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Abstract

Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures.
However, few studies have addressed how individual differences might influence the structural integrity of the
superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This
study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data
obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) data-
base across a wide adult age range (n = 65, age: 18–74 years, all Caucasian). Fractional anisotropy (FA), radial dif-
fusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM
locations and within regions-of-interest to examine global and local variations in SWM integrity across age,
sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal
SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across
large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior
callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the tem-
poral, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways
to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the
number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater
in the left hemisphere regions spanning language and other networks, while more localized sex effects could pos-
sibly reflect sex-specific advantages in information strategies.
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Introduction

Alarge body of structural magnetic resonance imaging
(sMRI) and diffusion tensor imaging (DTI) research

has focused on examining individual differences associated
with brain aging, for example (Hedman et al., 2011; Lebel
et al., 2008; Sowell et al., 2003), sex (Gong et al., 2011; Kang
et al., 2011; Luders and Toga, 2010), and hemispheric lateral-
ization (Galaburda et al., 1978; Good et al., 2001; Toga and
Thompson, 2003). However, with only a few exceptions
(Kang et al., 2011, 2012; Oishi et al., 2009), little MRI research
has been directed toward examining the microstructural
properties of the superficial white matter (SWM) outside of
some early studies in clinical and neurological samples,

such as Alzheimer’s (Fornari et al., 2010), schizophrenia (Phil-
lips et al., 2011b), and autism (Sundaram et al., 2008). Conse-
quently, less is known about variations in the integrity of the
SWM across the normal adult age range as related to sex, age,
and cerebral asymmetry.

The SWM or the white matter (WM) directly beneath the
cortex contains a mixture of short association fibers that in-
clude intracortical axons, which extend directly from the
gray matter, subcortical fibers (U-fibers) that arch through
the cortical sulci to connect adjacent gyri, and some termina-
tion fibers from the deep fiber pathways (Parent and Carpen-
ter, 1996; Oishi et al., 2008). Postmortem and in vivo research
show that U-fibers constitute the terminal zone of myelination
and remain incompletely myelinated until the third or fourth
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decade of life (Parazzini et al., 2002). This aspect of the cere-
bral WM is highly developed in humans, and it occupies a
much larger volume than in other mammals. Other unique
features of SWM composition include a larger proportion of
interstitial neurons with respect to the deep WM (Suarez-
Sola et al., 2009). Further, the morphological profile of the
SWM differs across brain regions where, for example, the
concentration of interstitial neurons is higher in the frontal
SWM and lower in the occipital SWM (Defelipe et al., 2010).

Numerous DTI studies in humans and animals support
that in regions where the tensor model is valid (Basser and
Pierpaoli, 1996), fractional anisotropy (FA) and scalar met-
rics, including axial diffusivity (AD) and radial diffusivity
(RD), associate with the extent of myelination, fiber coher-
ence, overall number of axons, and/or differences in the
mean axonal diameter (Dong et al., 2004; Song et al., 2003;
Takahashi et al., 2002). These parameters may thus reflect
normal aging or sexual dimorphic processes that occur in
tandem with global and regional changes in other brain tis-
sue characteristics such as volume and cortical thickness
(Hedman et al., 2011; Lebel et al., 2012; Sowell et al., 2003;
Westlye et al., 2010). Although not focused on the SWM
per se, prior DTI studies demonstrate increasing FA during
brain development that then plateau and decrease during
normal aging, though age-related changes are also shown
to vary across WM regions (Barnea-Goraly et al., 2005;
Kochunov et al., 2011; Lebel et al., 2012; Michielse et al.,
2010; Tamnes et al., 2010). Investigations simultaneously ex-
amining AD and RD also show effects of age that differ re-
gionally. However, while some deep WM pathways show
increases in both AD and RD along with reductions in FA
with advancing age, others show increased RD with no
change or decreased AD (Bennett et al., 2010; Burzynska
et al., 2010; Davis et al., 2009; Inano et al., 2011).

Prior findings further suggest that biological sex may influ-
ence the regional WM microstructure, though results are
more subtle than those observed with regard to aging.
While some studies fail to show significant differences in
DTI metrics between men and women (Kennedy and Raz,
2009), a recent study has suggested that women have higher
FA in the corpus callosum (Kanaan et al., 2012), whereas men
have higher FA in the right temporal (Hsu et al., 2008), the
cingulum, and other deep WM regions (Inano et al., 2011;
Menzler et al., 2011), including the superior longitudinal fas-
ciculus, a tract implicated in language processing (Kanaan
et al., 2012). However, sex effects may also vary with devel-
opmental stage. For example, higher FA has been reported
in adolescent females in the right superior corona radiata
and bilateral corticospinal tracts (Bava et al., 2011). Another
study has shown larger FA in the vicinity of the temporal/
parietal/occipital junction and supplementary motor regions
in men within the pericortical WM in a young adult sample
(age range: 21–37 years) (Kang et al., 2011), implicating sex
differences within the SWM in particular.

Cerebral lateralization is also influenced by sex, develop-
mental, hereditary, and pathological factors (Toga and
Thompson, 2003). Consequently, previous research has
similarly focused on addressing how WM characteristics
measured from DTI may vary across hemispheres. Higher
left-hemisphere FA has been relatively consistently reported
(Kang et al., 2011; Oishi et al., 2008; Takao et al., 2010), though
some discrete WM regions exhibit a greater right hemisphere

FA ( Jahanshad et al., 2010). Although this leftward bias may
indicate greater myelination and fiber integrity in tracts
linked with language function such as the arcuate fasciculus
(Takao et al., 2011), several other deep WM pathways also ex-
hibit left-lateralized effects (Hasan et al., 2009; Thiebaut de
Schotten et al., 2011).

As indicated above, the structural connectivity of the deep
WM is shown to vary with respect to sex, age, and hemi-
sphere, although the regional specificity of findings remains
less consistent. Further, how these variables impact the integ-
rity of the SWM specifically has not been the focus of prior in-
vestigation. This may in part reflect the difficulties in
measuring diffusion characteristics in the WM directly be-
neath the cortical mantle, which is highly variable across sub-
jects (Smith et al., 2006; Thompson et al., 2001), less-densely
myelinated, and includes more complex fiber trajectories
than the major deep WM pathways (Oishi et al., 2008).
Widely used voxel-based mapping, tract-based atlasing,
and standard tractography approaches may thus be less sen-
sitive for extracting and comparing DTI metrics within the
SWM at the juncture of the neuropil. To circumvent some
of these limitations and expand the current literature concern-
ing the influences of individual differences on SWM integrity,
this study applied an advanced computational analysis ap-
proach that combines information from both DTI and sMRI
data to allow local sampling of SWM integrity measures. Spe-
cifically, cortical pattern-matching algorithms, which have
been validated and used for integrating data across imaging
modalities (Lu et al., 2009; Phillips et al., 2011a, 2011b, Rasser
et al., 2009), were applied to estimate and compare the effects
of sex, age, and hemisphere, and their interactions for FA,
AD, and RD values at thousands of spatially matched loca-
tions within the SWM in a demographically homogenous
sample of healthy subjects assessed cross-sectionally (n = 65,
age range: 18–74 years). DTI metrics were also examined
within lobar regions to describe more global changes. Based
on the findings for deep WM pathways, we predicted that
measures of SWM fiber integrity would decrease with age,
and indicate a predominant left hemisphere bias and some
regional differences between sexes.

Methods

Subjects

Subjects were recruited at the University of California, Los
Angeles (UCLA), as part of the International Consortium for
Brain Mapping (ICBM) project (Mazziotta et al., 2009). Sub-
jects were extensively screened by medical and neurological
examination to exclude any major medical, neurological, neu-
rosurgical, or psychiatric conditions, high blood pressure, use
of prescriptions, and over-the-counter or illicit drugs with the
exception of occasional use for disease prevention [for details,
see (Mazziotta et al., 2009)]. For this study, only individuals
with high-quality DTI data collected from the same research
site and of the same racial/ethnic group were included for ex-
amination. Subjects included 65 Caucasian (31 men, mean
age: 36.45 – 13.6 years; 34 women, mean age: 45.15 – 17.28
years). Handedness was determined using a modified version
of the Edinburgh Inventory (Oldfield, 1971). All subjects pro-
vided UCLA Institutional Review Board-approved informed
consent. Table 1 provides demographic details of the study
participants.
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Image acquisition and preprocessing

The ICBM image acquisition protocol can be found
online at www.loni.ucla.edu/ICBM/About/About_Scanning
.shtml. Structural T1-weighed and diffusion-weighed data
were acquired on a 1.5T Siemens Sonata scanner using an
8-channel head coil (acceleration factor of 2, GRAPPA recon-
struction). Five MPRAGEs were acquired sagittally with a
voxel resolution of 1 mm3 (TI/TR/TE/FA = 1100 msec/
1900 msec/4.38 msec/15�). The DTI data were acquired
using a twice-refocused, spin-echo, echo-planar, pulse se-
quence (Reese et al., 2003). Five nondiffusion-weighed images
(b = 0 sec/mm2) and 30 directionally sensitized diffusion-
weighed images (b = 1000 sec/mm2) were acquired with a
voxel resolution of 2.5 mm3 (interpolated in-plane for a final
voxel resolution of 1.25 · 1.25 · 2.5 mm). sMRI and DTI pro-
cessing streams followed those detailed previously (Phillips
et al., 2011b). In brief, sMRI preprocessing included (1) correc-
tion of field inhomogeneities (Sled and Pike, 1998); (2) re-
moval of extracortical tissue using FSL’s Brain Extraction
Tool (BET; www.fmrib.ox.ac.uk/fsl/bet2/index.html) with
manual correction of errors; (3) correction for head tilt and
alignment using a 6-parameter rigid-body transformation
(Woods et al., 1998a, 1998b); and (4) extraction of the cortical
gray and WM boundaries using Freesurfer (http://surfer
.nmr.mgh.harvard.edu) with manual correction of topo-
graphical errors. The Freesurfer-generated cortical white/
gray matter surfaces were then resampled into triangular
meshes, each with 65,536 vertices, and sulcal landmarks
were delineated manually in both the hemispheres in each
subject. After inspecting landmarks for reliability and ana-
tomical accuracy, a recently refined cortical pattern match-
ing-procedure that enables cortical surface mapping ( Joshi
et al., 2010b, 2012) via diffeomorphic alignments between
landmarks was applied to spatially align the white/gray mat-
ter cortical surfaces across subjects. This method constructs a
shape-based sulcal atlas for the entire population ( Joshi et al.,
2010a, 2012) that is (1) inverse-consistent, (2) dependent ex-
clusively upon the geometry of the sulci devoid of nuisance
variables such as pose and size, and (3) based on empirical
observations to incorporate anatomically homologous map-
pings between sulci. The reconstructed sulcal shape atlas
was then used to drive the cortical white/gray matter sur-
faces into spatial correspondence such that homologous re-
gions have the same coordinate mappings without overall
rescaling.

For DTI processing, the diffusion gradient table was cor-
rected for slice prescription, and images were corrected for
any residual eddy current distortions and motion artifacts
using a combined nonlinear 2D registration ( Jezzard et al.,
1998) and a 3D rigid-body registration (Woods et al., 1998a,

1998b) to minimize interpolation. FSL’s DTIFIT (www.fmrib
.ox.ac.uk/fsl/fdt/fdt_dtifit.html) was used to obtain the
FA/AD/RD images that were then registered to each sub-
ject’s T1 data using 12-parameter and rigid-body transforma-
tions, employing the averaged b0 image for intermediate
registration (Woods et al., 1998a, 1998b). The DTI images
were then masked using the tissue-classified T1 data (Shat-
tuck et al., 2001) where measurements of FA, AD, and RD
were restricted to the brain WM only.

As detailed by Phillips et al. (2011b) and illustrated in the
associated supplementary materials of this prior article, to
allow cross-subject sampling of anatomically comparable
SWM FA, AD, and RD measures, FA/AD/RD was averaged
voxel-wise using a 10-mm smoothing kernel, determined to
best estimate the SWM, centered at each of the 65,536 spa-
tially matched white/gray matter cortical surface vertices
while referencing the corresponding FA/AD/RD image.
Since the FA/AD/RD images were masked using the
tissue-classified T1 images thresholded to include WM, only
values from the pericortical WM were sampled. Measures
of SWM FA/AD/RD were, therefore, obtained at thousands
of spatially matched points across the cortical WM/gray mat-
ter surface. SWM FA/AD/RD values were also averaged
across the entire hemisphere and within lobar regions of in-
terest (ROIs), and the corpus callosum as generated from
the LPBA40 atlas (www.loni.ucla.edu/Atlases/LPBA40)
(Shattuck et al., 2008). Thus, to examine the effects of age,
sex, and asymmetry on the integrity of fibers within the
SWM, FA/AD/RD was compared at both the vertex level
to capture highly localized changes in structural connectivity
as well as within the callosal, frontal, temporal, parietal, and
occipital lobar regions to determine more pervasive SWM dif-
ferences. Finally, to supplement the spatial interpretation of
the vertex-based results, for descriptive purposes, SWM mea-
sures were averaged and plotted in smaller LPBA40 ROIs as
described in the results below.

Statistical analysis

SWM FA/AD/RD values were averaged across each
hemisphere and within the lobar ROIs to determine the
main effects of sex and hemisphere and establish whether lin-
ear or nonlinear (quadratic and cubic) models better de-
scribed age effects. DTI metrics were analyzed at a high
spatial resolution across the WM/gray matter cortical bound-
ary, where the General Linear Model implemented in R
(www.r-project.org) was used to test for effects of age and
sex at each cortical WM surface location, including both
covariates and both linear and nonlinear terms in the statisti-
cal model. Paired t-tests were used to examine within-subject
SWM asymmetries in all subjects (n = 65) as well as within

Table 1. Subject Demographics and Volumetric Measures

All subjects Females Males

n 34/31 34 31
Age (mean – SD) 41 – 16.1 45.15 – 17.28 36.45 – 13.6
Age range (min/max) 18/74 19/74 18/69
Handedness (dextral/nondextral) 56/9 29/5 27/4
Total brain volume in cc (mean – SD) 1705.19 – 167.7 1602.3 – 116.5 1818.0 – 141.2
White-matter volume in cc (mean – SD) 568.9 – 75.1 532.1 – 59.0 609.5 – 70.5
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dextral subjects only (Laterality score > 6, n = 56) in post hoc
analyses. Finally, two-way sex-by-hemisphere, age-by-hemi-
sphere, and sex-by-age interactions were examined in fol-
low-up analyses. Since the cortical pattern-matching
algorithms spatially relate the surface WM/gray matter
points across hemisphere within subjects as well as across
subjects, to examine interactions with hemisphere, an asym-
metry index (L�R)/0.5(L + R) was computed for FA, AD,
and RD values at spatially corresponding hemispheric loca-
tions within the SWM as similar to the analysis strategies
used previously to examine the cortical thickness asymme-
tries (Hamilton et al., 2007).

For the vertex-based analyses, permutation testing (Ander-
son and Legendre, 1999; Anderson and Ter Braak, 2003) was
used to confirm the significance of effects made at thousands
of spatially correlated SWM locations. This permutation
method is an omnibus test that determines the total number
of vertices exceeding a specified statistical threshold for a spe-
cific metric (e.g., FA) compared to the number of vertices ex-
ceeding this threshold by chance in random permutations.
Thus, for permutation testing, the number of SWM points
within the entire hemisphere and within each lobar ROI
showing significant associations with age, sex, or hemisphere
or their two-way interactions using the reduced model (i.e.,
permuting for the residuals by controlling for sex and age
for the appropriate contrast) and a threshold of p < 0.05
were compared to the number of significant surface points
across each hemisphere or lobar ROI that occurred by chance
when the residuals were randomly permuted in 10,000 new
analyses. Covariates were not included for permutation test-
ing of main effects of hemisphere, since these were within-
subject analyses.

Results

SWM FA/AD/RD measures averaged across each hemi-
sphere and within lobar ROIs did not deviate from normality
(Kolmogorov–Smirnov tests all p > 0.05). The mean SWM FA/
AD/RD values measured at a high spatial density across the
brain are shown in Figure 1 across all subjects. The mean val-
ues for each DTI metric averaged within each hemisphere and
within lobar and callosal ROIs are provided in Table 2.

Age effects

Table 2 shows statistical results indicating highly signifi-
cant effects of age for FA, RD, and AD for each hemisphere,
all lobar ROIs, and the corpus callosum. Figure 2 shows FA,
RD, and AD plotted by age for each region. The effects of
age showed more-pronounced linear effects, although nonlin-
ear effects were also significant in most regions. To allow fur-
ther visualization of age trajectories, SWM FA was
additionally averaged within 22 separate hemispheric
LPBA40 ROIs and plotted by age as shown in Figure 3,
where these plots are superimposed on the WM surface
from a single subject. The list of atlas ROIs is provided in
the figure legend.

Statistical maps in Figure 4 show age effects for SWM FA,
AD, and RD at a high spatial density where uncorrected prob-
ability values are indexed by the color bar. Although signifi-
cant age-related reductions in SWM FA were observed in all
four lobes when comparing averaged FA across lobar ROIs
(Table 2), statistical maps indicate that age effects vary
more regionally at the vertex level. Specifically, the effects
of age were particularly prominent in the medial and dorso-
lateral frontal and prefrontal regions and the corpus callosum
( p < 0.05, uncorrected, indicated in blue; Fig. 4A) with respect
to the posterior and more ventral pericortical WM regions.
This pattern is also evident in the plots provided in Figure
3, where SWM FA has been averaged within 22 atlas ROIs
to illustrate how age trajectories vary by region for FA. In
these graphs, age-related reductions of FA are again seen as
more prominent in prefrontal regions with respect to the tem-
poral, posterior parietal, and occipital SWM regions. In the
statistical maps, only a few isolated surface points showed
greater FA in association with age ( p < 0.05, uncorrected, indi-
cated in red/pink; Fig. 4A). Permutation-corrected p values
shown in Table 3 confirm the effects of age within the left
and right hemisphere and within each of the four lobes and
the corpus callosum.

Both SWM AD and RD (Fig. 4B, C) were shown to increase
with age. The spatial patterns of effects were complementary
to those observed for FA in the lateral and medial frontal and
prefrontal regions. Further, for all DTI metrics, age effects
were largely absent in the inferior temporal SWM regions.

FIG. 1. Mean (A) fractional anisotropy (FA), (B) axial diffusivity (AD), and (C) radial diffusivity (RD) measured at thousands
of points within the superficial white matter (SWM) (Axia and RD = mm2/s).
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Despite these similarities, regional results observed for both
AD and RD were more pronounced with respect to FA and
inclusive of parietal association regions, perisylvian lan-
guage/auditory regions, and primary and secondary visual
regions ( p < 0.05, uncorrected, indicated in red/pink).
Although the effects for AD and RD revealed similar patterns
over much of the SWM, some regional differences were also
observed. Specifically, only RD showed significant increases
in the cingulate gyrus as well as the anterior and posterior cal-
losum. AD effects, though not encompassing these regions,
included a larger number of vertices overall. Only a few iso-
lated surface points within the left temporal pole showed de-

creased SWM AD in association with age, whereas no region
showed decreased RD with age ( p < 0.05, indicated in blue).
Permutation-corrected p values shown in Table 3 confirm
age effects within each hemisphere, the lobar ROIs, and the
callosum.

Sex effects

Comparisons of FA, RD, and AD between men and women
for each of the lobar regions and the corpus callosum are also
provided in Table 2. Sex effects were absent for most regions
with the exception of the left temporal ROI ( p < 0.04).

Table 2. Age, Sex, and Asymmetry Results for Fractional Anisotropy, Axial Diffusivity,

and Radial Diffusivity for Hemispheres and Lobar Regions of Interest

Age effects

DTI metric Linear Quadratic Cubic Sex effects Asymmetry effects

Region FA mean F p F p F p F p t p

L Hemis 0.371 – 0.010 25.60 0.001 13.15 0.001 9.34 0.001 0.57 ns 20.53 0.001
R Hemis 0.356 – 0.009 26.19 0.001 14.61 0.001 9.61 0.001 0.13 ns — —
L Frontal 0.381 – 0.012 29.23 0.001 14.74 0.001 10.17 0.001 0.27 ns 14.63 0.001
R Frontal 0.366 – 0.010 18.05 0.001 9.15 0.001 6.03 0.001 0.16 ns — —
L Temporal 0.363 – 0.012 17.87 0.001 9.09 0.001 6.98 0.001 4.71 0.03 15.85 0.001
R Temporal 0.343 – 0.012 15.11 0.001 9.47 0.001 6.27 0.001 0.12 ns — —
L Parietal 0.357 – 0.011 9.51 0.003 5.10 0.009 4.51 0.006 0.54 ns 14.87 0.001
R Parietal 0.339 – 0.009 9.90 0.003 7.78 0.001 5.31 0.003 0.55 ns — —
L Occipital 0.336 – 0.013 8.24 0.006 4.06 0.022 2.73 0.05 0.02 ns 4.44 0.001
R Occipital 0.328 – 0.012 22.28 0.001 12.49 0.001 8.19 0.001 0.00 ns — —
L Callosum 0.585 – 0.029 14.22 0.001 7.01 0.001 4.60 0.001 4.22 ns — —
R Callosum 0.568 – 0.027 8.69 0.001 4.28 0.001 2.81 0.001 2.45 ns — —

Axial mean F p F p F p F p t p

L Hemis 1.08 – 0.04 41.41 0.001 29.20 0.001 19.17 0.001 1.00 ns �6.37 0.001
R Hemis 1.09 – 0.03 45.78 0.001 24.36 0.001 16.74 0.001 0.58 ns — —
L Frontal 1.08 – 0.04 35.53 0.001 24.51 0.001 16.46 0.001 0.01 ns �5.31 0.001
R Frontal 1.10 – 0.04 32.54 0.001 17.21 0.001 12.25 0.001 0.61 ns — —
L Temporal 1.05 – 0.03 17.16 0.001 24.88 0.001 16.43 0.001 0.19 ns �6.97 0.001
R Temporal 1.07 – 0.03 18.15 0.001 12.19 0.001 8.03 0.001 0.00 ns — —
L Parietal 1.04 – 0.06 38.70 0.001 20.07 0.001 13.49 0.001 0.16 ns �6.81 0.001
R Parietal 1.06 – 0.06 44.13 0.001 21.73 0.001 15.35 0.001 0.55 ns — —
L Occipital 1.03 – 0.05 21.46 0.001 17.36 0.001 11.88 0.001 0.66 ns �2.08 0.042
R Occipital 1.04 – 0.04 33.12 0.001 18.08 0.001 11.87 0.001 0.54 ns — —
L Callosum 1.50 – 0.07 3.79 0.001 8.36 0.001 5.49 0.001 0.01 ns — —
R Callosum 1.43 – 0.06 0.80 0.001 1.89 0.001 1.58 0.001 0.44 ns — —

Radial mean F p F p F p F p t p

L Hemis 0.70 – 0.04 58.18 0.001 35.06 0.001 23.09 0.001 0.22 ns �10.90 0.001
R Hemis 0.73 – 0.03 59.83 0.001 31.65 0.001 21.35 0.001 0.13 ns — —
L Frontal 0.69 – 0.04 54.39 0.001 32.42 0.001 21.34 0.001 0.01 ns �11.42 0.001
R Frontal 0.73 – 0.04 37.93 0.001 19.78 0.001 13.36 0.001 0.02 ns — —
L Temporal 0.66 – 0.03 30.38 0.001 26.04 0.001 18.04 0.001 3.03 ns �12.92 0.001
R Temporal 0.71 – 0.03 35.70 0.001 21.97 0.001 14.47 0.001 0.00 ns — —
L Parietal 0.73 – 0.05 45.96 0.001 23.11 0.001 15.17 0.001 0.02 ns �9.09 0.001
R Parietal 0.77 – 0.05 47.22 0.001 23.33 0.001 16.62 0.001 0.22 ns — —
L Occipital 0.73 – 0.05 27.20 0.001 16.25 0.001 11.40 0.001 0.60 ns �3.76 0.001
R Occipital 0.74 – 0.04 45.83 0.001 26.06 0.001 17.10 0.001 0.15 ns — —
L Callosum 0.59 – 0.07 13.65 0.001 10.77 0.001 7.08 0.001 0.95 ns — —
R Callosum 0.59 – 0.06 10.17 0.002 6.25 0.003 4.11 0.01 2.48 ns — —

L, left; R, right; Hemis, hemisphere (AD/RD Mean units: 10�3 mm2/s); FA, fractional anisotropy; RD, radial diffusivity; AD, axial diffusiv-
ity; DTI, diffusion tensor imaging.
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Statistical results showing sex effects for SWM FA, RD, and
AD at a high spatial density are shown in Figure 5 where un-
corrected probability values are indexed by the color bar. Sig-
nificant focal increases of SWM FA in men occurred in
regions, including the left superior temporal gyrus and in

ventral and dorsal parietal pericortical WM ( p < 0.05 indi-
cated in blue; Fig. 5A). Focal increases of FA in women
were observed in a few spatially localized clusters, includ-
ing in the posterior corpus callosum ( p < 0.05, indicated in
red; Fig. 5A). Permutation-corrected p values shown
in Table 3 confirm sex differences within the left parietal
SWM (men > women) and posterior callosal regions
(women > men).

Effects of sex for SWM AD, though present in some region-
ally distinct clusters (Fig. 5B), did not survive permutation
testing (Table 3). However, comparisons between sexes for
RD, which showed a relatively similar spatial pattern, were
confirmed by permutation testing (Table 3) within the left pa-
rietal regions as compatible with uncorrected effects observed
in distributed clusters within the left temporal and left peri-
sylvian parietal regions in women ( p < 0.05, indicated in
red; Fig. 5C).

Asymmetry effects

Significant leftward asymmetry effects were observed for
SWM FA, AD, and RD averaged within hemispheres and
within all lobar regions (Table 2). FA values for lobar and
LPBA40 atlas ROIs are plotted for each hemisphere sepa-
rately in Figures 2 and 3.

Statistical results showing SWM asymmetry effects map-
ped at a high spatial density within dextral subjects only (lat-
erality index > 6) are shown in Figure 6 where uncorrected
probability values are indexed by the color bar. The same
analysis run, including only nondextral subjects, revealed
similar spatial effects (results not shown). Focal increases of
left hemisphere SWM FA were seen over widely distributed
regions, including temporal and parietal (encompassing peri-
sylvian language regions) and frontal regions, incorporating
the cingulate and medial orbital frontal SWM ( p < 0.05, indi-
cated in red; Fig. 6A). Greater right hemisphere SWM FA
was observed in the medial occipital SWM only ( p < 0.05, in-
dicated in blue; Fig. 6A). Permutation-corrected p values
shown in Table 3 confirmed regional asymmetry effects
with lobar and hemisphere ROIs.

Lateralization effects for AD and RD were observed in
complementary spatial patterns. Significant focal increases
in the right hemisphere AD and RD were seen over distrib-
uted regions, including the temporal lobe, parietal lobe, mid-
dle and superior frontal gyrus, as well as the lateral occipital
lobe ( p < 0.05, indicated in blue; Fig. 6B, C) with only a few
isolated surface points showing greater left hemisphere
SWM AD (medial occipital pole, medial orbital frontal re-
gion) and RD (medial occipital pole and precuneus gyrus;
p < 0.05 indicated in red; Fig. 6B, C). Permutation-corrected
p values shown in Table 3 confirm AD laterality for the hemi-
spheres as a whole (right > left), within the frontal, temporal,
parietal, and occipital lobes. Further, permutation p values
confirmed RD laterality (right > left) within the frontal, tem-
poral, parietal, and occipital lobes.

Interaction effects

Interactions between sex by hemisphere and age by hemi-
sphere did not survive permutation testing at any SWM loca-
tion for FA, RD, or AD (statistical maps not shown). These
interactions also failed to produce significant findings for val-
ues averaged within lobar ROIs (all p > 0.05). Similarly,

FIG. 2. Scatter plots showing changes in FA, RD, and AD
averaged within the lobar regions of interest (ROIs) and the
corpus callosum. Age is plotted on the x-axis (range: 18–74
years). Data points for the left and right hemisphere are map-
ped in red and blue. The curves in each graph represent qua-
dratic line fits for the left (solid line) and right hemisphere
(dotted line), respectively.
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sex-by-age interactions did not survive permutation correc-
tion when examined at each spatially matched SWM location
for FA, RD, and AD. However, a significant sex-by-age inter-
action was observed for right hemisphere parietal SWM AD,
F(1,64) = 6.36, p = 0.014, where men showed significantly
larger increases in AD with age than women.

Discussion

This study sought to identify variations in the structural
integrity of short-range association fibers sampled within
the SWM at the juncture of the neuropil in association with
age, sex, and hemispheric asymmetry. Several major findings
emerged from study results: (1) Healthy adults show global
reductions in SWM FA spanning all lobar regions. However,
age effects vary at a more regional level and appear pro-
nounced in the bilateral frontal and prefrontal SWM with re-
spect to more posterior and ventral brain regions; (2) Age-
related reductions in FA are accompanied by pervasive in-

creases in both AD and RD, though callosal and cingulate
SWM show greater RD without significant changes in AD;
(3) Indices of SWM integrity vary between men and women
in some discrete SWM regions; men exhibit higher FA in
the left temporoparietal perisylvian regions, whereas
women show greater FA in the posterior corpus callosum,
which appear driven by local increases in RD; and (4) SWM
FA shows a strong leftward bias across all lobar re-
gions, though rightward asymmetries are present in the me-
dial occipital SWM. Lateralized effects of AD and RD occur
in similar spatial patterns across the SWM, though some
regional FA asymmetries appear driven by RD changes exclu-
sively.

Age effects

The SWM is comprised of short association fibers (or U-
fibers) and neighborhood association fibers that connect
proximal and more distal cortical gyri, respectively, and

FIG. 3. Scatter plots showing
changes in SWM FA with age
averaged within the LPBA40 ROIs.
Age is plotted on the x-axis (range:
18–74 years), and FA is plotted on
the y-axis. The y-axis is scaled to
range of 0.25–0.50 for all ROIs
with the exception of the corpus
callosum, which is scaled to range
0.25–0.65. Anatomical locations for
each graph represent (A) superior
frontal, (B) middle frontal, (C) infe-
rior frontal, (D) insular cortex, (E)
precentral, (F) inferior temporal, (G)
middle temporal, (H) superior tem-
poral, (I) supramarginal, ( J) post-
central, (K) angular, (L) superior
parietal, (M) superior occipital,
(N) middle occipital, (O) inferior
occipital, (P) cuneus, (Q) lingual,
(R) precuneus, (S) cingulate, (T)
parahippocampal and (U) gyrus
rectus atlas ROIs, and the (V) corpus
callosum. Graphs are shown on a
representative subject’s white mat-
ter/gray matter cortical surface.
Data points for the left and right
hemisphere are mapped in red
and blue. The curves in each graph
represent quadratic line fits for the
left (solid line) and right hemisphere
(dotted line) respectively.
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include some merging fibers from long fiber tracts (Parent and
Carpenter, 1996; Oishi et al., 2008). In deep WM pathways, FA
is shown to increase as the brain matures into young to mid-
adulthood, indicating greater myelination and/or fiber coher-
ence. In later life, FA is typically shown to decrease (Inano
et al., 2011; Kochunov et al., 2009; Lebel et al., 2008, 2012, Maly-
khin et al., 2011; Michielse et al., 2010; Sullivan and Pfeffer-
baum, 2006; Tamnes et al., 2010). In line with previous
studies examining deep WM pathways, results from this inves-
tigation showed decreases in FA in association with age across
all lobar regions. However, age effects were also seen to vary at
a more regional level. While frontal regions appeared more
vulnerable to aging processes, occipital regions appeared com-
paratively less influenced by age (Fig. 4). These observations
are compatible with prior reports suggesting that aging trajec-
tories trend along an anterior–posterior gradient (Ardekani
et al., 2007; Bhagat and Beaulieu, 2004; Head et al., 2004;
Wu et al., 2011) with FA decreasing more prematurely in the

frontal regions that mature later in life (Sullivan and Pfeffer-
baum, 2006).

Age-related reductions in SWM FA occurred in tandem
with greater RD and AD. However, age-related variations
in AD and RD appeared more pronounced than those ob-
served for FA. Differences in the spatial pattern of findings
also suggested regional differences in the rates or processes
affecting SWM tissue properties. In particular, the callosal
and cingulate SWM showed age-related increases in RD,
without changes in AD. Lateral prefrontal regions showed re-
duced FA together with both increases in both AD and RD.
Although the biological determinants of these diffusion pa-
rameters are not yet fully understood, since RD increases
have been linked to demyelination (Concha et al., 2006; Ou
et al., 2009; Schmierer et al., 2008), age-related reductions in
myelination and/or in remyelination, rather than axonal
loss, may account for corpus callosum and cingulum find-
ings. Mechanisms additionally influencing the number and

FIG. 4. Probability maps showing the effects of age for SWM (A) FA, (B) AD, and (C) RD, controlling for sex mapped at a
high-spatial resolution at thousands of homologous locations within the SWM. The direction of effects is indicated by the color
bar. For (A), blue indicates decreased FA with age, and red indicates higher FA with age. For (B, C), blue indicates lower AD
and RD with age, and red indicates higher AD and RD with age.

Table 3. Permutation-Corrected Probability Values Within Hemispheres and Lobar Regions of Interest

Age effects Sex effects Asymmetry effects

FA AD RD FA AD RD FA AD RD

L Hemis 0.001 0.00 0.001 0.22 0.26 0.06 0.001 0.001 0.001
R Hemis 0.001 0.00 0.001 0.71 0.96 0.90 — — —
L Frontal 0.001 0.00 0.001 0.34 0.53 0.16 0.001 0.001 0.001
R Frontal 0.001 0.00 0.001 0.96 0.98 0.97 — — —
L Temporal 0.03 0.00 0.001 0.68 0.22 0.20 0.001 0.001 0.001
R Temporal 0.01 0.00 0.001 0.61 0.90 0.96 — — —
L Parietal 0.02 0.00 0.001 0.05 0.22 0.01 0.001 0.001 0.001
R Parietal 0.001 0.00 0.001 0.26 0.43 0.22 — — —
L Occipital 0.05 0.001 0.001 0.65 0.20 0.46 0.001 0.001 0.001
R Occipital 0.001 0.001 0.001 0.44 0.30 0.17 — — —
L Callosum 0.001 0.04 0.001 0.04 1 0.19 — — —
R Callosum 0.001 0.13 0.001 0.12 0.63 0.41 — — —
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coherence of WM fibers may account for the effects of AD
across overlapping brain regions and in lateral frontal and
prefrontal association regions exclusively (Konrad and Win-
terer, 2008) and/or be explained by changes in axonal pack-
ing as previously suggested (Suarez-Sola et al., 2009;
Sullivan et al., 2010).

These observations may also be supported by evidence sug-
gesting that thinner axons, like the ones found in the SWM,
may be more susceptible to degeneration with age compared
to relatively larger axons (Marner et al., 2003; Tang et al.,
1997) as are found deep WM pathways. Greater AD with
age may be thus lead to greater fiber organization (Hasan

et al., 2007) with a reduction of unnecessary/unused pathways
accounting for more-prominent regional AD effects. At the
same time, this refined structural organization may occur at
the expense of reduced brain plasticity (Hasan et al., 2007).
However, greater AD may also reflect axonal degeneration
or a decreased number of neurofilaments and microtubules
within the myelinated axons (Kinoshita et al., 1999). Since
short-association and neighborhood fibers make extensive con-
nections beneath the cortex to integrate functionally connected
cortical regions, the pattern of SWM changes may reflect the
widely documented and time-varying changes in selective
cognitive and sensory and motor functions during normal

FIG. 5. Probability maps showing sex effects for SWM (A) FA, (B) AD, and (C) RD, after controlling for age mapped at a high
spatial resolution at thousands of homologous locations within the SWM. The direction of effects are indicated by the color bar,
where blue indicates higher FA, AD, or RD in men, and red indicates greater FA, AD, or RD in women.

FIG. 6. Probability maps showing asymmetry effects for SWM (A) FA, (B) AD, and (C) RD after controlling for age map-
ped at a high spatial resolution at thousands of homologous locations within the SWM. The direction of effects is indicated
by the color bar. For (A), blue indicates higher FA in the right hemisphere, and red indicates higher FA in the left hemi-
sphere. For (B, C), blue indicates higher AD and RD in the right hemisphere, and red indicates higher AD and RD in the
left hemisphere.
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aging (Bendlin et al., 2010; Birren et al., 2006; Craik and Salt-
house, 2007; Sullivan et al., 2010).

Although SWM effects of age for FA, RD, and AD showed a
more-prominent linear than nonlinear pattern, these results
likely reflect the age range of the adult sample investigated.
That is, since developmental increases in FA and decreases
in RD are shown to plateau or level out during mid-adulthood
before declining and increasing, respectively, during normal
aging (Lebel et al., 2008; Marner et al., 2003; Tamnes et al.,
2010; Westlye et al., 2010), it is perhaps not surprising that
age-related changes in SWM FA and RD were better described
by linear effects in the current study, though nonlinear effects
were also significant in many regions (Fig. 3). Thus, in spite of
regional variations, aging effects in the SWM appear to largely
mirror those observed in the deep WM. Although age effects
for AD are less consistently reported, our findings are in line
with the findings showing that decreases in AD occur during
normal brain development into early adulthood and are fol-
lowed by subsequent increases during normal aging (Faria
et al., 2010; Lebel et al., 2012), though AD effects appear
more pronounced in the SWM.

Sex effects

Although significant sex differences were not apparent
across much of the brain, microstructural characteristics of
the SWM were shown to vary between men and women in
the posterior callosum and in left temporoparietal regions.
Women showed significantly higher FA in the posterior corpus
callosum (splenium), noting that the callosum is comprised of
commissural fibers rather than short-range fibers. This effect
appeared attributable to changes in RD (Fig. 5C) and might
suggest that myelination is greater in women in the callosal re-
gions largely involved in the interhemispheric transfer of vi-
sual information (Zaidel and Iacoboni, 2003). At least one
study has reported greater FA in the splenium in females
(Oh et al., 2007), though others have observed higher splenial
FA in males (Inano et al., 2011) or shown greater FA for males
in the genu of the callosum (Liu et al., 2010; Westerhausen
et al., 2011). Within the SWM, males showed significantly
higher FA in the left superior temoporoparietal regions (Fig.
5A) that may relate to advantages, in particular cognitive pro-
cesses (Menzler et al., 2011; Schmidt et al., 2000).

Asymmetry

All study participants, including the 9 non-dextrals, showed
higher mean FA within the left compared to the right hemi-
sphere (mean difference = 0.014 – 0.005). The regional scatter
plots in Figures 2 and 3 and statistical maps in Figure 6
revealed left-hemisphere FA effects to encompass large areas
of the SWM, which were particularly prominent in the supe-
rior temporal and inferior parietal regions, including Brod-
mann’s area 22 and Wernicke’s area, known to be involved
in language processing (Geschwind, 1970). Statistical maps
for AD and RD showed complementary rightward effects
across much of the SWM (Fig. 6) possibly suggesting higher
left hemisphere axonal density and greater myelination as im-
plicated in animal studies (Dong et al., 2004; Song et al., 2003;
Takahashi et al., 2002), respectively. In pericortical WM, results
similar to ours were found where right-handed subjects
showed higher FA, particularly in left temporal regions
(Kang et al., 2011). Postmortem studies offer supporting evi-

dence of left hemisphere dominance with regard to WM struc-
tural integrity, as axons were shown to be larger and more
myelinated in the left temporal lobes (Anderson et al., 1999).
However, our study also showed some right lateralized effects.
Specifically, FA was higher in the right medial occipital lobe
(parieto-occipital and calcarine regions). Although leftward
asymmetries are typically reported, a few previous studies
have found evidence of right lateralization in the deep WM, in-
cluding within the frontal ( Jahanshad et al., 2010), parietal, and
occipital lobes (Iwabuchi et al., 2011). Further, two previous
functional studies have suggested a rightward laterality in
the occipital lobe (Large et al., 2007; Liu et al., 2009). These
asymmetries like other hemisphere-specific differences in the
brain’s functional layout, cytoarchitecture, and neurochemis-
try may relate to lateralized behavioral traits, including lan-
guage, auditory perception, motor preferences, sensory
acuity, and handedness (Toga and Thompson, 2003). For ex-
ample, DTI studies of deep WM tracts connecting cortical re-
gions involved in language (arcuate fasciculus and superior
longitudinal fasciculus) (Catani et al., 2007; Glasser and Rilling,
2008; Lebel and Beaulieu, 2009; Phillips et al., 2011a) are shown
to relate to verbal recall in adults (Catani et al., 2007) and to
some cognitive abilities in children (Lebel and Beaulieu, 2009).

Although behavioral and brain activation studies as well as
a recent connectivity analysis, including both functional im-
aging and DTI data, have shown a hemispheric asymmetry
reduction in older adults, a phenomenon termed AROLD
(Cabeza, 2002; Li et al., 2009), significant age-by-asymmetry
effects were not observed for SWM integrity measures in
the current study. However, others have shown that asym-
metries in gray matter structure do not differ in association
with normal aging (Smeets et al., 2010), which appears may
also be the case for tissue properties of the SWM.

Limitations and future directions

Some potential study limitations are worth noting. First,
the age range of study participants (18–74 years) prohibited
the examination of developmental changes in SWM integrity,
which may be addressed in future studies, particularly those
benefiting from more-powerful longitudinal designs. Further,
although age was included as a covariate for analyses of sex
effects, differences in the age distributions in the male and fe-
male groups may have impacted the observed findings. Some
caution with regard to the interpretation of diffusion findings
is also advised, particularly for AD and RD, which may also
vary as a consequence of crossing fibers, partial volume ef-
fects, or pathology rather than on the basis of the underlying
tissue structure (Wheeler-Kingshott and Cercignani, 2009).
Moreover, findings observed with respect to adult aging
may be more susceptible to methodological confounds asso-
ciated with separating the microstructural from volumetric
change in the gray matter and CSF during brain aging. To re-
duce the influence of this potential confound, in particular
those associated with partial volume effects associated with
age (Bhagat and Beaulieu, 2004; Metzler-Baddeley et al.,
2012; Pasternak et al., 2009), the current study only sampled
FA, RD, and AD within brain tissue defined as WM in the
sMRI data (Shattuck et al., 2001). However, tissue segmenta-
tion itself, which relies on the thresholding signal intensity
values for the purpose of classifying brain tissue types, may
also be impacted by microstructural changes in the cortical
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neuropil occurring with age, which could influence the inter-
pretation of the results. Future studies, including more spe-
cialized acquisition methods and higher angular and spatial
resolution DTI data, may help reduce these potential con-
founds to better define the fiber trajectories within the
SWM. Finally, future studies are required to clarify the re-
gional specificity of SWM changes with respect to other
brain structural characteristics such as cortical thickness as
well as associations with specific behavioral functions in the
context of age, sex, and cerebral asymmetry.

Conclusion

This study provides new evidence to demonstrate that global
and regional variations in the SWM microstructure associate
with individual differences in age and sex during adulthood
as well as differ across hemisphere. Results support that the
SWM may be vulnerable to age-related processes of demyelin-
ation. It is also possible that the SWM may become more orga-
nized with age, though increases in AD with age may instead
reflect microstructural changes reflecting axonal degeneration
(Kinoshita et al., 1999). Further, our findings, though cross-sec-
tional, suggest that aging effects impact frontal regions more
substantially than posterior and ventral brain regions. SWM
structural connectivity shows a leftward bias across most of
the brain, including within the frontal, temporal, and parietal
lobes. Sex differences appear more spatially distinct, implicating
differences in posterior callosal and temporoparietal regions.
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