., 2001; Desjardins et al., 2001; Gavrilescu
et al., 2002; Macey et al., 2004). In task/response-based stud-
ies, two main modeling approaches have been considered to
account for the effect of the GAS: the additive model and the
proportional scaling model (Desjardins et al., 2001; Gavri-
lescu et al., 2002). The former assumes that a global signal
is added on top of the stimulus-dependent brain activity,
whereas the latter treats the GAS as a gain effect that influ-
ences all BOLD signals equally.

To account for global effects in the analysis of resting-state
functional connectivity, the global signals as well as the
network-specific fluctuations need to be correctly estimated.
In resting-state fMRI studies, the common component has pre-
viously been estimated by the GAS, defined as the average of
the BOLD signal over the entire brain (Fox et al., 2005).
Regressing out the GAS and model-based removal of physio-
logical artifacts enabled the detection of a negative correlation
between resting-state BOLD signal fluctuations of the default-
mode and the task-positive networks (Chang and Glover,
2009; Fox et al., 2005, 2009; Fox and Raichle, 2007; Fransson,
2005). Removal of the GAS may be inadvisable, however
(Murphy et al., 2009; Weissenbacher et al., 2009), as it is
prone to producing spurious correlation artifacts, introducing
functional connectivities that do not exist in reality (Murphy
et al., 2009). This undesired feature resulting from the regres-
sion of the GAS called into question the interpretation of neg-
atively correlated resting-state networks (Murphy et al., 2009).

Here we aimed to find an estimator of the global fluctua-
tions in resting-state fMRI studies. Specifically, we searched
for an estimator immune to the complications associated
with the currently used estimator, the GAS. We hypothesized
that the global effect is uncorrelated with the network-specific
fluctuations. To test this hypothesis, we applied principal
component analysis (PCA) to spatio-temporal fMRI time-
series of resting-state activity. We show that there exists a sin-
gle temporal component (eigenvariate) that closely resembles
the GAS and accounts for a large proportion of the variance.

By means of numerical simulations, we demonstrate that this
property is not mandated by the algebraic manipulations in-
volved in PCA, but is intrinsic to the complex spatio-temporal
structure of the resting-state fMRI data. By definition, this
eigenvariate is uncorrelated to the remaining principal com-
ponents (PCs) that represent the more network-specific
resting-state fluctuations. We conclude that resting-state global
and network-specific fluctuations are uncorrelated. We pro-
pose a novel estimator of the global effect in resting-state
fMRI, defined as the PC that correlates best with the GAS. Irre-
spective of whether the fMRI-measured resting-state global ef-
fect does or does not reflect neurophysiological activity, the
removal of the PC-based global effect estimator facilitates the
observation of network-specific functional connectivity. By ap-
plying an artifact-free removal of our proposed PC-based
global effect estimator, we show that resting-state fluctuations
of the default-mode and the task-positive networks are anti-
correlated. Preliminary results were previously reported in
an abstract form (Carbonell et al., 2010).

Methods

Subjects

Data from human subjects were downloaded from the
BS002 database (www.brainscape.org; Fox and Raichle,
2007; Fox et al., 2009). BOLD-sensitized fMRI data
(4 · 4 · 4 mm voxels, TE 25 msec, TR 2.16 sec) were acquired
from 17 normal right-handed young adults using a 3 Tesla
Siemens Allegra MR scanner. All subjects completed four 7-
min resting-state runs, during which 194 volumes were ac-
quired. Subjects were instructed to fixate their eyes on a
cross-hair, remain still, and not fall asleep. Structural data
(for atlas transformation) included a high-resolution
(1 · 1 · 1.25 mm) sagittal, T1-weighted MP-RAGE (TR
2.1 sec, TE 3.93 msec, flip angle 7�) and a T2-weighted fast
spin echo scan.

Preprocessing of fMRI data

The fMRI data were preprocessed using the standard ste-
reotaxic fMRI preprocessing pipeline implemented in the
neuroimaging analysis kit (NIAK*). The first three volumes
of each run were discarded to allow the magnetization to
reach equilibrium. Each dataset was corrected for inter-slice
differences in acquisition time, rigid body motion, ultra-
slow time drifts (high-pass filter with a 0.01-Hz cut-off),
high temporal frequencies (low-pass filtering with a 0.1-Hz
cut-off), and physiological noise (CORSICA; Perlbarg et al.,
2007). For each subject, the mean motion-corrected volume
of all runs was co-registered with an individual T1 scan
using Minctracc (Collins et al., 1994), which was itself nonli-
nearly transformed to the Montreal Neurological Institute
(MNI) nonlinear template using the CIVET pipeline (Zijden-
bos et al., 2002). The functional volumes were re-sampled in
the MNI space at a 2-mm isotropic resolution and spatially
smoothed with a 6-mm isotropic Gaussian kernel. Regression
of the time-courses of the six parameters resulting from rigid
body motion correction was applied. In addition, each voxel
time course was centered on zero by subtracting its mean

*http://code.google.com/p/niak/
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value (over time) and was normalized by dividing by its root
sum of squares (unit variance normalization).

For each individual run of fMRI time series, voxels in the
brain were defined by constructing a brain mask using the fol-
lowing procedure. After motion correction, the mean fMRI vol-
ume was blurred using an isotropic Gaussian kernel (Full
Width Half Maximum [FWHM] of three times the voxel
size). An intensity-based threshold was then applied to derive
a binary mask of the brain. The threshold value was estimated
from the histogram of the blurred volume using the Otsu’s al-
gorithm (Otsu, 1979) for finding an optimal cut-off point for
separating the mixture into two independent distributions
(namely, the intensities of the background and of the brain).

Definition of the PCA-based global effect estimator

Let the BOLD time series be represented as the V · T matrix
X, where V and T denote the number of voxels and time-
dependent volumes of data, respectively. All resting-state
fMRI studies that regress out the GAS implicitly assume
that the BOLD measured resting-state signals include a global
effect component that needs to be removed by standard re-
gression techniques. Here, we explicitly formulate this as-
sumption by introducing a Resting-State Linear Additive
Model (RSLAM), in which a global effect signal is added on
top of system-specific fluctuations. Thus, at any voxel v, this
RSLAM can be expressed as

X(v) = g(v)þXRS(v);

Where g is identical in all the voxels up to a multiplicative am-
plitude coefficient (hence the term ‘‘global signal’’), and XRS is
a linear mixture of network-specific components, with non-
zero amplitude only in portions of the brain. A common pro-
cedure is to estimate the global effect g at all time points by
the GAS gAv over all intra-cerebral voxels: gAv = 1

V +V
v = 1X(v).

A major drawback of this procedure is that it forces the spatial
average of the resting-state fluctuations XRS to be zero, and
therefore it might mandate spurious negative correlations in
seed-based correlation analysis (Murphy et al., 2009).

Here we use PCA (Baumgartner et al., 2000; Friston et al.,
1993) to decompose the data into a set of orthogonal compo-
nents. We show that the GAS gAv can be approximately
captured by a single PC. PCA decomposes X into a linear com-
bination of orthogonal components. A relatively small number
of these components account for most of the variance in the
fMRI data. This decomposition is given by the expression

X = l1e1s1¢þ . . . þ lrersr¢, (1);

where the orthogonal vectors e1, . . . , er are termed eigenim-
ages, s1, . . . , sr are the corresponding eigenvariates (temporal
components), and the number of components r £ T is deter-
mined by the rank of the matrix X. In addition, the values
l1 ‡ . ‡ lr enable the quantification of the proportion of the
total variance (PTVar) accounted for by each PC. The propor-
tion of the total variance explained by the i-th component is
given by PTVar(PCi) = l2i =+

r
k = 1l2k :

By taking average in (1), one can demonstrate that there ex-
ists a vector a = (a1, . . . , ar)(a

¢a = 1) such that the normalized

GAS (gAv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g¢AvgAv

p
) can be expressed as a weighted linear

combination of the eigenvariates, a1s1¢þ . . . arsr¢ Thus, the
proportion of the total variance explained by the GAS gAv is
given by PTVar(gAv) = +r

k = 1a2
k l2k=+

r
k = 1l2k .

As pointed out by Andersson and associates (2001), an ideal
global effect estimator should explain more variance shared by
virtually all voxels than any other global effect estimator.
According to the properties of the PCA decomposition, the
maximal proportion of the total variance explained by a
weighted linear combination of the eigenvariates is reached
when a is given by the canonical vector a = (1, 0, . . . 0)

Our analysis consists of taking those canonical vectors of
the form ai = (0, . . . , 0, 1, ::0) (1 in position i and 0 elsewhere,
i = 1, . . . , r) and finding the index î that maximizes
ri = corr(si, gAv). Then, our PC-based estimator of the global ef-
fect g is based on the single PC with the index î and is given
by gPC = l̂i(

1
V +V

v = 1êi(v))ŝi¢. Note that this definition of gPC

includes spatial averaging that scales the single PC estimator
to amplitude similar to that of the global average.

Our proposed estimator has a number of appealing prop-
erties. First, as will be shown in the Results section, this
time course shows high correlation with the GAS. It is there-
fore a good approximation of the global effect. Second, the
condition î = 1 (as it holds in most typical cases) would
imply that PTVarðgPCÞ � PTVarðgAvÞ, which by definition
makes our estimator a better estimator of the global effect
compared to the GAS (because it explains more variance;
Andersson et al., 2001). Third, the decomposition (1) allows
us to measure the local (voxel-wise) contribution [gPC(v)] of
every voxel to the PC-based global effect estimator:
gPC(v) = l̂i êi(v)ŝi¢. In addition, due to the orthogonality prop-
erty among the PCs, we obtain a global effect estimator that
is orthogonal to the less-global, more-network-specific rest-
ing-state fluctuations, which can be estimated as the sum of
the remaining components. Thus, a relatively high correlation
between our PC-based global effect estimator and the GAS will
support the assumed additive model for resting-state BOLD
fMRI signals (due to the orthogonality property of PCA).

Spatial distribution of global effect

The significance of the contributions of different parts of
the brain to the two global effect estimators considered here
was estimated within the framework of General Linear
Model (GLM). Specifically, we employed the model
X(v) = bg(v)gþ e where g denotes either the GAS gAv or the
PC-based global effect estimator gPC, and e is a vector of inde-
pendent and identically distributed Gaussian variables. To
detect regions that contributed significantly to the global ef-
fect g, we tested the null hypothesis that the coefficient
bg(v) is zero. This yielded the t Statistical Parametric Map
(SPM) T = b̂g(v)=std(b̂g(v)), where std(b̂g(v)) denotes the stan-
dard deviation of the estimated coefficient b̂g(v). In addition,
the GLM framework allowed us to test the null hypothesis of
no differences between the contributions of different parts of
the brain to the two global effect estimators (i.e.,
bgPC

(v) = bgAv
(v)). This test, too, yields a t SPM for the contrast

bgPC
(v)� bgAv

(v), which is given by T = (b̂gPC
(v)� b̂gAv

(v))=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
std(b̂gPC

(v))2þ stdb̂gAv
(v))2

q
.

In this article, we used the PCA implementation given by
the fMRIStat matlab toolbox.{ The parameter estimation in
the framework of the SPM was also implemented using the
fMRIStat matlab toolbox,{ including the correction for

{www.math.mcgill.ca/keith/fmristat/
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multiple comparisons (Worsley et al., 1998) taken into ac-
count while determining the threshold level of the t SPM
maps. Further statistical analysis included the combination
of runs within subjects and group analysis of all subjects in
the sample. For this, we applied hierarchical random effect
analysis proposed by Worsley and associates (2002) and
implemented in the fMRIStat matlab toolbox.

Seed-based correlations: regressing PC-based estimator
does not cause spurious correlations

To compare the effect of removing each of the two global
signal estimators (the GAS and the PC-based global effect es-
timator) on seed-based correlation analysis of resting-state
BOLD fluctuations, we applied two 6-mm spherical seeds.
The seeds were positioned within the posterior cingulate/
precuneus cortex (PCC; Talairach coordinates [-2-36 37])
and left middle temporal (MT) cortex ([-47-69-3]) (these spa-
tial locations were also used by Fox et al., 2009). Seed-based
t SPM of single runs were computed within the GLM frame-
work by considering the seed time course of interest (f) as a
covariate in the model and the global effect g (either GAS
or PC-based estimator) as a confounding variable,

X(v) = bg(v)gþ bf (v)f þ e (2)

Under the RSLAM assumption, model (2) can be rewritten as

c(v)gþXE(v) = bg(v)gþ bf (v)(cgþ fE)þ e, (3)

where XE(v) and fE denote the system-specific components of
X(v) and f, respectively, and c(v), c are multiplicative con-
stants. Within this framework, regressing out the global effect
would enhance the network-specific seed-based correlations
(specified by bf). However, a critical issue here is the estima-
tion of the global effect g. As pointed out by Murphy and as-
sociates (2009), estimating g as the GAS might introduce
artificial seed-based correlations.

For analyzing the causes for the modification of seed-based
correlations following the regression of the GAS, we separated
this regression to two stages that contribute distinct modifica-
tions: modeling and estimation. Regarding the modeling stage,
the assumption of the RSLAM and the subsequent regression
of the global effect reduce the seed-based correlation values
compared to the correlation values that could be obtained
under a more simplistic model where no global effect is consid-
ered. Therefore, we can consider this overall decrease in the
seed-based correlation values as merely the result of the as-
sumed RSLAM. In other words, the appearance of certain
modified correlations after the regression of the global effect
g is completely justified by the assumption of the RSLAM.
Regarding the estimation stage, a second source of spurious
correlations arises at the estimation level, when estimating
the global effect as the GAS. As we will show below, the
GAS causes spurious correlations beyond the global connectiv-
ity strength reduction justified by the RSLAM.

Regressing out the global effect g from model (3) is equiv-
alent to multiplying each term of the model by the projection
matrix Pg = I-g(g’g)-1g’, which yields

Pgc(v)gþPgXE(v) = bg(v)Pggþ bf (v)(PgcgþPgfE)þ e, (4)

Since Pgg = 0, we then obtain from (4) the following model

PgXE(v) = bf (v)PgfEþ e, (5)

which is equivalent to model (6):

XE(v) = bg(v)gþ bf (v)fEþ e: (6)

Notice that in model (6), the global effect g plays the role of a
confounding variable. Thus, the main challenge here is to
quantify the impact of the global effect on the seed-based cor-
relations as compared to the situation where no global effect
is considered in the model. In other words, we need to quan-
tify the impact of g on the coefficient bf(v) estimated from
model (6) as compared to the coefficient estimated from the
model

XE(v) = bf (v)fEþ e: (7)

Based on (Frank, 2000), the ordinary linear least squares esti-
mator of the coefficient bf(v) in (6) is given by

bf (v) =

(XE(v)¢XE(v))1=2

(f ¢
EfE)1=2

corr(XE(v), fE)� corr(XE(v), g)corr(fE, g)

1� corr(fE, g)2
:

(8)

Notice that the estimated coefficient in model (7) can also
be obtained from expression (8) by setting g = 0. Hence, the in-
clusion of a global effect g satisfying the condition
corr(g,fE)s0 in model (6) would modify the value of the esti-
mated coefficient as compared to the estimated coefficient
resulting from model (7), which represents the estimation of
the system-specific correlation. In contrast, a global effect g
satisfying the condition corr(g,fE) = 0 would not modify the
original value of the estimated coefficient.

When g = gAv (GAS), the global effect g and the seed time
course fE are correlated (corr(g,fE)s0) because by definition
g includes the term f = g + fE. Thus, regressing out the GAS in-
troduces artificial seed-based correlations [modifications of
the estimated coefficient in (7)]. In contrast, by construction,
in the case g = gPC (PC-based estimator) we have corr(g,fE) = 0
and no modifications to the original estimator (artificial corre-
lations) are introduced. Notice that, in contrast to the proof
given above, Murphy and associates (2009) used the spatial
sum of the beta coefficients bf(v) as an indicator for the possi-
ble appearance of spurious correlations following the re-
moval of the GAS.

Finally, to test the significance of seed-based correlations
we examine the null hypothesis bf(v) = 0, which yields a t
SPM given by T = b̂f (v)=std(b̂f (v)) In a similar way, we also
test the null hypothesis of no differences between the connec-
tivity maps corresponding to the removal of each global effect
estimator.

Numerical simulations

Numerical simulations were carried out to test whether the
hypothesized high correlation between the GAS and a single
PC is mandated by the algebraic manipulations involved in
PCA. Our simulated volumes consisted of smooth Gaussian
random fields (zero mean and standard deviation 1) sampled
over a grid of 128 · 128 · 64 voxels of dimension 1 · 1 · 1 mm
each. Here, each Gaussian random field was simulated by
convolving white noise sampled in the 128 · 128 · 64 grid
with a 3-dimensional Gaussian kernel of spatial FWHM
equal to 6 mm in each direction (this value was chosen to
mimic the spatial characteristics of measured fMRI data fol-
lowing preprocessing).
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Four different types of datasets were generated, each sam-
ple consisting of a time series composed of 256 volumes (TR =
1 sec). The first dataset type corresponded to independent
(temporally uncorrelated) volumes. In contrast, for the other
three types of datasets, a temporal correlation structure was
added to the time series of 256 independent Gaussian random
fields. In each case, an order 1 autoregressive model (AR1)
was used to simulate temporally correlated volumes. There-
fore, given an initial volume X0 (Gaussian random field),
the remaining 255 volumes were generated according to the
AR1 model Xi = q Xi-1 + Ei, i = 1,., 255, where jqj < 1 repre-
sents a set of random numbers sampled in the 128 · 128 · 64
grid and Ei is a set of independent and identically distributed
Gaussian random fields. Finally, an additional temporal
smoothing was added to these three types of datasets. This
was achieved by a temporal convolution with a Gaussian ker-
nel of temporal FWHM equal to 4, 8, and 12 sec, respectively.

Results

PCA of resting-state fMRI data

PCA was applied separately to each single fMRI run (68
runs = 17 subjects · 4 runs) and the correlation coefficient be-
tween each eigenvariate and the GAS was calculated.

Figure 1A presents the grand average (across the 68 data-
sets) of the proportion of the total variance explained by
each PC. Figure 1B shows a histogram plot corresponding
to the maximum (across eigenvariates within a scan) of the
correlation coefficients between the GAS and each of the
eigenvariates. The mean value of the maximal correlation co-
efficient between the GAS and a single PC was r = 0.97 – 0.05
(mean computed over 68 runs), with the smallest maximal
correlation being r = 0.72. Figure 1C presents the PC index
where the maximum value was reached. The first eigenvari-
ate showed maximal correlation with the GAS in 66 out of
68 runs. The second component showed the maximal correla-
tion in only 2 runs (Fig. 1C; below we use the term ‘‘atypical’’
when referring to these 2 runs). The findings presented in Fig-
ure 1B and 1C corroborate our hypothesis that PCA is capable
of decomposing the data into noncorrelated global effect and
remaining network-specific resting-state fluctuations.

Next, we computed the proportion of the total variance
explained by the GAS and the PC-based global effect estima-
tor (Fig. 1D; mean over all subjects and scans). By definition of
PCA, the 1st PC accounts for more variance than any other
linear combination of the PCs. Indeed, as expected, our pro-
posed PC-based global effect estimator accounted on average
for a larger proportion of the total variance (21.56% – 7.32%)

FIG. 1. (A) Grand average (across 68 samples) of the proportion of total variance explained by each PC. (B) Histogram plot of
the maximal correlation coefficient between the GAS and each PC (one maximal coefficient is presented for each of the 68 runs).
(C) Histogram of the index of the PC that correlated best with the GAS. (D) The grand average of proportion of total variance
accounted for by the GAS and the PC-based estimator of the global effect. (E) Grand average (across 68 samples) of the power
spectra corresponding to the GAS and the PCA-based global effect estimator. GAS, global average signal; PCA, principal com-
ponent analysis; PC, principal component.
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than the GAS did (21.06% – 7.46%), although this difference
was not statistically significant.

The grand average (over the 68 datasets) of the power spec-
trum corresponding to the GAS and the PC-based global ef-
fect estimator indicates that both signals possess similar
spectral behavior, reaching the maximum power spectrum
value at the frequency of 0.0146 Hz (Fig. 1E).

As seen in Figure 1, in 66 out of the 68 runs the highest cor-
relation coefficient between the GAS and a single PC was
obtained between the GAS and the 1st PC. Only 2 out of 68
runs produced an atypical behavior in the sense that the max-
imal correlation coefficient between the GAS and a single PC
was attained with the 2nd PC rather than with the 1st PC. To
investigate the differences between those 2 atypical runs and
the remaining 66 typical runs, we split the data-set into the
two sub-sets. One sub-set included the typical 66 runs in
which the first PC showed the highest (compared to all
other PCs) correlation with the GAS. The other sub-set in-
cluded only the above-mentioned 2 atypical cases. A more de-
tailed view of the proportion of the total variance explained
by the GAS and each of the two first PCs for these subsets
is shown in Table 1.

Table 1 shows, in addition, the correlation coefficients be-
tween the GAS and the PC-based estimator, as well as
between the GAS and the remaining less global, system-
specific fluctuations (after regression of the PC-based estima-
tor). As seen in the table, the run labeled ‘‘atypical 1’’ was
indeed ‘‘atypical’’ because its GAS was best correlated to
the 2nd PC. However, the correlation coefficient between
the GAS and the 2nd PC was high (r = 0.96), indicating that
in that case too, there was one eigenvariate that closely re-
sembled the GAS. In addition, for run ‘‘atypical 1’’ the PC-
based estimator (2nd PC) explained more proportion of
the total variance (10.10%) than the GAS (8.80%). In contrast,
the second atypical run showed a relatively low correlation
coefficient (r = 0.76) between the GAS and the PC-based
estimator (2nd PC) compared to the 66 typical cases
(r = 0.98 – 0.04).

A common feature of the 2 atypical runs is that the GAS
accounted for a relatively low proportion of the total variance
(8.80% and 5.85% for atypical 1 and 2, respectively) compared
to the set of remaining 66 typical cases (21.46% – 7.19%). Inter-
estingly, even the 1st PC of those atypical cases also explained
a relatively low proportion of the total variance. These find-

ings indicate that for those 2 atypical cases, the global effects
are not as global as in the 66 typical cases, in the sense that
they might not be spatially extended over the brain.

Figure 2 presents the results of PCA for five different runs,
the first three of were typical; that is, their GAS showed the
maximal correlation with the 1st PC. The first run (Fig. 2A)
corresponds to that typical case where the correlation coeffi-
cient between the GAS and the 1st PC reached the maximal
value (r = 0.99) over the sample of 68 runs. Here, the first
PC and the GAS explained 34.20% and 34.05% of the total
variance, respectively. The time courses corresponding to
the GAS (red) and the first eigenvariate (blue) were found
to be almost identical. In contrast, the mean time course
computed over all remaining components (green) after
regressing-out the 1st PC, namely, the less global, system-
specific resting-state fluctuations seemed to represent a differ-
ent process (correlation with the GAS, r = 0.07). Figure 2B and
C shows two other typical cases corresponding to correlation
coefficients between the GAS and the first PC of r = 0.95 and
r = 0.72 (median and lowest over the sample), respectively.
Figure 2A and B is similar in the sense that the GAS and
the first PC show very similar changes over time. In contrast,
in Figure 2C (r = 0.72), the GAS and the first PC are less sim-
ilar. In fact, the correlation coefficient between the GAS and
the remaining resting-state fluctuations produced a value
comparable to that between the GAS and the first PC
(r = 0.7). These findings show a trend in which a decreasing
correlation between the GAS and the PC-based estimator re-
sults in an increase in the correlation between the GAS and
the remaining (after regression of the PC-based estimator)
resting-state fluctuations. Panels 2D and 2E show the results
of the time courses obtained from the 2 atypical runs. The be-
havior of the signals in Figure 2D is similar to the one ob-
served in Figure 2A and B (r = 0.96), while the atypical case
presented in Figure 2E (r = 0.76) is more similar to the case
presented Figure 2C.

Figure 3A presents the t SPMs of the spatial contributions to
the two global effect estimators obtained from a hierarchical
analysis of all 68 runs from all subjects within our sample.
As previously described by Fox and associates (2009), the re-
gions that contribute to the GAS are widespread, extending
over large parts of the gray matter. Our proposed PCA-
based global effect estimator shows a spatial pattern similar
to that presented by the GAS. Figure 3B presents the

Table 1. Proportion of Total Variance Explained by the GAS and the PC-Based Estimator

Correlation
(GAS, PC estimator)

Correlation
(GAS, RS fluctuations)

% Total variance explained

Subset GAS PC estimator 1st PC 2nd PC

68 0.97 – 0.05 0.18 – 0.12 21.06 – 7.46 21.56 – 7.32 21.62 – 7.21 8.15 – 1.69
Typical 1–66 0.98 – 0.04 0.17 – 0.10 21.46 – 7.19 21.98 – 7.01 21.98 – 7.01 8.16 – 1.67
Atypical 1 0.96 0.29 8.80 10.10 11.69 10.10
Atypical 2 0.76 0.65 5.85 5.60 8.24 5.60

Each row corresponds to a subset of the entire data-set, as indicated by the number of included runs on the left most column. The subsets
with 68 and 66 runs correspond to the entire data-set (of 68 runs) and to the subset of runs in which the GAS correlated best with the 1st PC,
respectively. The runs Atypical 1 and Atypical 2 correspond to the 2 atypical cases where the GAS was correlated best with the 2nd PC. The 2
next columns show the mean and standard deviation of the correlation coefficient between the GAS and the PC-based global effect estimator
and between the GAS and the resting-state fluctuations remaining after removing the PC-based global effect estimator, respectively. The col-
umns to the right present the mean and standard deviation of the proportion of the total variance in the fMRI time-series accounted for by the
GAS, by the PC-based global effect estimator, and by each of the two first PCs.

Bold font under ’1st PC’ or ’2nd PC’ marks the PC used as the PC-based global effect estimator.
GAS, global average signal; PC, principal component; RS, resting-state; fMRI, functional magnetic resonance imaging.
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statistically significant contributions (multiple-comparisons
adjusted threshold at a = 0.05) to the two global effect estima-
tors superimposed on T1 anatomical images. For both global
effect estimators, the ventricles showed up as the regions
with the smallest contributions to the global effect.

The bottom panels of Figure 3 present SPM maps of differ-
ences between the spatial distributions of contributions to the
two global effect estimators. Low t values were observed over
the larger part of the brain. In fact, setting a threshold of
t = – 4.65 (with multiple comparisons correction at a = 0.05)
produced no regions with statistically significant differences.
We therefore concluded that our proposed PC-based global
effect estimator resembles the GAS not only temporally but
also spatially.

To investigate the mechanisms causing the results in the 2
atypical runs to be different than in the 66 typical runs, we an-

alyzed the spatial contributions to their global effect estima-
tors. Recall that in these atypical cases the GAS correlated
best with the 2ed PC, and explained a relatively low propor-
tion of the total variance as compared to the rest of the sam-
ple. Thus, the contribution to both global effects estimators is
expected to be less extended compared to those presented in
Figure 3 for the entire sample. Indeed, since PCA is based on
detecting signals of maximum variance, poor spatially ex-
tended effects are unlikely to correspond to the 1st PC.
Figure 4 shows a t SPM of the spatial contributions corre-
sponding to the GAS, the 1st PC, and the 2nd PC for the
case ‘‘atypical 1.’’ As expected, the spatial contributions to
the GAS (top part of the Fig. 4) and the PC-based global effect
estimator (the 2nd PC here, at the bottom part of the Fig. 4)
cover a smaller part of the brain compared to those presented
for the entire sample in Figure 3.

FIG. 2. PCA analysis performed on five different single fMRI runs. The three time-courses in each panel correspond to the
GAS, the PC-based global effect estimator, and the average of the remaining specific resting-state fluctuations (after regressing
out the PC-based estimator). (A) A typical run where the GAS correlated best with the 1st PC, with a highest correlation value
obtained over the sample (r = 0.99). (B) A typical run where the GAS correlated best with the 1st PC with the median correlation
value over the sample (r = 0.95). (C) A typical run in which the GAS correlated best with the 1st PC; however, the correlation
was the minimal over the sample (r = 0.72). (D) and (E) show the time-courses associated with the two atypical runs, where the
GAS correlated best with the 2nd PC. fMRI, functional magnetic resonance imaging.
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Moreover, in atypical cases the global effect may show a
lower variance than the variance associated with a specific
network that extends over widespread cortical regions. That
network may then explain more of the variance than the
GAS and the PC-based global effect estimator. Indeed, Figure
4B shows that after accounting for multiple comparisons with
a threshold of t = – 4.65, the 1st PC captured the interaction
between the Default Mode Network (Task Negative Net-
work) and the Task Positive Network. A similar pattern of
spatial contributions to the 1st PC was obtained also for atyp-

ical run 2. We concluded that for both atypical runs, the var-
iance accounted for by the GAS was low, and the 1st PC
captured the interaction between the Default Mode Network
and the Task Positive Network.

Numerical simulations

The aim of this section is to test whether our finding of
high-correlation between the GAS and the 1st PC is a mathe-
matical necessity associated with PCA, or alternatively, a

FIG. 3. (A) Group-averaged
t-SPMs presenting the spatial
contributions to the GAS and
the PC-based global effect esti-
mator (PC showing the highest
correlation with the GAS). The
spatial contributions to both
global effects estimators extend
over large parts of the brain
covering most of the gray mat-
ter. The smallest contributions
can be found in the ventricles.
The bottom-most panel presents
the differences in contributions
to the PC-based estimator and to
the GAS. (B) Statistically signif-
icant contributions to the global
effect estimators following the
application of a multiple com-
parisons corrected threshold of
t = – 4.65. The two spatial pat-
terns are very similar, with no
regions showing statistically
significant differences. SPM,
Statistical Parametric Map.

FIG. 4. (A) t-SPMs presenting
the spatial contributions to the
GAS, the 1st, and the 2nd PC
corresponding to the atypical
case 1. For this case, the 1st PC
explains a relatively low pro-
portion of the total variance as
compared to the rest of the sam-
ple. (B) Statistically significant
contributions to the global effect.
The contribution to the GAS and
the 2nd PC (PC-based estimator)
is less spatially extended com-
pared to those of the typical
cases. The 1st PC captures the
interaction between the Default
Mode Network and the Task
Positive Network.
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feature intrinsic to the spatio-temporal nature of resting-state
BOLD fluctuations. We therefore test the hypothesis that
when pursuing PCA, there must be one eigenvariate highly
correlated with the GAS. We also tested whether regressing
out the eigenvariate that correlates with the GAS with the
highest correlation value compared to all other eigenvariates
mandates spurious negative seed-based correlations, as re-
gression of the GAS does.

For each of the four types of simulated datasets (tempo-
rally uncorrelated and temporally smoothed AR1 models),
we generated a set of 100 independent samples, each consist-
ing of a time series of 256 volumes. PCA was carried out on
each individual sample. Then, the GAS (spatial average
over the 128 · 128 · 64 grid) was compared with each of the
eigenvariates produced by the PCA. Each row in Figure 5 cor-
responds to a different type of simulated dataset. For each
type, the first column shows the grand average (across the
100 samples) of the proportion of the total variance explained

by each PC. Note that, similarly to the measured fMRI data-
set, most of the total variance is accounted for by the first
50 components, although this number seems to decrease
with increasing temporal smoothing. The second column
presents a histogram plot corresponding to the maximum
(across eigenvariates) of the correlation coefficients between
the GAS and each of the eigenvariates. The third column pres-
ents a bar plot for the PC index in which the maximum value
of these correlation coefficients was reached. Note that the
maximal correlation values between the simulated GAS and
single PCs were significantly lower than those obtained for
the fMRI data (compare the panels in the second column of
Fig. 5 to Fig. 1B). In addition, when comparing the indices
within the third column of Figure 5 to those in Figure 1C,
the maximum of these correlation coefficients were not neces-
sarily obtained in the first two PCs. With these results, we
concluded that when pursuing PCA, there must not necessar-
ily be one eigenvariate highly correlated with the GAS.

FIG. 5. PCA applied to four different types of simulated datasets. The first row corresponds to temporally uncorrelated vol-
umes. The next three rows present results of datasets simulated with temporal autocorrelation following AR1 model and ad-
ditional temporal smoothing at three different scales. For each case, the first column shows the grand average (over 100
datasets) of the proportion of the total variance explained by each PC. Note that the proportion of the total variance explained
by the first PC increases with the temporal smoothing of the data. The second column shows the maximal correlation coeffi-
cient attained between the GAS and each PC. The third column presents the PC indices at which such maximal values were
reached. Note that the values of these maximal correlations are not as high as those obtained with actual resting-state fMRI
data presented in Figure 1. The fourth column shows histograms of the spatial sum of the coefficients bf in the PC-based es-
timator regression. In contrast to the removal of the GAS, the sum of these coefficients is evidently different from zero.
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Therefore, the high correlation observed in resting-state fMRI
data between the first PC and the GAS was not an effect man-
dated by PCA; rather, it is a feature of fMRI-measured
resting-state activity.

Finally, it has been demonstrated (Fox et al., 2009; Murphy
et al., 2009) that the appearance of negative correlations fol-
lowing the removal of the GAS is associated with the outcome
that the spatial sum of the coefficients bf in model (2) is equal
to zero. To verify that regressing-out the PC-based estimator
does not mandate spurious negative correlations, we selected
a seed time course corresponding to the voxel with coordi-
nates [64 64 32]. We then computed the correlation coeffi-
cients between the simulated time-course of that point and
all other points in the grid after regressing-out the PC-based
estimator according to model (2). The fourth column in Figure
5 shows histograms (computed over the 100 simulated runs)
of the spatial sum of the coefficients bf, integrated over the
grid. In contrast to the removal of the GAS, the sum of the
bf coefficients here is evidently different from zero, which is
an indicator that the removal of the PC-based estimator
does not necessarily mandate negative correlations.

Global effects and anti-correlations

Seed correlation maps were generated after separately
using the two strategies for removal of global effect: regress-
ing out the GAS and the proposed PC-based global effect es-
timator. Figures 6 and 7 show axial-oblique slices of these
correlation maps with a posterior cingulate cortex (PCC)
seed and an MT/V5 seed, respectively. These figures present
the correlations obtained using the data from all subjects
within our sample, by generating a hierarchical random effect
model. The panels to the right present the regions showing
statistically significant positive (in red) and negative (in
blue) correlations with the seed time-course following multi-

ple comparisons corrections (with a threshold at t = 5.17). In
both Figures 6 and 7, we observed statistically significant
anti-correlations between areas of the Default Mode Network
(DMN) and the Task Positive Network (TPN).

For the two seed ROIs used, anti-correlations between the
default mode and the task-positive networks appeared not
only following the regression of the GAS but also following
the regression of the PCA-based global effect estimator.
These findings confirm previous reports that the DMN and
the TPN show anti-correlated fluctuations in the resting
state. Note that the negative correlations obtained following
the removal of the PC-based estimator were less spatially ex-
tended then those appearing following the regression of the
GAS. Given that no statistically significant differences be-
tween the spatial contributions to the two global effect esti-
mators were observed (Fig. 3), one could expect that
regressing out the PC-based estimator might cause spurious
negative correlations, just as regressing out the GAS does.
Similar expectations could be raised because there were virtu-
ally no statistically significant differences between the corre-
lation maps obtained for the MT seed after regressing out
the GAS and the PC-based estimator (Fig. 7). However, for
that MT seed case, the spatial sum of the coefficients bf in
model (2) after regressing-out the PC-based estimator was
1205.8 – 4615.5 (mean – SD computed over 68 runs; percentile
5%, �6836.2; percentile 95%, 8055.6). The corresponding spa-
tial sum for the PCC seed case was 2670.0 – 5149.7 (percentile
5%, �6384.9; percentile 95%, 10648.5). In both cases, the spa-
tial sum of the coefficients bf was different than 0, indicating
(but not confirming, please see details in the Discussion sec-
tion) that the PC-based estimator does not impose spurious
negative correlations. In contrast, the sum of the coefficients
bf after regressing out the GAS was �2.59e-007 – 3.26e-006
(percentile 5%, �5.38e-006; percentile 95%, 6.76e-006) for
the MT seed. The corresponding sum for the PCC seed was

FIG. 6. (A) Group-averaged
correlation maps (using a t-
SPM scale) of voxels showing
correlation with the PCC
seed. (B) Statistically signifi-
cant anti-correlations were
observed between the Task--
Positive Network and the
Default Mode Network
by applying a multiple com-
parisons corrected threshold
of t = 5.17 following the re-
gression of either the GAS or
the PC-based global effect es-
timator. The anti-correlations
obtained following the re-
gression of the PC-based
global effect estimator were
less extended than those
obtained by regression the
GAS. PCC, posterior cingu-
late cortex.
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�3.71e-007 – 3.24e-006 (percentile 5%, �4.65e-006; percentile
95%, 7.05e-006). Note that after regressing-out the GAS we
obtained an approximate rather than exact zero value for
the sum of the coefficients bf. The reason is that our seed
points were not defined as single voxels but as the average
of voxels within 6 mm spherical regions around predeter-
mined locations. In both cases, these approximate zero values
confirmed that regressing out the GAS might introduce spu-
rious negative correlations.

These findings corroborate our hypothesis that regression
of the GAS is a source of spurious anti-correlations between
the Default Mode Network and the Task Positive Network
beyond those allowed by the RSLAM, while the removal of
the PC-based estimator does not mandate spurious negative
correlations.

Discussion

Summary of the results

The results from our study show that PCA decomposition
of resting-state fMRI data produces a single temporal com-
ponent closely resembling the temporal pattern of the
GAS. Therefore, this eigenvariate can be considered a good
estimator of global effects. Due to the basic properties of
PCA, by definition this eigenvariate is uncorrelated with
the remaining PCs that represent the more network-specific
resting-state fluctuations. In addition, we demonstrated that
regressing out the eigenvariate that closely resembles the
GAS produces seed-based negative correlations between
the default mode network and the task-positive network.
Since our PC-based estimator does not introduce spurious
correlations at the estimation level, these negative correla-
tions do exist, rather than reflecting an analysis-induced
artifact.

An eigenvariate closely resembling the GAS
is not a mathematical necessity

By means of numerical simulations we have shown that
having a single PC in general, and the first PC in particular,
closely resembling the GAS is not a mathematical necessity
of PCA (Fig. 5, columns 1–3). Our simulations are not
meant to mimic BOLD resting-state fluctuations. Instead,
they are meant to act as a counterexample, refuting the
hypothesis ‘‘there is always an eigenvariate with a close,
standing-out resemblance to the GAS compared to all other
PCs, as mandated by the algebraic manipulations involved
in the PCA, independent of the type of signal.’’ In other
words, the simulations are meant to refute a claim related
to PCA, not necessarily related to resting-state BOLD-fMRI.
We therefore applied a simple scenario, not necessarily mim-
icking BOLD-fMRI resting-state fluctuations in a precise man-
ner, but sufficient for refuting the aforementioned hypothesis.

These simulations demonstrate that our results do not
merely reflect an effect derived from the algebraic manipula-
tions involved in PCA; rather, they reflect an intrinsic
property of the complex spatio-temporal nature of the
fMRI-measured resting-state data.

Global and network-specific fluctuations are uncorrelated,
supporting an RSLAM

Removal of the GAS in resting-state studies has been based
on an implicitly hypothesized additive model. This model as-
sumes that the fMRI-measured resting-state fluctuations are
given by the super-position of a global effect signal and fluctu-
ations that reflect specific interactions of major neuronal sys-
tems. A first step to support such a hypothesis was pursued
by Fox and associates (2009), who showed that the GAS is
not simply the average of fluctuations with origin in major

FIG. 7. (A) Group-averaged
correlation maps (using a t-SPM
scale) of voxels showing
correlation with the middle
temporal (MT) seed. (B)
Statistically significant anti-
correlations were observed
between the Task-Positive
Network and the Default Mode
Network by applying a multiple
comparisons corrected thresh-
old of t = 5.17 following the re-
gression of either the GAS or the
PC-based global effect estima-
tor. As in Figure 6, the anti-cor-
relations obtained following the
regression of the PC-based
global effect estimator were less
extended than those obtained
by regression the GAS.
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brain networks. However, the degree of correlation between
the GAS and the specific activity of resting-state networks
has not been elucidated, and the hypothesized additive
model has not been properly evaluated (Murphy et al., 2009).

In the current article, we propose a PC-based estimator of
the global effect in fMRI resting-state data, better suited for
the role than the currently used GAS estimator. Specifically,
our results show that PCA decomposes fMRI-measured rest-
ing-state activity into a component that estimates the global
effect and the remaining components, whose sum approxi-
mates the lumped system-specific resting-state fluctuations.
The fit of the PC-based estimation to the data (in 66/68
cases the 1st PC correlated best with GAS, with high correla-
tion values, mean = 0.97 – 0.05) makes a strong case that PCA
is an appropriate method for identifying the global effect and
separating it from the remaining network-specific signals.
The two components are not correlated because they consist
of different, orthogonal PCs. Moreover, as discussed above,
our simulations show that these features of the global effect
are inherent to the spatiotemporal dynamics of resting-state
fMRI data, rather than being mandated by PCA.

It is worth noting that there is no ground truth on which to
rely when considering what portions of the signal are global
and what portions are system specific. In fact, the precise deter-
mination of the global component and the remaining system-
specific components is subject to definition. However, the
similarity of the PC-based estimator to the GAS and the fact
that it is uncorrelated with the remaining network-specific sig-
nals make it a natural, data-driven candidate for this role.

The fit of this PCA-based model to the data, showing that a
single PC approximately captures the global effect, and the
fact that the global effect is uncorrelated with the remaining
network-specific fluctuations support the concept of the
RSLAM we formally defined. Overall, our findings support
an RSLAM model in which a global effect and system-specific
fluctuations are super-positioned and uncorrelated.

PC-based global effect estimator, RSLAM, and the origin
of the global effect

We emphasize that the concept of the RSLAM and regress-
ing out the PC-based global effect estimator are proposed in-
dependently of whether neural activity-related resting-state
signals contribute to the global signal. Neither regression of
the GAS nor PCA can shed light on what comprises the global
signal. We propose a model of uncorrelated global effect and
system-specific components that fits resting-state fMRI data
very well. However, we posit that this fit to the data is inde-
pendent of whether the global signal reflects neurophysiolog-
ical activity or systemic physiological effects or both. The
method we propose for removing the global effect signal
can be used for facilitating the observation of network-
specific functional connectivity in both cases, when the global
signal does or does not reflect neurophysiological activity.

PC-based resting-state global effect estimator
does not assign each network to a PC

We would like to emphasize that we do not claim to assign
individual networks to single PCs. Our only use of PCA is to
decompose the signal to a global effect and all remaining sig-
nals lumped together. Indeed, Beckmann and associates
(2005) showed that the mathematical constraint of orthogo-

nality within the set of spatial components (eigen images)
does not necessarily imply that large areas of activation that
overlap significantly with other spatial components can no
longer be extracted. This is exactly what we observe in our re-
sults: a PC highly similar to the GAS could be extracted from
the data even by imposing (due to PCA) the restrictive condi-
tion of orthogonality between spatial components.

PC-based resting-state global effect estimator:
comparison to previous task-based studies

Our PCA-based global effect estimator is related to the
model and the removal strategy proposed by Macey and as-
sociates (2004) for response-based and hypercapnia studies.
Although Macey’s method is not specifically designed for
fMRI resting state and does not rely on PCA, it is based on
the assumption that a global effect is replicated with the
same temporal pattern throughout the brain, although not
necessarily at the same magnitude. Indeed, our analysis
shows that the time course of the eigenvariate that correlates
best with the GAS is replicated across the brain at different
magnitudes, which are determined by the values of the corre-
sponding eigenimage. The strategy taken here is related, in
addition, to the global signal removal method presented by
Andersson and associates (2001) for PET activation studies.
These authors showed that rotation matrices applied to the
eigenvariates obtained by PCA produced conceivable candi-
dates for representing the global effect (Andersson et al.,
2001). The method was based on maximizing the spatial con-
tributions to the global effect while discounting contributions
from any variable with a highly localized response (i.e.,
restricting the stimulus-dependent activations to be very
local and limited to a small number of distinct foci). However,
these assumptions cannot be guaranteed in fMRI resting state
since networks-specific fluctuations extend over wide-spread
functional systems. Here we showed that a single PC captures
the global effect in resting-state fMRI.

On the possibility of an independent component
analysis-based global effect estimator

An alternative decomposition that may fit the global effect
could use independent component analysis (ICA). The ad-
vantage of ICA is that, unlike PCA, it does not enforce orthog-
onality between the estimated global effect and the sum of the
network-specific fluctuations. PCA is more restrictive than
ICA in the sense that it enforces orthogonality of the compo-
nents in both the spatial and temporal domains. To adapt our
methodology to ICA, we would have to compare the GAS
with temporal ICs and select that single IC that is (i) highly
correlated with the GAS and (ii) accounts for a large propor-
tion of the total variance, while (iii) keeping independence
among all ICs. The latter condition is necessary to avoid intro-
duction of artificial correlations, which makes temporal ICA
type method a better choice compared to spatial ICA.
Another reason why temporal ICA could be a good option
is that the effectiveness of spatial ICA depends more on the
sparseness of the extracted components than on their inde-
pendence (Daubechies et al., 2009). In other words, spatial
ICA has been proven to be effective at detecting sparse sig-
nals, and clearly a global-effect component is, by definition,
not spatially sparse. It follows that if an ICA is to be done,
a temporal ICA technique should be selected, because spatial
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ICA would be ineffective. Note, however, that any candidate
temporal IC fulfilling (i), (ii), and (iii) would express less pro-
portion of the total variance than the 1st PC does, since any
single IC can be expressed as a linear combination of all
PCs, which by definition of PCA explains less variance than
the 1st PC. Therefore, we would need to establish a tradeoff
between conditions (i) and (ii). That is, we could obtain a sin-
gle IC more correlated to the GAS than our PC-based estima-
tor, but this would come at the expense of decreasing the
proportion of the total variance explained (as compared to
the PC-based estimator). It would be of interest to check
whether the estimation of the global effect could be improved
while establishing a tradeoff between conditions (i) and (ii)
and the use of either temporal ICA or Anderson’s rotation
of PCA matrix (Andersson et al., 2001).

Sources of modified seed-based correlations introduced
by regressing out the global effect

The goal of seed-based functional connectivity analysis is
to detect regions in the brain that are functionally connected
with the seed region. Regressing out the GAS in resting-state
studies has enhanced the network-specific seed-based corre-
lations (Fox et al., 2009). The GAS has been the common
choice for a global effect estimator in such a regression strat-
egy. However, as pointed out by Murphy and associates
(2009), a major drawback is that spurious negative correla-
tions might be artificially introduced by the regression of
the GAS. By definition, the GAS is correlated with the remain-
ing less-global, network-specific components, since it mixes
signals from all voxels and networks. This is a critical source
of artificial negative correlations in seed-based functional
connectivity analysis (Murphy et al., 2009). Here we provide
a more detailed view on the origin of the spurious negative
correlations detected by Murphy and associates (2009).
From the statistical point of view, there are two causes to
the modified correlations values following the regression of
the GAS: modeling and estimation. With regard to the mod-
eling level, regression of the GAS implicitly relies on an
assumed RSLAM. This model assumes that the fMRI-
measured resting-state fluctuations are given by a global ef-
fect signal added on top of the system-specific fluctuations.
Regression of the global effect decreases the overall seed-
based correlation values to a level justified by the RSLAM.

With regard to the estimation level, a second source of spu-
rious correlations arises when estimating the global effect as
the GAS. This causes an additional decrease in correlation
values at the estimation level, beyond what is justified by
the RSLAM. In contrast, our PC-based global effect estimator
does not introduce artificial correlations beyond the decrease
in correlation values allowed by the RSLAM. Our PC-based
estimator meets the requirements imposed by the RSLAM,
since this estimator is by definition orthogonal to the remain-
ing system-specific fluctuations, avoiding the spurious corre-
lations introduced by the regression of the GAS. In other
words, the PC-based estimator decreases correlation values
only up to the level justified by the RSLAM, avoiding any ad-
ditional modification of correlation values due to estimation.
Therefore, our proposed PC-based global effect estimator is
better suited as a global effect estimator than the GAS is.

Regressing out the GAS from the original fMRI time-series
sets the sum of beta coefficients (bf) from equation (2) to zero.

This condition mandates the occurrence of spurious negative
correlations. Note, however, that a sum of beta coefficients
different from zero after regressing out a global effect estima-
tor does not necessarily guarantee the avoidance of spurious
negative correlations. Avoiding spurious negative correla-
tions introduced at the estimation level is guaranteed by
regressing out a global effect estimator that is uncorrelated
with the remaining fluctuations. Therefore, the artifact-free
regression of our PC-based estimator relies on the fact that
it is uncorrelated with the remaining PCs.

Although we demonstrate similar spatial distributions of
contributions to the GAS and the PC-based estimator, we
strongly recommend the use of the PC-based global effect es-
timator rather than the GAS. The use of the PC-based estima-
tor avoids the theoretical limitations imposed by using the
GAS and potentially misleading interpretations of functional
connectivity results.

Default-mode and task-positive networks
are anti-correlated

We have shown that using the PC-based estimator of the
global effect confirms the existence of negative correlations
between the network-specific resting-state activities of re-
gions in the Default Mode and the Task Positive networks.
Importantly, based on the RSLAM, regression of our pro-
posed PC-based global effect estimator eliminates a source
of artificial negative correlations related to the estimation
level. Our results support the concept that these negative cor-
relations are intrinsic to the brain, rather than merely being an
artifact introduced by the regression of the global effect. In
fact, resting-state anti-correlated networks have been already
detected without the regression of the GAS (Chai et al., 2012;
Chang and Glover, 2009; Fox et al., 2009). In addition, these
two networks show anti-correlated signals during task-
based paradigms. Thus, this finding adds yet another feature
of similarity (anti-correlations in task-evoked paradigms as
well as in resting-state) to the already-reported similarity be-
tween task-evoked networks and resting-state networks
(Smith et al., 2009).

Conclusions

We have used PCA to define a novel estimator of the global
effect in resting-state fMRI studies. Our findings demonstrate
that the global effect can be captured by a single PC, which,
by definition, is uncorrelated with the remaining resting-
state components. Our results therefore support the hypothe-
sis of the RSLAM in which global effect and system-specific
fluctuations are super-positioned and uncorrelated. Our pro-
posed estimator of the global effect can be regressed out from
resting-state fMRI time-series without introducing spurious
negative correlations beyond the global correlation decrease
allowed by the assumed linear additive model. Using our
PCA-based method, we have shown that the previously
reported anti-correlation between fluctuations in the task-
positive and default mode networks is an intrinsic property
of the brain, rather than an artifact induced by the regression
of the GAS.
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