BRAIN CONNECTIVITY
Volume 3, Number 6, 2013

© Mary Ann Liebert, Inc.

DOI: 10.1089/brain.2013.0148

Pattern-Based Granger Causality Mapping in fMRI

Eunwoo Kim, Dae-Shik Kim, Fayyaz Ahmad, and HyunWook Park

Abstract

Since its development, the multivoxel pattern analysis (MVPA) method has been widely used to study high-level
cognitive function in the brain. The results of the MVPA indicate that the spatial pattern of functional MRI data
contains useful information. In addition to the spatial pattern analysis of the brain functions, effective connectivity
can also be analyzed between the spatial pattern-based information. In this article, we propose a multivoxel
pattern-based causality mapping method to explore influences between the spatial pattern-based information
in the brain. The method applies the Granger causality to interested regions of the brain in terms of spatiotempo-
ral pattern-based data, which are known to play an important role in dealing with high-level functions of the
brain. The method can compose a causality map throughout the entire brain for any specified region of interest.
Both simulations and experiments were performed to show the performance of the proposed method, and the
existence and analyzability of the connectivity between pattern-based information in the brain were verified.
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Introduction

FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI) has
contributed to objective insights into brain functions by
detecting the blood oxygenation level-dependent (BOLD) sig-
nals related to cerebral hemodynamic responses. Since the in-
vention of the fMRI, the relationship between the brain
regions and functions was the main interest of most research,
and many different approaches of brain function interpreta-
tion have been proposed to understand high-level brain func-
tions. For instance, various functional connectivity analyses
have been proposed and widely used to show the interac-
tion among brain regions in many states (Biswal et al., 1995;
Boccalettia et al., 2006; Greicius et al., 2003; Hampson et al.,
2002; Lowe et al., 2000; Martino et al., 2008). In particular,
the effective connectivity analysis that can reveal directional
information of influence between the brain regions has been
highlighted as a key technology for understanding the dy-
namic and parallel functions of the brain (Abler et al., 2006;
Deshpande et al., 2008; Friston, 2009; Gao et al., 2008; Goebel
et al., 2003; Marreiros et al., 2008; Roebroeck et al., 2005). On
the other hand, multivoxel pattern analysis (MVPA) has
been proposed to explain virtually unlimited functions of
the brain by importing spatial pattern-based brain informa-
tion (Haxby et al., 2001; Kamitani and Tong, 2005; Norman
et al.,, 2006; Peelen and Downing, 2007). The MVPA proved

to be robust, which accelerated brain function studies since
its development.

Inspired by the effective connectivity analysis and the
MVPA, we can infer that the spatial pattern-based informa-
tion in the brain is meaningful and can also have a causal re-
lationship. However, there has been no approach to detect the
causality of pattern-based information, and the necessity of
the method is gathering strength (Anderson and Oates,
2010; Kriegeskorte and Kreiman, 2012; Raizada and Kriege-
skorte, 2010). The causal relationship between the pattern-
based brain information is expected to show dynamic
features of the complex functions; hence, it can improve the
understanding of brain functions. Therefore, we present a
new method to analyze the causality of the pattern-based
brain information.

Granger causality mapping (GCM) is one of the most
widely used methods to analyze effective connectivity in
the brain. The GCM imports the concept of Granger causality
(Granger, 1969, 1980) to detect the influence and its direction
by exploiting temporal precedence information. In the con-
text of the Granger causality, the fMRI time series of brain re-
gions are described using the vector autoregressive (VAR)
model, which predicts current signals by linear combination
of past signals. If the past signals of time series improve the
prediction accuracy of the current values, it means that
there is informational influence.
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In conventional applications of the Granger causality into
fMRI data analysis, each interested region or voxel is repre-
sented by a single fMRI time series. Recently, there have
been several researches of Granger causality while taking
into account the spatial information of the brain under the
assumption of sparseness (Garg et al.,, 2011; Tang et al.,
2012; Valdés-Sosa et al., 2006). In this article, to reveal the
causal relationship between pattern-based information, we
propose a new approach to apply the Granger causality to
the interested brain regions without regressions or the as-
sumption of sparseness. To do this, the multiple time series
data are inferred as the spatiotemporal pattern-based data
of the region. Through a process that is similar to the
GCM, we can verify whether one pattern-based data has
useful information in predicting the other by using the tem-
poral precedence information. In other words, we can ana-
lyze the existence and direction of Granger causality
between spatial pattern-based data that has been proved
to be meaningful by studies using the MVPA. Similar to
the GCM, the proposed method can compute directional in-
fluence between any selected two regions. The method does
not require a predefined region of interest (ROI), and it can
compose the Granger causality map through the entire brain
for any specified ROL

We performed simulations to confirm that the neuronal
pattern Granger causality can be detected from the simulated
fMRI data. We also conducted fMRI experiments using a
visuomotor task to show that the pattern-based causality be-
tween visual and motor cortices can actually be detected by
the proposed method.

Theory

GCM is an application of Granger causality to the brain sig-
nal, and the proposed method adopts a similar approach.
Applying the VAR model, we can calculate the Granger cau-
sality that implies the directional influence using the temporal
precedence (Geweke, 1982). The VAR can be applied to fit a
discrete timeseries vector x[n]=(xi[n], ..., xM[n])T (Kay,
1988), with which the proposed method analyzes the dynam-
ics of the fMRI signal. The VAR model is a prediction model in
which a current vector is predicted by its past information,
and the VAR model with the order p can be written as follows:

M=

x[n]= 3, Ali]x[n —i]+u[n], )
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where u[n] is multivariate white noise. In Equation (1), x[n]
represents the fMRI time series of multiple voxels and is esti-
mated as a linear combination of its last p signals using auto-
regression coefficient matrices A[f].

For two arbitrary regions of X and Y in the brain, each re-
gion can be fit to the VAR independently.
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where x[n] and y[n] represent time-variant spatial fMRI infor-
mation in the brain regions of X and Y, respectively, and u[n]
and v[n] are the multivariate noises. £, and T, are covariance
matrices of the respective noises quantifying the correctness
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of the prediction on current signals from past signals during
the process. Similarly, it is possible that fMRI information
from two regions is treated as one time-variant vector q[n]
and fit to the model as follows:

3 x[n]
anl= {y[n]}

/4 2, C
qln]= Z Aylilq[n —i]+w[n] covar(w[n])= {Ci T }
i=1 2
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In this case, the covariance matrix of noise w[n] can be di-
vided into four matrices, including ¥, and T»-Z, and T, are
square matrices that have the same column sizes as x[n]
and y[n], respectively, and can be considered indices of pre-
diction accuracy in the two regions.

In the VAR, each element of current vector is estimated by
the linear combination of its past signals and the past signals
of the other elements. When the BOLD signals of two regions
are considered together as a one time-variant vector, the pre-
diction of each region can be supported by the information of
the other region. In contrast, when the two regions are consid-
ered separately, each region can only use its own information.
Therefore, the directional influence between the two regions
can be detected, that is, if the prediction of current signals
of x[n] is improved with the support of past signals of y[n],
it implies that there is a directional influence from the region
of Y to the region of X. Using the indices of the correctness of
the prediction, the directional influences between the two re-
gions are quantified as follows:

Frey=In(| T4 ]|/[T2l))
Fy—vx:ln(Hle/HZzH)/ @)

where F,_,, represents the influence from region X to Y, and
Fy—« represents the influence from region Y to X. We focus
our interest on these two measures among the functional as-
pects of Granger causality to show the directional flow of in-
formation.

Simulation Method

fMRI data can be considered a spatially low-pass filtered
and temporally subsampled neuronal signal. We designed a
simulation to validate that the proposed method can detect
the spatial pattern-based causality of the brain regions with
reference to the previous studies which validated the appli-
ance of GCM to fMRI (Roebroeck et al., 2005). We generated
the simulated fMRI data of two brain regions, between which
there are causal interactions, and analyzed the data with the
proposed method to find the existing causality. The simu-
lated fMRI was generated with consideration of the hemody-
namics of the brain.

The signals x[n] and y[n] of the two virtual brain regions of
X and Y are generated from the VAR process as follows:

qln]=Aq[n — 1]+ Bq[n — d] + u[n]

for q[n]= {;{Zﬂ, ®)

where x[n] and y[#] are the time-variant vectors with the size
of a and b, respectively, and each element of noise u[n] follows
a normal distribution. Matrix A implies the self-induced
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influence of each region, matrix B indicates the directional in-
fluence from x to y, and d is the variable for the delay of the
influence. The matrices A and B are given in this simulation
as follows:

09 0 00
0 09 0 0
A= : % -
09 0
0 09
a b

) 0 |o 0]
: : a
p_|0 010 - 0 ©)
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where the size of the matrices A and B are (a+b) X (a+b). The
bottom-left bxa part of the matrix B induces the influence
from x to y, and composed with elements named &, which
are random variables that follow a uniform distribution be-
tween —I and I, when I is the value that indicates the strength
of the influence.

Using this model, we can generate a simulated signal that
has an influence from X to Y while adjusting the various pa-
rameters such as a and b (the numbers of voxels in the regions
X and Y), I (the strength of the influence), and 4 (the delay of
the influence). In this model, there is no influence from Y to X.
The autoregressive coefficients on the diagonal of the matrix
A were set to make the influence exist in the interested low-
frequency ranges, as the hemodynamic process acts as a
low-pass filter and the signal is subsampled in the time do-
main. The elements named ¢ in the matrix B were set to be
random to exert an influence with complex interactions
among the voxels in both regions.

The virtual neuronal signal of each voxel was generated
with an equivalent length of 11 min with a time interval of
10 msec. The first 1 min signal was discarded for allowing
steady states. Then, each resulting signal was filtered by con-
volution with the hemodynamic function (HRF) to simulate
the BOLD signal, where the canonical HRF supplied by
SPM8 (wwwfil.ion.ucl.ac.uk/spm/software/spm8) was ap-
plied. After the convolution, each signal was normalized to
zero mean and unit variance, and an additional 20% of
white Gaussian noise was added to simulate the psychologi-
cal noise in the BOLD signal. Finally, each resulted signal was
subsampled with an equivalent interval of TR for simulating
the data acquisition. The signal was also renormalized and
another white Gaussian noise was added as the acquisition
noise in the MRI system. The resulting signals that represent
the fMRI data acquired from two regions X and Y were pro-
cessed by the proposed method to measure F,_,, and F, ...
The order of the VAR model was set to minimize the
Schwartz criterion (SC), which is suggested to reduce error
variance while preventing overfitting (Luetkepohl, 1991).

We designed three sets of the simulations to evaluate the
performance of the proposed method in different situations,
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as there are several parameters for the simulation, such as
the number of voxels composing pattern-based causality (a
and b), the number of voxels in each region used in analysis
(V), the strength of the influence (I), the delay of the influence
(D), the sampling interval of the scanner (TR), and the acqui-
sition noise (E). In the first set of the simulation, we per-
formed 1000 trials with random elements of B and using
parameters (2=b=10, V=5, 1=0.3, D=60msec, TR=1sec
and E=20%) to examine the distributions of F,., and F,,.
The additional 1000 trials without influence (B=0) were
also performed to determine the significance threshold of
Fy-, and F,_ . Second, we performed different cases using
combinations of the parameters (a1=0=10, V={1, 2, 3, 4, 5, 6,
7, 8,9, 10}, I={0.1, 0.2, 0.3, 0.4, 0.5}, D={20, 40, 60, 80,
100msec}, TR={1, 2, 3sec}, and E={10, 20, 30, 40, 50%}),
where 100 trials were performed for each of the 3750 possible
combinations (i.e., 10(V)x5(I) x5(D) x 3(TR) x 5(E) =3750). Fur-
thermore, the same number of additional trials, excluding influ-
ence (B=0), were performed to consider the false-positive ratio
of the proposed method. In the third set of the simulation, 1000
times of trials were performed with different numbers of voxels
to verify the performance of the proposed method according to
the relationship between the size of regions exerting the influ-
ence and the size of each ROI used in analysis (1=b={1, 2, 3,
4,5,6,7,8,9, 10}, V={1, 2,3, 4,5,6,7,8, 9, 10}, =03,
D=60msec, TR=1sec and E=20%). When the analyzing ROI
was larger than the influential region, simulated time-course
data without influence were added for the analysis.

Simulation Result

The distributions of computed F, -, and F,, from the first
set of simulation with the representative parameters are
shown in Figure 1. The significance threshold can be
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FIG. 1. Distribution of F,_,, and F,—, in simulation with
representative parameters: five voxels in region of interest
(ROI), the influence strength of 0.3, the influence delay of
60 msec, sampling interval of 1 sec for the magnetic resonance
imaging, and the acquisition noise of 20%. The distribution is
caused by a random factor in the vector autoregressive model
and noise in the process. Reference distribution was calcu-
lated in case of no influence between regions. Dotted line in-
dicates the threshold controlling a fraction of type I error to be
0.001.
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determined using classical type I error control without any di-
rectional influence (¢=0.001). The first observation is that
Fy-y is larger than F,_., on average, showing the intended
true influence from X to Y. On the other hand, the average
of F,—, is significantly larger than zero, even though there
was no influence from Y to X. This is a reflection of the instan-
taneous influence between X and Y, which is induced because
the Granger causality is applied to the subsampled time se-
ries. When the sampling interval is longer than the actual in-
teraction that takes place, the instantaneous influence
increases according to the sampling interval. Therefore, the
interpretation of the influence based on individual F-,, or
F,— is not appropriate. The possible solution is an appliance
of the differential Granger causality (Roebroeck et al., 2005),
which analyzes the inference based on the difference of
Fy—yand F,_, . If the influence difference F,—,, — F, . is pos-
itive, it can be inferred that there is a directional influence
from X to Y. We observed the distribution of the difference
to confirm that the differential Granger causality is appropri-
ate for the proposed method, and the result is shown in Fig-
ure 2. The significance threshold is determined using the
classical type I error control (x=0.001), and the difference is
significantly positive in all trials of this simulation. The result
reflects good sensitivity and specificity of the differential
Granger causality. Thus, we adopted this approach for the
proposed method.

To examine the performance of the proposed method en-
gaging in various parameters, we performed a z-test with hy-
pothesis F,_,, — F,,=0 and the results are shown in Figure
3. The performance improved as the strength of influence and
delay of influence increased, and the TR and the acquisition
noise decreased. These observations agree with the previous
simulation of conventional GCM (Roebroeck et al., 2005). The
performance also improved as the size of the ROI increases,
and becomes significantly reliable (p<0.001) for a region
larger than 6 voxels. To examine the quantified performance
corresponding to the number of voxels in the ROI used in
analysis, the receiver operating characteristic (ROC) curve
was calculated, which shows the relationship between the
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FIG. 2. Distribution of difference between two measures,
Fy—y — Fy—x. Reference indicates the distribution of the differ-
ence in case of no influence. Dotted line indicates the thresh-
old controlling a fraction of type I error to be 0.001.
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true-positive ratio and false-positive ratio. The ROC curve
for each case is shown in Figure 4. The performance improved
according to the number of voxels in the ROI, and was almost
saturated after eight voxels in the ROI.

Finally, Figure 5 shows the performance according to the
relationship between the number of voxels exerting the influ-
ence and the number of voxels in ROI used in analyzing. The
overall performance is high when the influence is distributed
in many voxels in the ROL When the influential pattern size is
fixed, the performance is improved as the analyzing ROI size
becomes larger and saturated at the point that the analyzing
ROI size becomes the influential pattern size. When the ana-
lyzing ROI size becomes larger than the influential pattern
size, the performance is slightly reduced and the performance
is practically maintained.

The results of the simulation suggest that the proposed
method can be used to detect the pattern-based Granger cau-
sality over multiple voxels after low-pass filtering and sub-
sampling. It was found that the performance is robust to
the strength or delay of the influence, MRI acquisition
noise, and TR in the case of a large number of voxels in the
pattern.

Experimental Method

We applied the proposed method to actual fMRI experi-
ments to verify the existence of the pattern-based causality
in the brain and evaluated the usefulness of the proposed
method for understanding brain functions. The experiment
design in the previous research for GCM (Roebroeck et al.,
2005) was also adopted to verify the proposed method, be-
cause the design was known to create a causal relationship
between the brain regions and had desired properties. The
design imported a rapid event-related paradigm. Subjects
performed a visuomotor task of clicking buttons that corre-
sponded to the displayed visual stimuli. The visual stimuli in-
cluded three categories: face, house, and another object. The
face and the house stimuli required a response of clicking
the left hand and right hand buttons, whereas another object
stimulus required no response. Since there were two re-
sponses of the left and right hand click for the two visual stim-
uli of face and house display, there were two possible
stimulus-response mapping (S-R mapping). The S-R mapping
was occasionally switched in the experiment. The face visual
stimulus was known to activate the fusiform face area, and
the clicking buttons caused activation in specific parts of the
motor cortex. Using the rapid event-related paradigm, it
could be expected that the successful performance of the
task created a flow of information passing through these re-
gions. Moreover, it was presumed that contextual informa-
tion was exploited in the task, and the influences between
areas involved in the control processes were persistently sus-
tained. Therefore, the analysis would tolerate relatively low
sample rates, and the whole time-course data could be ana-
lyzed to detect the causal relationship created by the task.

The experiment was composed of a slow-switching (SS)
condition and fast-switching (FS) condition, and each subject
participated in the experiment of both conditions. In the SS
condition, the S-R mapping was switched periodically and
less frequently, while it was switched randomly and fre-
quently in the FS condition. The FS condition had a more en-
gaging context and required a higher degree of executive
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FIG. 3. Results of the simulation showing detecting performance of the proposed method according to the number of voxels
in ROI and other parameters: (a) strength of the influence, (b) delay of the influence, (c) sampling interval of the scanner, and
(d) acquisition noise. Measured z-statistics corresponding to parameters are averaged.

control than the SS condition. Therefore, the interaction be-
tween areas was assumed to be different. If the measured in-
fluence was different according to the conditions, we could
confirm that the results of the proposed method was not
caused by various hemodynamic properties over the brain,
as hemodynamics persist over the conditions.

The experiment was performed on 20 subjects who were
right handed and had normal vision. All subjects were
trained before the experiment and signed a written consent
form. The images were acquired using a 3 T MRI system (Sie-
mens Verio), a T2*-weighted echo planar imaging sequence
with an echo time (TE) of 28msec and a repetition time
(TR) of 1000 msec. The image matrix size was 64 x64, and
the field of view was 224 x 224 mm?. Eighteen oblique axial
slices were scanned for each volume with a thickness of
5mm and a splice gap of 1 mm. 530 volumes were scanned
for both SS and FS conditions. Anatomy images were
obtained using a T1-weighted MPRAGE sequence with a
TE of 28msec, a 3D image size of 256x256x192, and a
voxel size of 1x1x1mm?> The display of stimuli and the
gathering of responses were guided by the E-prime 2.0 soft-

ware (Psychology Software Tools). The S-R mapping was
changed 24 times at every two to six trials in the FS condition,
and it was changed eight times at every 15 trials in the SS con-
dition. The stimulus onset asynchrony was 2-6sec for both
conditions. The mapping cue was indicated by changing the
color of the fixation cross to magenta for mapping 1 and
cyan for mapping 2, and was displayed for 500 msec at the be-
ginning of each trial. Trial stimuli consisted of five pictures for
each face, house, and object, and were displayed for 120 msec
following the mapping cue. Feedback was displayed for
500 msec at the end of each trial by changing the color of
the fixation cross to green for a correct response and red for
an incorrect response. Each experiment continued for 45 tri-
als, which consisted of 15 trials for each of the face, house
and object stimuli. The face, house, and object stimuli were
shown in pseudorandom order.

Preprocessing was performed by SPMS8, and the visualiza-
tion of the experimental results was guided by Brain Voyager
QX (Brain Innovation). Each volume was registered to the
Colin brain template supplied by Brain Voyager, and cor-
rected for slice timing. The FFA and the visual cortex were
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FIG. 4. Receiver operating characteristic curve of the pro-
posed method corresponding to the number of voxels in the
ROI used in analysis. The results show better performance
as the size of ROI becomes larger. The highest line showing
the best performance indicates the case of 10, which is equal
to the size of regions that contain causal information, and
the lowest line indicates the case of one showing a similar per-
formance with the reference case using the average time-
course data of each region.

detected by SPM8 using a general linear model (GLM). The
iterative approach was applied to FFA, and the visual cortex
was applied to locate specific regions that contained a distinct
influence. The regions having a causal relationship with the
FFA are detected by the proposed analysis. The visual cortex
that significantly affects the FFA is considered a new ROI of
the visual cortex. Next, the most influenced region from the
new ROI of the visual cortex is detected and treated as a
new ROI of the FFA again. These procedures are repeated
until the two regions are not changed. For every subject, the

Z-5c0r¢

FIG. 5. Simulation results showing the performance of the
proposed method according to the relationship between the
number of voxels exerting influence and analyzing ROL
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converging 3x3x3 cubic region of FFA was analyzed, and
the region was selected as ROI. The spatial smoothing was
applied only for the initial GLM analysis, whereas any spatial
smoothing filter was not applied for the proposed pattern-
based analysis, as it may reduce the spatial pattern informa-
tion (Norman et al., 2006). Every spatiotemporal data in the
3x3x3 cubic window in the brain were analyzed to map
the differential pattern-based Granger causality over the en-
tire brain. For each region, we collected 20 samples of F,_,,
and F,,, from all subjects to perform a statistical analysis
using a t-test with the null hypothesis F,—,, — F,,=0.

Experiment Result

The experiment results of the proposed method are
shown in Figure 6. The FFA was selected as ROI and is
shown in the red circle. The visual cortex indicated by the
green color shows a negative influence, confirming that
the visual region influences the ROI. The motor cortex indi-
cated by the blue color shows a positive influence. Thus, the
motor region is influenced by the ROL Overall, it can be in-
ferred that there is a relay of information flowing through
the visual cortex, FFA, and the motor cortex. From this re-
sult, a specific part in the frontal robe also shows a strong
positive influence. Possibly the processing system involved
in the given task is not direct from the visual cortex to the
motor cortex, but requires additional functions, and it can
be inferred that the frontal lobe is also related to the per-
forming of the task. The frontal robe is known to be engaged
in the decision making (Andersen and Cui, 2009; Barra-
clough et al., 2004; Bechara et al., 2000; Heekeren et al.,
2004; Lee et al., 2007), and we presume the function is re-
quired to accomplish the task successfully.

We investigated the SS and FS conditions separately to
confirm that the resulting interaction is caused by the influ-
ences between regions, not by the variability of the hemody-
namic response over the brain. The results from SS and FS
conditions are shown in Figure 7. Both results show the con-
nection between the visual and motor cortex, while the
shapes of the detected regions have different patterns. In par-
ticular, in the frontal lobe and the motor region, a stronger
positive influence was detected in the FS condition. A statis-
tical test was performed to show that there was a significant
difference between the results of the SS and FS conditions.
The null hypothesis was that there was no difference between
the results of the two conditions. We adopted the method
controlling the false discovery rate (FDR) (Genovese et al.,
2002). The FDR-based hypothesis testing controls g, which
was the expected proportion of false positives within all
tests. The result showed that there was a significant difference
between the results of the SS and FS conditions (§=0.05),
whereas the difference was not affected by the hemodynamic
responses. Therefore, we can conclude that the proposed
method works as intended.

It was also needed to confirm that the analyzed influences
are based on pattern-based information and not on overall
changes of intensity in the regions. To exclude this confound,
we analyzed the data again in the same way except for spa-
tially averaging over voxels within each region. As a result,
we confirmed that there is no significant region showing an
interaction with the ROI (p <0.01), as the pattern-based influ-
ence information was removed by spatial averaging.
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Discussion

We proposed the multivoxel pattern-based GCM to ex-
plore the influences between high-level spatial pattern-
based information in the brain. The proposed method can
be applied to fMRI data using the same procedure of GCM
(Roebroeck et al., 2005), except for taking the ROI as a spatial
region of the brain. The simulation results showed the ability
of the proposed method in detecting the influence after the
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FIG. 6. Experimental results
of the proposed method ap-
plied to the functional mag-
netic resonance imaging
experiment showing the re-
gions that interact with ROL
The circled face-selective region
was selected as ROI. A signifi-
cant negative differential
Granger causality (p<0.001)
was detected in the green re-
gions of the visual cortex,
which exert influence on the
ROL The blue regions were
analyzed to have a positive
differential Granger causality
(p<0.01), which received in-
fluence from the ROL

hemodynamics and MRI acquisition process, and the experi-
ment results showed the practical application of the proposed
method in analyzing the existing influence.

There have been considerable debates whether the Granger
causality can reveal the underlying neuronal influence, while
variation in the hemodynamic latency and subsampling ex-
ists. Some simulation studies (Smith et al., 2011) insisted
that the Granger causality was determined by the confound-
ing hemodynamic latencies. Nonetheless, many studies

FIG. 7. The experimental
results that were analyzed
separately with (a) slow-
switching and (b) fast-
switching conditions. The
circled face-selective regions
were selected as ROL Both
results show the interaction
between the visual and motor
cortex, while the patterns of
detected regions are slightly
different.
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(Schippers et al., 2011; Wen et al., 2012) have shown different
results. They concluded that the influence detected by the
Granger causality was likely to be true even at the neuronal
level, and Granger causality was a reliable method for an-
alyzing influence in fMRI data. In addition, Deshpande
and Hu concluded that simulations should not be treated
as the final results, because they were bounded by assump-
tions and simplifications (Deshpande and Hu, 2012). Since
we assumed that there were meaningful pattern-based in-
teractions based on the model, we adopted the VAR
model to the proposed method and validated the proposed
method in detecting the pattern-based Granger causality in
fMRI signal under the circumstance of hemodynamics and
subsampling.

The order of the VAR model in the proposed method was
determined by the SC. It is known that the optimal order of
the GCM is almost exclusively one when TR is 1000 msec
(Roebroeck et al.,, 2005), and the tendency is maintained
when detecting the pattern-based information.

The shape of the window in analyzing the experimental
data was set to 3 x3x 3 cubic. The pattern-based information
in the brain is presumed to be dependent on functions, and
most studies using MVPA have adopted a larger window.
As shown in Figure 5, there is a considerable possibility
that the accuracy of the proposed method can be improved
by using a larger window. Therefore, it is encouraged to
apply a large window in the proposed method. However, a
required temporal length of the time-course data to fit the
VAR model is exponentially increased as the size of ROI in-
creases when we apply the conventional fitting algorithm.
Thus, it can generate problems related to the concentration
or fatigue of subjects. There is a tradeoff between the ROI
size and the required experiment time. A possible solution
to fit the VAR model with the shorter time-course is the
ridge-regression approach (Ahmad et al., 2012; Douglas
et al., 2001), which introduces an additional parameter in
order to solve an ill-posed problem. Since the ridge regression
is a regularization method and does not guarantee ideal out-
put, further research about the tradeoff between increasing
the size of the window and importing the ridge-regression
can be helpful in dealing with this issue.

Since any spatial smoothing was not applied to the exper-
imental fMRI data in order to preserve the spatial pattern-
based information, the noise model of the fMRI data can be
more ambiguous than the conventional fMRI data analysis.
To confirm that the proposed method has robust performance
against the noise model, we performed a simulation that the
simulated fMRI data were generated using the noise models
of the uniform, skewed-normal, and bimodal-normal distri-
bution, respectively. All noises were applied to all three
stages of exerting error in the simulation, such as generation
of the neuronal signal, BOLD signal, and the fMRI data. All
noises had the same mean and standard deviation. Though
the noise models were different, the performances were
much similar in all cases of the noise models. From the result,
we concluded that the proposed method had robust perfor-
mance against the noise model.

Recently, it has been reported that the GCM is robust to
changes in hemodynamic response properties unless the
changes are accompanied by severe downsampling (Seth
et al., 2013); therefore, it can be a helpful further research that in-
vestigates the properties when the proposed method is applied.

KIM ET AL.

In conclusion, we proposed a method that could explore
the influence between multivoxel pattern-based information,
which was known to deal with high-level function in the brain,
by adopting the concept of Granger causality. The existence
and the analyzability of the influence were verified through
the simulations and the real fMRI experiments. The proposed
method can be applied to map the pattern-based influence re-
lated to ROI over the entire brain. The proposed method is
expected to contribute in improving the understanding of the
dynamic features of high-level information in the brain.
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