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Abstract

Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correla-
tions of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal
dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions
on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible
to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic
(time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers
watched a feature film. Narrow frequency band (0.04–0.07 Hz) was used in the PS analysis to avoid artifactual
results. We defined three metrics for computing time-varying functional connectivity and time-varying intersub-
ject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS,
and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent
with both seed-based correlation and intersubject correlation methods when inspected over the whole time series,
but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both
in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner)
and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY (http://becs
.aalto.fi/bml/software.html) is openly available for using these metrics in fMRI data analysis.

Key words: circular statistics; dynamic functional connectivity; fMRI; instantaneous; nonlinear time series analy-
sis; phase synchronization

Introduction

In cognitive neuroscience, there is growing interest to-
ward the use of highly complex naturalistic stimuli, for ex-

ample, movies, narrated stories, and music, to increase
ecological validity of neuroimaging studies and to enable
new type of research on emotions and higher-order cognitive
functions (Alluri et al., 2012; Brennan et al., 2010; Hasson
et al., 2004; Jääskeläinen et al., 2008). In their seminal article,
Hasson et al. (2004) showed that when subjects are watching
a feature movie, blood oxygen level-dependent (BOLD) sig-
nal time series in various brain structures of different subjects
exhibit strong similarity and quantified it with intersubject
correlation (ISC). To assess the dynamics of ISC, time-varying
ISC can be computed over sliding temporal windows—at the
expense of reduced temporal resolution—to identify the trig-
gering event in a rich dynamic stimulus.

Indeed, it can be argued that synchronization, which the
ISC measure reflects, is one of the most common ways of
sharing information between entities of a system (Mesulam,
1990; Strogatz, 2004). Synchronization has been studied
with both linear (temporal correlation, spectral coherence)
and nonlinear (mutual information, phase synchronization
[PS]) methods (Quian Quiroga et al., 2002).

PS is a specific synchronization measure that was initially intro-
duced in physics when studying the behavior of two weakly cou-
pled oscillators (Rosenblum et al., 1996). The original idea was to
compare two signals by first separating their instantaneous ampli-
tude from instantaneous phase information and then compare
only phase time series. This is achieved by converting the real sig-
nal into its complex analytic version (Boashash, 1992) with signal
processing techniques, like the Hilbert transform, Gabor expan-
sion, or Wavelet filtering (for comparisons see Le Van Quyen
et al., 2001; Schack and Weiss, 2005; Sun and Small, 2009).
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While PS is a relatively well-established tool in magnetoen-
cephalography (MEG)/electroencephalography (EEG) re-
search, its usefulness in functional magnetic resonance
imaging (fMRI) analysis has been explored only in a handful
of studies. Laird et al. (2002) used PS based on Hilbert trans-
form to identify synchronization of BOLD responses during a
finger tapping experiment, demonstrating the potential of the
method compared with the general linear model. Deshmukh
et al. (2004) also used PS analysis in a finger tapping fMRI ex-
periment to determine clusters of functionally connected
brain areas. However, neither of these studies applied nar-
rowband filtering of data, which is a necessary requirement
when working with instantaneous phases—this follows
from the Bedrosian’s theorem (see the Methods section of
the present article and Sun and Small, 2009).

More recently, Kitzbichler et al. (2009) investigated the
power-law scaling of synchronization metrics in the human
brain for simulated and recorded MEG and fMRI ‘‘resting
state’’ data. They explored the inter-regional temporal dy-
namics of PS derived from wavelet coefficients of BOLD sig-
nal. However, the authors failed to consider possible artifacts
arising from pulse and breathing that contaminate the rela-
tively high frequency bands of BOLD activity that were ex-
plored. Further, the choice of an arbitrary phase difference
threshold (p/4) was not statistically justified. In addition there
are three other studies that have explored the dynamics of the
complex phase of the BOLD signal during rest using wavelet
coherence phase (Chang and Glover, 2010; Müller et al., 2004)
and empirical mode decomposition (Niazy et al., 2011).

Despite these attempts, instantaneous PS has not gained
popularity in fMRI data analysis. One possible reason for
this is that when conventional controlled paradigms (e.g.,
event related or blocked design) are used, it is customary to
look at signal properties that remain stable over the entire
block or several repetitions, rather than instantaneous activa-
tions. However, the instantaneous characteristic of PS be-
comes handy when high temporal resolution is critical, such
as when inspecting which aspects of a highly complex and
dynamic stimulus relate to hemodynamic brain responses.

Dynamic functional connectivity measured with fMRI

Characterizing connectivity in the brain is important not
only to gain a better understanding of brain functions ( Jirsa
and McIntosh, 2007), but also to classify clinical populations
(Lynall et al., 2010) and monitor their recovery (Nakamura
et al., 2009). Compared with anatomical or with effective con-
nectivity (Friston, 1994), functional connectivity is just a mea-
sure of the similarity between activity in two brain areas,
allowing a data-driven approach in the analysis of the con-
nections. Various model-free measures of functional connec-
tivity based on fMRI data exist (Margulies et al., 2010;
Smith et al., 2011) with seed-based correlation (SBC) being
one of the most used and straightforward methods for study-
ing connectivity with low amount of assumptions and pa-
rameters. Measures of fMRI functional connectivity are
usually time independent, examining connectivity between
regions of interest over the whole scanning session, by com-
puting pairwise temporal correlation coefficient between
BOLD signal time series from the regions. It is only recently
that the temporal dynamics of resting state fMRI connectivity
have been explored with computational models (Cabral et al.,

2011; Honey et al., 2007) and with real data using sliding time
window correlation (Majeed et al., 2011), sliding time win-
dow ICA (Kiviniemi et al., 2011), wavelet coherence (Chang
and Glover, 2010), partial least squares (Grigg and Grady,
2010), and Kalman filtering (Kang et al., 2011).

It is also of interest to study how connectivity changes due
to stimuli or task demands in a model-free manner. Sakoğlu
et al. (2010) addressed the issue of dynamic functional con-
nectivity during task modulation. The authors defined
Dynamic Functional Network Connectivity as the functional
connectivity over a sliding time window. Various time win-
dow widths were compared but it was not possible to reduce
the temporal window under a critical sample size (64 samples
in this case) without compromising the reliability of the
resulting correlation value (Fisher, 1921); shorter temporal
windows (i.e., too few samples) will produce biased estima-
tes. Longer time windows increase reliability at the expense
of temporal resolution.

PS as a measure of dynamic functional connectivity

Here, we hypothesized that it is possible to solve the time
resolution/reliability trade-off by adopting PS as an instanta-
neous measure of dynamic functional connectivity during
stimulation. We specifically hypothesized that instantaneous
PS is a reliable measure comparable to correlation-based
methods (SBC and ISC) but with maximal temporal resolu-
tion, enabling assessment of time-varying functional connec-
tivity in a model-free fashion. The aim of this study is to
introduce a set of metrics to evaluate functional connectivity
of fMRI time series with PS, test the statistical significance of
connections, and compare the PS metrics with established
correlation-based methods. We expected that there are sev-
eral advantages in using instantaneous phase as a measure
of functional connectivity: (1) PS is not affected by intersub-
ject amplitude variability (i.e., the phase captures the tempo-
ral dynamics); (2) PS instantly identifies full temporal
dynamics without any need for time-windowed averaging;
(3) PS is a nonlinear measure, which can be more suitable
for identifying complex dynamic processes in the brain (Per-
eda et al., 2005); (4) PS is computationally faster than tempo-
ral correlation: with one transform we obtain the phase value
for each time point for the whole brain, and PS is then a sum
of complex numbers over the unit circle.

Methods

The analytic signal, instantaneous phase,
and instantaneous frequency

The analytic representation of a real valued signal x(t) is a
complex signal xa(t) with the same Fourier transform of x(t)
but defined only for positive frequencies. The analytic signal
can be built from the real signal by using the Hilbert transform:

xa(t) = x(t)þ j H[x(t)] (1)

Where H[�] is the Hilbert transform and j is the imaginary
unit. The main advantages of using the analytic signal are
that, given some real data represented by one function of
time, we can determine two functions of time to better access
meaningful properties of the signal. We consider now a nar-
rowband signal that can be written as an amplitude-modulated
low-pass signal a(t) with carrier frequency expressed by u(t):
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x(t) = a(t) cos [u(t)] (2)

If the Bedrosian’s theorem (Bedrosian, 1962) is respected by
a(t) and cos[/(t)] (i.e., if the Fourier transforms of the two sig-
nals have separate supports) then the analytic signal of a nar-
rowband signal can be rewritten as the product of two
meaningful components:

xa(t) = a(t) ej/(t) (3)

Where a(t) is the instantaneous envelope and /(t) the instanta-
neous phase. The Bedrosian’s theorem has a clear implication:
the narrower the bandwidth of the signal of interest, the better
does the Hilbert transform produce an analytic signal with
meaningful envelope and phase. Adopting a band-pass filtered
version of the BOLD time series improves the separation be-
tween the phase and envelope spectra. The information from
the original signal is hence redistributed in the phase compo-
nent for frequencies in the pass-band and in the amplitude
component at low frequencies out of pass-band. For an exhaus-
tive review of the mathematical and practical aspects of the an-
alytic signal and its applications please refer to Boashash
(1992), and Sun and Small (2009).

BOLD signal as a narrowband signal

The frequency spectrum of fMRI BOLD signal has been ex-
tensively studied since the early days of fMRI (Weisskoff
et al., 1993). In 1996 Biswal et al. studied the effects of cardiac
and respiratory rates on the BOLD signal with typical fre-
quencies around 1–2 Hz and 0.3 Hz, respectively. Since
fMRI data are often collected with time to repetition (TR) in
the order of 2 sec (0.25 Hz Nyquist frequency), respiratory
and cardiac frequencies are out of band, causing aliasing in
the higher frequency range of the BOLD signal ( > 0.1 Hz).
The lower end of the BOLD spectrum (0.0–0.015 Hz) is also

not immune to noise such as ‘‘low frequency drift’’ (Smith
et al. 1999). It is nowadays common practice to band-pass fil-
ter the BOLD signal between 0.01–0.08 Hz (Biswal et al., 1995;
Buckner et al., 2009; Zou et al., 2008), but even within this fre-
quency range there is noise contamination. Wise et al. (2004)
investigated the spontaneous fluctuations in arterial carbon
dioxide level mainly affecting the BOLD signal in the fre-
quency range 0.0–0.05 Hz. Beckmann et al. (2005) and Birn
et al. (2006) reported a noise component around 0.03 Hz at-
tributed to respiratory-related fluctuations when a slow TR
is used. Recently Zuo et al. (2010) explored the BOLD signal
at sub-bands relevant in electrophysiological DC and intra-
cranial recordings (Penttonen and Buzsáki, 2003): slow-5
(0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–
0.198 Hz), and slow-2 (0.198–0.25 Hz). The slow-3 and slow-
2 bands were mainly mapped to the white matter and attrib-
uted to aliased respiratory and cardiac signals. Slow-4 and
slow-5 bands were mainly identified in the gray matter,
with slow-4 more prominent in the thalamus, basal ganglia,
and sensorimotor regions while slow-5 was more prominent
in ventromedial cortical areas. Slow-4 was the most reliable
sub-band with more widespread spatial distribution of reli-
able voxels. A similar band (0.03–0.06 Hz) was also reported
to give greater small-world topology when considering rest-
ing state data with complex network tools (Achard et al.,
2006).

Based on these studies, we chose the frequency range of
*0.04–0.07 Hz, equivalent to the slow-4 band minus the
0.03 Hz critical frequency. Figure 1 shows a graphical sum-
mary of the frequency bands addressed in the mentioned lit-
erature and our chosen sub-band.

Metrics of PS

We define three different metrics to analyze the PS of fMRI
data (see Fig. 2).

FIG. 1. Frequency bands of blood oxygen level-dependent (BOLD) signal. A summary of functional relevance of various fre-
quency bands of the BOLD signal based on previous studies. Light gray bars indicate frequency bands that have been observed
to contain noise, white bars indicate frequency bands noted as functionally relevant, and the dark gray bar indicates the nar-
row frequency band that was used in the current study to calculate the phase synchronization (PS) measures.
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1. Seed-based phase synchronization (SBPS): within-
subject functional synchrony;

2. Intersubject phase synchronization (IPS): between-
subject synchrony;

3. Intersubject seed-based phase synchronization (ISBPS):
within- and between-subject functional synchrony.

Seed-based PS. SBPS is a group measure of functional
connectivity, taking into account possible individual differ-
ences within each subject.

Let /s,1(t) and /s,2(t) be the phase signals for subject s on
two different brain regions (voxels or regions of interest
[ROI]). We compute the differential phase for subject s as fol-
lows:

Dus(t) = us, 1(t)�us, 2(t) (4)

We define the seed-based phase coefficient as follows:

SBPC(t) = [1=S]Ss exp [jDus(t)] (5)

Where s = 1, . . . , S. Its absolute value—the resultant vector
length ( Jammalamadaka and Sengupta, 2001)—is a measure
of circular dispersion of phases over the unit circle, which also
corresponds to the phase locking value (Lachaux et al., 1999)
commonly used in neuroscience. By looking at the magnitude
of the complex signal SBPC(t) multiplied by the cosine of the
mean angle we obtain the SBPS as follows:

SBPS(t) = fcos [mDu(t)]g jjSBPC(t)jj (6)

where

mDu(t) = argfSs exp [jDus(t)]g (7)

Equation 7 is the group mean angle of all the individual
phase differences. The range of SBPS is continuous be-
tween �1 and 1, that is, accounting also for possible anti-
correlations. Equation 6 can be also re-written as the Real
part of Equation 5.

Intersubject PS. IPS is a measure of reliability of the data.
Being a measure of synchrony between subjects for each
voxel, IPS gives similar results as ISC with the advantage
that instantaneous information is intrinsically present.

First, the intersubject phase coefficient for a given voxel is
computed.

IPC(t) = [1=S]Ss exp [j us(t)] (8)

Where s = 1, . . . , S is the number of subjects. The absolute
value of IPC gives the IPS in time.

IPS(t) = jjIPC(t)jj (9)

The range of IPS is continuous between 0 and 1. An alternative
coefficient called pairwise phase consistency (PPC) (Vinck
et al., 2010) can also be adopted to compute intersubject

FIG. 2. Functional magnetic
resonance imaging PS
metrics. Each picture is a
temporal snapshot for one
time point. (1) Seed-based
phase synchronization
(SBPS): for each subject the
instantaneous phase
difference between two ROI
time series is considered
(diamonds), if all differences
are close to zero, the length of
the resulting vector (in black)
shows a high level of
synchrony over the group. (2)
Intersubject phase
synchronization (IPS): only
one ROI is considered, if all
subjects have the same phase
at the same time, the resulting
vector length will be closer to
unity. (3) Intersubject seed-
based phase synchronization
(ISBPS): a combination of the
two metrics where two
regions have to be in exact
synchrony within a subject’s
brain and between the group.
ROI, regions of interest.
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phase synchrony. PPC is comparable to the pairwise ISC coef-
ficient described by Kauppi et al. (2010). It has the advantage
that it is less affected by potential bias due to a small number
of subjects. PPC is defined as follows:

IPSppc(t) = (p� 2D)=p (10)

where

D = 2=[S(S� 1)]Sj = 1 Sk = jþ 1 d(uj, uk) (11)

with d(/j, /k) being the absolute angular distance between
two angles. As noted in the original article (Vinck et al.,
2010), one possible disadvantage of using PPC is that small
negative values are possible; this is a consequence of the un-
biasedness of the PPC.

Intersubject seed-based PS. ISBPS is a measure of func-
tional synchrony, where we require all subjects to have the
same phase value for the selected brain regions (voxels or
ROIs).

Given

ISBPC(t) = [1=(S R)]Ss, r exp [j us, r(t)] (12)

Where s = 1, . . . , S is the number of subjects and r = 1, . . . , R is
the number of brain regions (two regions only in our pairwise
comparisons). The absolute value of ISBPC gives the ISBPS in
time.

ISBPS(t) = jjISBPC(t)jj (13)

The range of ISBPS is continuous between 0 and 1.

Statistical significance of fMRI phase synchrony

Statistical significance can be estimated with parametric
and nonparametric tests. With parametric tests the null hy-
pothesis is that the phases (or the phase differences for
SBPS) have a uniform distribution around the unit circle,
while the alternative hypothesis is that the values have a
von Mises distribution, the circular equivalent of a normal
distribution. Statistical significance for IPS and ISBPS is
then computed with the Rayleigh test for each time point
(Fisher, 1995; Mardia and Jupp, 2000). For SBPS, since the al-
ternative hypothesis has a known mean phase equal to zero,
the most suitable parametric test is the V test (Zar, 1999).
However, the most reliable results are obtained with non-
parametric permutation tests (Good, 2005; Nichols and
Holmes, 2002), where no assumptions are made on the distri-
butions of the null and alternative hypotheses, solving at the
same time the multiple comparison problem.

In permutation testing, it is a common approach to create
surrogate data by simulating or re-sampling the original time
series, for example, by preserving the magnitude of the fre-
quency spectrum of the time series while randomizing the
Fourier phases (Dolan and Spano, 2001), or by re-sampling
via wavelet as in Laird et al. (2002) or with twin surrogates
(Thiel et al., 2006) specifically designed for phase synchrony
tests. However, generating surrogate time series with similar
spectra or similar statistics might destroy the actual complex
nonlinear temporal dependencies between time samples. To
circumvent this potential problem, it is possible to use boot-
strap re-sampling, with surrogate data obtained by applying
random circular shifting to the original time series for each per-
mutation (Politis and Romano, 1992).

Temporal averages of phase synchrony metrics

While all the proposed metrics are time varying, it is also
useful to infer average functional values from the dynamic
data. The simplest scenario is by calculating a percentage of
time points that are significantly phase synchronized over
the whole duration of the scanning. This approach was adop-
ted by Ville (1948) in the early days of studying analytic signal
properties. He demonstrated that the average instantaneous
frequency corresponds to the temporal average frequency
of the signal. In the present case this implies that by adopting
PS as a functional measure, we can also study global PS by
considering the average PS over the whole time series.

Data and comparison of methods

To test the new metrics proposed in this study, we used a
naturalistic fMRI dataset obtained from 12 healthy subjects
who watched a feature movie in a 3T fMRI scanner with TR =
2 sec. Standard preprocessing steps were performed with FSL
(for more details, see Lahnakoski et al., 2012) and all subjects
were co-registered to the MNI 152 two-millimeter template.
We performed two types of analyses using ROIs and
whole-brain data. For ROI analysis, we used a template
with 264 functional areas (Power et al., 2011), with a sphere
of radius of 4 mm for each ROI. Visualizations are done for
two areas in the right visual cortex: V1/V2 (template area
140, MNI coordinates [8, �91, �7]) and MT/V5 + (template
area 161, MNI coordinates [42, �66, �8]).

IPS was compared with ISC measured with temporal slid-
ing windows with lengths varying from 4 to 32 samples (i.e., 8
to 64 sec). The ISC curves were obtained by computing pair-
wise ISCs between subjects and then averaging the upper tri-
angle entries of the correlation matrix. Whole-brain temporal
average IPS was compared with ISC over the whole time se-
ries. We also computed the Euclidean distance between IPS
and ISC time series for each voxel to localize the differences
between the two approaches.

SBPS was compared with sliding window group temporal
correlation between all pairs of regions of interest for a total of
34716 pairs. Group temporal correlation time series is
obtained by first computing individual sliding window tem-
poral correlation time series between the two regions, and
then averaging the Fisher-transformed correlation values to
obtain group data (for a similar approach, see Buckner
et al., 2009). The center time point of each time window is
the value of temporal reference for comparisons.

To quantify the effect of the size of the sliding windows
versus the phase-based measures, we computed the average
percentage of significant time points across all 264 regions
in the ISC/IPS case and across all 34716 links for SBC/
SBPS. Since ISBPS does not have a correlation-based equiva-
lent, it was only compared with SBPS and IPS for the two se-
lected regions. Further, to verify that the amplitude part of the
analytic signal did not contain relevant information, we also
computed ISC and SBC using the instantaneous envelope
time series. All comparisons are carried out on band-pass fil-
tered BOLD time series with frequencies 0.04–0.07 Hz, identi-
cal to the one used to compute the analytic signal. We
adopted the Parks-McClellan algorithm (McClellan et al.,
1973) for optimum design of linear phase FIR filter (0.01
weight in pass-band, attenuation of *30 dB in stop-band,
and transition band of *0.015 Hz). Due to the group delay
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of the FIR filter and its transient, the filtered signal delay is
compensated and the first N-1 filtered samples are discarded
(Oppenheim and Schafer, 2009). All statistical analyses were
carried out with nonparametric testing using bootstrap
resampling of original time series to generate surrogate prob-
ability distributions for the null hypothesis estimated over
at least 0.5 million points (equivalent to 1000 independent
permutations for each time series of *500 time points). Cor-
rection for multiple comparisons was performed using maxi-
mal statistic combined with multistep tests (for details see
Nichols and Holmes, 2002).

Results

Comparing intersubject PS with ISC

Figure 3A shows the comparison between average IPS and
global ISC for the whole brain, thresholded at p < 0.01. When
calculated over the whole time series, IPS and ISC yield sim-
ilar estimates of brain areas exhibiting intersubject synchroni-

zation. Figure 3B shows IPS and sliding window ISC time
series for multiple window sizes in one region of interest
(V5/MT + ). ISC calculated over a very short four-sample
time window shows dynamic changes similar to IPS, but is
strongly affected by computational bias, with low mean per-
centage of significant time points (Fig. 3D). On the other
hand, ISC calculated over longer time windows (16 and 32
samples) resembles a moving average of IPS, compromising
temporal resolution for the sake of a reliable measure of cor-
relation. ISC over eight samples is closest to IPS both in space
(Fig. 3C) and in average number of significant time points
(Fig. 3D). In contrast to phase, the instantaneous amplitude
of the analytic signal did not seem to contain relevant inter-
subject information, giving very low percentages of signifi-
cant time points (Fig. 3D, dot-dashed curves).

Comparing seed-based PS with sliding window SBC

Figure 4A shows the comparison of SBPS calculated over
multiple window sizes and sliding window group temporal

FIG. 3. Intersubject correlation (ISC) and intersubject PS. (A) Shown are maps, computed over the whole time series
( p < 0.01), of brain areas showing significant averaged IPS (yellow) and areas showing significant ISC (red); orange color de-
notes the brain areas that exhibited both significant IPS and ISC. (B) Shown are time courses of IPS (black) and ISC calculated
over sliding windows of different sizes from area V5/MT + . ISC over short sliding window (red curve, window size: four sam-
ples) shows computational bias as evidenced by rapid and strong fluctuation in the time course. ISC time series over longer
sliding windows (8, 16, and 32 samples), although being more stable, are missing the temporal changes identified by IPS. (C)
Distance maps between the IPS and sliding window ISC time courses at different time window lengths. ISC calculated with a
sliding window of 8 time to repetition (TRs) is closest to IPS, with differences located in areas that process faster BOLD changes
that IPS can track unlike time-windowed ISC. (D) Plotted are average percentages of significant time points with error bars for
IPS (horizontal dotted lines) at three levels of significance ( p < 0.01, p < 0.005, and p < 0.001) and, respectively, ISC with multiple
time windows (continuous curves). ISC with multiple time windows calculated using the instantaneous amplitude envelope
information is plotted with the dash-dotted curves.
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correlation (SBC) between V1/V2 and V5/MT + regions of
interest. SBC over short time windows approximately follows
the SBPS curve despite the high amount of uncertainty due to
the shortness of the time window. With longer time windows,
correlation values are more reliable, but miss the temporal
dynamics of functional connectivity and become more
prone to statistical errors. For an example of the latter, the
time interval of 600–625 is falsely statistically significant
with SBC, because of the two peaks at 600 and 625. These
two peaks (marked in Fig. 4A) corresponded to close-up
scenes with movement (high SBPS) versus large-angle pano-
ramic scenes (low SBPS) in the movie stimulus. As can be
seen, SBPS clearly identifies intervals of synchronization,
without suffering the bias of using very short temporal win-
dows. In contrast, the correlation-based methods, when
using longer time windows, fail to identify such rapid
changes in synchronization, yielding high level of correlation
for all temporal intervals.

In Figure 4B the effect of window sizes is quantified as the
average percentage of significant time points across all links,
compared with SBPS and SBC computed using the instanta-
neous amplitude of the analytic signal. To achieve a similar
amount of significant time points with SBC, one needs to sac-
rifice temporal resolution using windows of at least 16 sam-
ples. Also in this case the amplitude of the analytic signal
did not seem to carry relevant information.

Finally, Figure 4C shows a graphical comparison between
ISBPS (red) and SBPS (black) for the two sample regions se-
lected and the two IPS curves for each region. As previously
noted, this metric is stricter than SBPS since we impose inter-
subject synchronization for both regions of interest. ISBPS is
significantly high only during intervals of intersubject syn-
chronization over the two ROIs (time points 400–420), while
SBPS can increase even without ROI intersubject synchroni-
zation (time points 420–440).

Discussion

In the present study, we showed that instantaneous PS is a
reliable measure comparable to correlation-based methods

(SBC and ISC) but with maximal single-TR temporal resolu-
tion, thus enabling assessment of time-varying functional
connectivity based on fMRI data in a model-free fashion.
When comparing IPS with sliding time window ISC, we
obtained similar results for windows of 8–10 TRs in length
(Fig. 3D), with differences being located in those areas
where intersubject synchrony can change rapidly (Fig. 3C).
These happen to be the sensory cortical areas with short vi-
sual (Hasson et al., 2008) and auditory (Lerner et al., 2011)
temporal receptive windows. When comparing SBPS with
SBC, sliding windows of at least 16 samples/TRs are needed
to reach similar performance (Fig. 4B). Evidently, PS-based
methods significantly increase temporal resolution at which

FIG. 4. Functional connectivity between two regions of in-
terest with PS and seed-based correlation (SBC). (A) Shown
are SBPS (in black) and SBC calculated over sliding windows
of different lengths (4, 8, 16, and 32 samples) between two re-
gions of interest. The two blue arrows indicate peaks at 600
and 625 that corresponded to close-up scenes with movement
(vs. large-angle panoramic scenes in the middle) that the SBPS
method can effectively differentiate in contrast to SBC when
using longer time windows. (B) Average number of signifi-
cant time points with error bars for SBPS (horizontal dotted
lines), SBC with multiple time windows (continuous curves),
and SBC with multiple time windows performed over the in-
stantaneous envelope (dash-dotted curves). Comparable
amount of significant time points is reached for SBC over win-
dows of at least 16 samples, sacrificing the fast temporal dy-
namics identified with PS. (C) Comparison between ISBPS
(red) and SBPS (black) along with the IPS curves for the
two regions (blue and light blue). ISBPS is more strict than
SBPS since both ROIs must manifest intersubject synchroniza-
tion; SBPS relaxes this condition allowing significant func-
tional synchrony across the subjects even when there is no
local intersubject synchronization.

‰
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dynamic functional connectivity can be estimated. Further,
comparison of ISBPS and SBPS demonstrates that SBPS al-
lows detecting functional connectivity even when there is
no significant intersubject synchronization within each area.

Improving time-varying analysis

The method proposed here is based on the general concept
represented by recently introduced methods, such as ISC or
multivoxel pattern analysis (MVPA), that focus on spatiotem-
poral properties of the signal and not on activations over a
specific baseline. ISC (Hasson et al., 2010), intuitive and ele-
gant in its simplicity, was an important innovation in fMRI
analysis methodology. ISC is a measure of reliability (i.e.,
how similar the BOLD signals of different subjects are in dif-
ferent parts of the brain when an identical stimulus is used as
external source of synchrony). Moreover, ISC does not re-
quire a linear relationship between the external stimuli and
the BOLD responses. Finally, due to its simplicity, when
ISC is compared with more complex techniques (e.g.,
MVPA), we can still clearly understand its neuronal corre-
lates by going back to the BOLD signal itself rather than look-
ing at intricate multivoxel patterns. With ISC one may study,
for instance, how complex stimulus can affect processing at
multiple cognitive stages (Lerner et al., 2011) and how brain
activity of one person affects brain activity of another person
during social interaction (Stephens et al., 2010) without sim-
plifications assumed in linear models. IPS extends the use
of ISC by providing more accurate timing of brain events in
a reliable way, with the additional requirement of band-
pass filtering the BOLD signal. We argue, however, that the
part of the BOLD signal not affected by artifacts is intrinsi-
cally narrowband, and thus well suited for PS analysis.

Enabling time-varying connectivity analysis

Another important and novel feature of our method is the
ability to look at the intersubject reliability of the connectivity
between two brain areas with the highest possible temporal
resolution; this is necessary especially with complex continu-
ous stimulation, where each volume is comparable to a differ-
ent experimental condition. SBC groups together many
volumes into a time window to compute the average connec-
tivity, missing the complex event that triggered the connec-
tion. SBPS on the other hand is intrinsically instantaneous,
providing connectivity information for each time point.

Importantly, this allows shifting of intersubjectivity estima-
tes from individual voxels or brain areas (ISC) to connections
between voxels and brain areas (SBPS), in other words, from
the nodes to the links of the brain network, opening new op-
portunities to examine the relationship between brain areas
with graph-theoretical tools (Sporns, 2010). Further, by adding
the temporal accuracy of the PS measures, it is possible to prog-
ress from inspection of static to time-varying networks (Holme
and Saramäki, 2012). PS is a dynamic measure of functional
connectivity; we can evaluate which pairs of brain areas are sig-
nificantly synchronizing across the subjects and we can also
determine when they are synchronizing.

Limitations of phase synchrony approach

Frequency bands of BOLD signal. The necessity of deal-
ing with narrowband signals to compute meaningful PS rai-

ses the important question of which BOLD frequency band
best captures functionally relevant information. Sub-bands
of BOLD have been explored in ISC (Kauppi et al., 2010)
and functional connectivity studies (Chang and Glover,
2010). While ISC is more immune to physiological noises,
functional connectivity can be greatly affected since within-
subject time series are compared where there is a high possi-
bility for synchronous artifacts. Removal of artifactual signals
from BOLD time series (e.g., Särkkä et al., 2012) can allow
multiple explorations across all the frequency bands of
BOLD signals. PS could then be investigated over the whole
spectrum with multiple narrowband filters, allowing explora-
tion of within-band and between-band PS, in a similar vein as
with EEG and MEG data (Tass et al., 1998). Studies with com-
bined techniques (such as simultaneous fMRI and intracra-
nial recordings) might provide additional information on
the existence of meaningful slow sub-bands, corresponding
to various processes or connectivity stages, as suggested by
early animal studies (Leopold et al., 2003) and more recent
resting-state research (Chang and Glover, 2010).

Phase synchrony as a group measure. The proposed PS
metrics, like ISC, are measures of reliability over the subjects
(i.e., they can only be computed at group level). Although in
principle it is possible to compute individual PS connectivity,
assessing its statistical significance is challenging due to the
lower statistical power; in our measures, statistical power is
increased by increasing the number of subjects. Further—
like in ISC—when using intersubject group measures, all
subjects must be exposed to the same external source of syn-
chronization (i.e., stimulus).

On the instantaneous envelope of the analytic signal

In PS literature, the amplitude part is almost always dis-
carded, as it is assumed to be irrelevant or uncorrelated
with the actual phase dynamics. Indeed, we were able to con-
firm this assumption with our data. Temporal dynamics are
contained in the phase part of the analytic signal. However,
the issue is far from being resolved in physics and neurosci-
ence. The effect of the amplitude part of the analytic signal
has been studied analytically for two oscillators (Xiao-Wen
and Zhi-Gang, 2007), concluding that when the envelopes
are matched, there is no influence over PS from the amplitude
part. A similar conclusion, relevant for neuroscience, was re-
cently reached by Daffertshofer and van Wijk (2011). Using
computational modeling, they studied how the amplitude
part biases the PS functional connectivity compared with
the effective structural connectivity. They also concluded
that the amplitudes of the analytic signals do not affect the
PS results if the two ROIs have comparable magnitudes. As
a general rule, the instantaneous amplitude of the signals
should be tested to ensure that it is not relevant to the tempo-
ral dynamics, especially when lower frequency bands are ex-
plored (e.g., for the slow-5 frequency band, where the
spectrum of the phase starts to overlap with the spectrum
of the envelope, possibly violating the Bedrosian’s theorem).

Conclusions

Our proposed PS method addresses some of the current
limitations of time-varying ISC and SBC, and creates the
basis for bridging ISC with complex network analysis by
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shifting the interest toward intersubject synchronization of
functional connectivity patterns, rather than properties of sin-
gle voxels. Despite the necessary mathematical compromise
of having to use a narrowband signal, the method proved
to be reliable, yielding (1) similar results as ISC when
inspected over the whole time course and (2) yielding signif-
icantly improved temporal resolution as compared with time-
varying ISC and SBC functional connectivity measures. All
the methods described in this article have been released pub-
licly as a MATLAB toolbox (FUNPSY, http://becs.aalto.fi/
bml/software.html) and an alternative version is available
in the ISC toolbox (http://code.google.com/p/isc-toolbox/).
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