
ORIGINAL ARTICLES

Correcting Brain-Wide Correlation Differences
in Resting-State FMRI

Ziad S. Saad,1 Richard C. Reynolds,1 Hang Joon Jo,1 Stephen J. Gotts,2

Gang Chen,1 Alex Martin,2 and Robert W. Cox1

Abstract

Brain function in ‘‘resting’’ state has been extensively studied with functional magnetic resonance imaging
(FMRI). However, drawing valid inferences, particularly for group comparisons, is fraught with pitfalls. Differing
levels of brain-wide correlations can confound group comparisons. Global signal regression (GSReg) attempts to
reduce this confound and is commonly used, even though it differentially biases correlations over brain regions,
potentially leading to false group differences. We propose to use average brain-wide correlations as a measure of
global correlation (GCOR), and examine the circumstances under which it can be used to identify or correct for
differences in global fluctuations. In the process, we show the bias induced by GSReg to be a function only of the
data’s covariance matrix, and use simulations to compare corrections with GCOR as covariate to GSReg under
various scenarios. We find that unlike GSReg, GCOR is a conservative approach that can reduce global variations,
while avoiding the introduction of false significant differences, as GSReg can. However, as with GSReg, one can-
not escape the interaction effect between the grouping variable and GCOR covariate on effect size. While GCOR is
a complementary measure for resting state-FMRI applicable to legacy data, it is a lesser substitute for proper level-
I denoising. We also assess the applicability of GCOR to empirical data with motion-based subject grouping and
compare group differences to those using GSReg. We find that, while GCOR reduced correlation differences be-
tween high and low movers, it is doubtful that motion was the sole driver behind the differences in the first place.
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Introduction

Resting state functional magnetic resonance imaging
(RS-FMRI) has become a very popular methodology for

studying brain function with FMRI. It holds promise for un-
derstanding normal brain function and revealing brain re-
gions involved in complex distributed disorders, such as
autism (Fox and Greicius, 2010; Gotts et al., 2012). Part of the
appeal of RS-FMRI is the relative ease with which the data
can be acquired. However, drawing valid inferences, particu-
larly for group comparisons, is fraught with pitfalls because
of the sensitivity of the effect size to both unknown signals
of interest, artifacts, and noise. A recent illustration of this dif-
ficulty was made in two publications (Power et al., 2012a;
Van Dijk et al., 2012) that have caused considerable stir in
the functional neuroimaging field and generated multiple re-
sponses (Carp, 2011; Power et al., 2012b; Satterthwaite et al.,
2012, 2013; Yan et al., 2013). In essence, the studies showed

that the presence of motion biases correlation measures and
can thus, lead to false inferences when comparing groups
with different levels of motion. In both of these studies and
in more recent ones, the subject level preprocessing included
a projection of the global brain signal average (GS) and re-
lated regressors derived by averaging the time series within
tissue masks that included brain regions of interest (gray mat-
ter). The procedure is geared toward reducing overall subject-
to-subject fluctuations in correlations that can be driven, in
part, by different levels of physiological noise as well as mo-
tion. For example, changes in breathing depth during scan-
ning can affect the degrees of correlation between voxels in
the brain (Birn et al., 2006, 2008b; Chang and Glover, 2009;
Gotts et al., 2012). However, the GSReg procedure has several
drawbacks. On average, inter-voxel correlations are biased
downwards, complicating the interpretation of negative cor-
relations (Anderson et al., 2011; Fox et al., 2009; Jo et al., 2010;
Murphy et al., 2009; Weissenbacher et al., 2009). More
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importantly, the bias introduced varies across regions in a
way that depends on the covariance matrix of signals com-
bined with noise across the brain (Saad et al., 2012b). As we
show in the methods section, for an FMRI timeseries dataset
of M voxels, the change in correlation between two regions is
a sole function of the M · M covariance matrix of the entire
dataset before GSReg was applied. When groups differ in this
covariance structure (which is often part of the hypothesis
being investigated), this bias will be different and can lead
to group differences being propagated to regions where
none actually existed. Such GSReg-induced biases might be
behind the finding reported by Saad et al. (2012a) and
Satterwaithe et al. (2013) that the distance-dependent motion
bias on correlations between regions (Power et al., 2012a, b;
Satterthwaite et al., 2012) is strongly exacerbated by the inclu-
sion of the global brain signal average (GS) and related re-
gressors derived by tissue-averaging in the time series
preprocessing ( Jo et al., 2013).

Ideally, one would estimate the noise parameters separately
(perhaps from other data, such as from physiological monitor-
ing), model their effects on the BOLD signal, and remove them
from the RS-FMRI data. This is widely done for movement es-
timates, but unfortunately, less so for other important noise/
artifact sources, such as respiration and heart rate (Bianciardi
et al., 2009; Birn et al., 2008b; Chang and Glover, 2009; Glover
et al., 2000; Gotts et al., 2012; Shmueli et al., 2007). For single-
echo MR data, alternative methods exist to separate noise
from signal sources with temporal independent or principal
component decompositions (Beall, 2010; Beall and Lowe,
2007; Behzadi et al., 2007), regression of signals from soft tissue
(Anderson et al., 2011), or through localized regression of
eroded white matter signals ( Jo et al., 2010). Newer ap-
proaches that aim to separate BOLD from non-BOLD signal
components in multiecho data have also shown promise
(Bright and Murphy, 2013; Kundu et al., 2012). Here we pres-
ent a simple variant on the GSReg, readily applicable to exist-
ing single-echo data that can account for global correlation
(GCOR) differences at the group level. To capture brain-
wide correlation in a subject, we propose to compute the aver-
age pairwise Pearson correlation coefficient calculated over
all possible combinations of voxels (Cole et al., 2010; Gotts
et al., 2012), followed by averaging this estimate over the
whole brain, resulting in one value for each subject’s data-
set. We show the importance of considering this subject-
level measure for level-II (group) inferences, and revisit
the applicability of GCOR corrections, such as GCOR and
GSReg in resting-state FMRI. After an exposition of the ap-
proach, we use simulations to compare GCOR to GSReg
and illustrate its advantages and limitations. Finally, we
apply it to the data from two groups with differing levels
of motion. In light of our empirical results, we end by discus-
sing the relationship between motion and false inferences in
resting-state FMRI and recently proposed motion-denoising
approaches.

Methods

GCOR estimation and brain simulation

The GCOR measure is computed as the brain-wide average
correlation over all possible combinations of voxel time series.
In other terms, GCOR is the average of the entire brain corre-
lation matrix. For a volume of M voxels, computing the entire

correlation matrix requires computing a costly M(M�1)/2
correlation estimations. However, the calculation of GCOR
can be markedly simplified, as shown below. (Variables are
in italics or in Greek script, and matrices and vectors are in
uppercase and lowercase boldface, respectively. All vectors
are column-wise and all time series are de-meaned.)

Let N · 1 column vectors yi(n) and yj(n) be the de-meaned
observed time series at voxels i and j, respectively. The corre-
lation between the zero-mean time series of the two voxels is
given by:

rij = yi
T yj/(Nri rj) = ui

Tuj/N, with ui and uj being the unit-
variance versions of yi and yj, respectively, and N the number
of time samples. For brevity, the time index n is dropped and
N is used instead of the (N-1) needed for an unbiased correla-
tion estimate. The full M · M correlation matrix R can thus, be
expressed as a function of the zero-mean and unit-variance
N · M time series matrix U as:

R = UTU=N

GCOR (c) is the average of all correlations in R, therefore:

c = 1=(M2N)1TUTU1 (1)

= 1/Ngu
Tgu, where 1 is an M · 1 col-

umn of ones, and gu = 1/M U 1 is the average of all unit vari-
ance time series in U.

As a result of Equation 1, the computation of the brain-
wide average correlation is trivial; it is the average dot prod-
uct of the average unit-variance time series. In practice, as part
of AFNI’s (Cox, 1996) processing stream, we estimate GCOR
as follows:

(1) De-mean each voxel’s time series and scale it by its
Eucledian norm

(2) Average scaled time series over the whole brain mask
(3) GCOR is the length (L2 norm) of this averaged series

Correlations after GSReg are entirely predictable
from data covariance

It is also instructive to reconsider the effect of applying
GSReg on the correlation matrix in a more generalized man-
ner than carried out by Saad et al. (2012b).* In the following,
we will show that the correlation matrix after GSReg is a
function only of the covariance matrix before GSReg. In
keeping with the earlier notation, ym is an N · 1 column
vector of the de-meaned observed time series at voxel
m in a volume of M voxels in total. The global signal regres-
sor g is defined in terms of Y, the N · M data matrix of all de-
meaned time series by: g = Ya, with a being an M · 1 vector of
1/M. After GSReg, the signal at voxel m is given by:

zm = (I� g(gTg)� 1gT)ym = (I�Ya(aTYTYa)� 1aTYT)ym

We simplify the notation by setting K = Y a (aT YTY a)�1 aT

YT and write the data matrix after GSReg as: Z = (I–K)Y. (N.B.:
K is an orthogonal symmetric projection matrix.)

The covariance matrix of the data P = 1/N YTY becomes
Q = 1/N ZTZ, after GSReg. Expanding, Q becomes:

*In Saad et al. (2012b), the derivation of correlation difference
assumed unit variance data time series and ignored variance
change after GSReg.
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Q = 1=N(YTY � 2YTKTY þYTKTKY)

= P� sP11TP
ð2Þ

where scalars s = 1/(M2 lP), lP = (1TP1)/M2 is the average of
the covariance matrix and 1 is an M · 1 vector of ones. The di-
agonals of P and Q contain the variance of each voxel’s time
series before and after GSReg, respectively. Letting rP and rQ

be column vectors of the inverse square root of the diagonals of
P and Q, respectively, we can express the correlation matrix
after GSReg as:

S = Q * rQrQ
T, with * being the Hadamard (element wise)

matrix product. The change in the correlation matrix after
GSReg becomes:

S�R = [P� (P11TP)=(1TP1)] � rQrQ
T�P � rPrP

T ð3Þ

In words, for any set of time series, the change in correla-
tion after GSReg varies throughout the matrix and is entirely
predictable from the initial covariance matrix of that data.

Simulated brain model

To describe impacts of GCOR and GSReg on level-II infer-
ence, we resort to simulations using a model where the brain
is modeled as a set of K-1 interconnected regions with each
region k, occupying a fraction ak of the whole brain, being
Mak voxels in size. Each region k produces its own represen-
tative (characteristic) latent signal vk, and the observed sig-
nal yk at voxels within region k is a weighted sum of the
latent signals of all areas, plus a global signal source and
random white noise. To simplify the notation, we include
the background source (such as respiration fluctuations) in
the model as the region at k = 0 and which has no voxels
(ao = 0). More formally, yk = Vwk + e, with V being the N · K
matrix of latent Gaussian N(0,1) white noise independent
and identically distributed (i.i.d) signals, and wk a column
vector containing the connection weights from each region
to region k. e is Gaussian white noise N(0,0.5), i.i.d. across
voxels. The collection of connection weight vectors forms
the latent connectivity matrix W (not necessarily symmet-
ric). We illustrate the generative model in Figure 1 with a
background (outer ring, region 0) and only 5 regions (circu-
lar areas 1 to 5) for simplicity. Arrows between a pair of re-

gions indicate a nonzero weight in the latent connectivity
matrix W shown to the right. The connection weights are an-
notated for some of the connections in the model and on W’s
cells. For example, the observed signal from region 4 is given
by the equation shown for y4. The model’s purpose is to gen-
erate various groups of correlation matrices R. In the analy-
ses discussed herein, models were varied from a default
instance by changing: (1) the amount of global signal pres-
ent, using a parameter controlling the top row of W, and/
or (2) the connection weights between regions 1 and 2. Mod-
els also differed in the density of connections in W: in the
reported results, we used either fully connected models, or
a sparsely connected one (e.g., as illustrated in Fig. 1). In
all the models considered, the background contributes sig-
nal to all the regions. We denote fully or sparsely connected
control models with C, additional suffixes indicate varia-
tions on C with increased global background ‘‘B’’, localized
increased connection ‘‘L’’, or both ‘‘BL’’. For each model var-
iation (groups), we generated 30 instances (the equivalent of
subjects). The entire set of observed time series for each
model and each subject is collected in the N · M ‘‘data’’ ma-
trix Y, from which the covariance and correlation matrices, P
and R, were computed per the equations above.

Level-II models

In this work, we judge the outcome of corrections for
GCORs by the effect on level-II analysis, and illustrate what
happens to the mean correlations and mean correlation differ-
ences in one and two sample t-tests under different scenarios.
The three linear models tested were as follows:

ri, j = b0þ b1x Level - II Base

si, j = b0þ b1x Level- II GSReg

ri, j = b0þ b1xþ b2cþ b3xc Level- II GCOR

with x a binary vector encoding for subject grouping, c a
vector of GCOR values from all subjects. For equivalent
one sample tests we drop all the terms involving x. The
models are solved at each i,j cell of the correlation matrices
using the ‘‘lm’’ function in the statistical computational envi-
ronment R (R Development Core Team, 2008). We are per-
forming tests on group changes in correlations between

FIG. 1. Generative model
used to simulate time series
with differing correlation
structures. The model consists
of 10 regions, only 6 of which
are shown here for simplicity
and region 0 is reserved for
the background (outer ring).
Arrows between a pair of re-
gions indicate a nonzero
weight in the latent connec-
tivity matrix W shown to the
right. The connection weights
are annotated for some of the
connections in the model and
on W’s cells. The observed
signal from region 4 is given
by the equation for y4.
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each voxel m (seed) and the rest of the model brain. Those
results are displayed in an M · M matrix, where each col-
umn m contains the group mean (b0) or group mean differ-
ences (b1) in correlation with a seed at voxel m and the other
voxels in the brain. b2 and b3 are covariate effects. Each col-
umn is one brain correlation group mean or mean difference
map. Note that all of ri,j, and si,j are Fisher z-transformed cor-
relations with unit correlations clamped at 0.999. Except
where explicitly stated, GCOR covariates were centered on
the global mean over the two groups. Note that, while
both Level-II GSReg and GCOR models attempt to adjust
for subject-to-subject GCOR differences, they do so at differ-
ent stages of the analysis. With GSReg adjustment is carried
out at the single-subject processing stage whereby the corre-
lation estimate is obtained after projecting the GS from the
time series, while with GCOR the adjustment is made at
the group level test by adding GCOR as a covariate.

The tests on simulated data are constructed around the fol-
lowing scheme: we begin with a control group C, then create
a new group CL with local manipulations to the weighting
matrix for regions 1 and 2, but no change in the background
contributions. The level-II Base contrast in correlations be-
tween C and CL is the gold standard: the true correlation dif-
ferences between the two groups in the absence of differences
in background contributions. We then fit models level-II
GSReg and level-II GCOR and compare the contrasts to

those of the gold standard. Ideally, for CL�C those results
would not differ, since there are no background correlation
changes between the groups, and therefore, nothing to be cor-
rected. We then create a new group CBL with the same local
manipulations for regions 1 and 2, and increased background
contribution. We perform the same three level-II tests and ex-
amine the extent to which the corrections, now that there are
background changes between the groups, can recover the
ideal contrast.

Empirical data and preprocessing pipeline

For an empirical consideration of GCORs, particularly as
they relate to subject motion, we used two single-site collec-
tions of data from the FCON1000 dataset (Biswal et al.,
2010) (http://fcon_1000.projects.nitrc.org/) that were compa-
rable in size to the sub-groups used in the study by Van Dijk
et al. (2012). The Cambridge_Buckner and Beijing_Zang sets
were the largest with 184 and 156 subjects, respectively.{ Sim-
ilar to the methods of Van Dijk et al. (2012), we split the sub-
jects from each site into two groups based on the average

FIG. 2. Annotated processing
flowchart for resting state functional
magnetic resonance imaging (RS-
FMRI) analyses used in this study
(and the currently implemented
pipeline in AFNI).

{Conditions for data exclusion: (i) Number of surviving time points
after motion censoring are fewer than the minimum degrees of
freedom needed for the denoising regression model, or (ii) the
number of subjects was trimmed to be a multiple of 4, for ease of
quartile selection.
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amount of inter-TR displacement during a run. The process-
ing steps were similar to those outlined in Figure 2 and dif-
fered somewhat from those outlined in Van Dijk et al.
(2012); however, for the purposes of this study, those differ-
ences did not qualitatively affect the results. A more expan-
sive presentation of the processing steps can be found in
Jo et al. (2013).

Despiking and slice-timing correction. Despiking (AFNI’s
‘‘3dDespike’’) was the first step of the preprocessing pipeline to
suppress local spikes in the signals due to hardware insta-
bility or to motion. Each voxel’s time series is L1 fit to a Fou-
rier series of order L, defaulting to L = N/30. The median
absolute deviation (MAD) of the residuals is used to obtain
a standard deviation estimate r = 1.4826 MAD that is robust
to outliers. A spike is identifed where the residual at a partic-
ular time exceeds 2.5r. Despiking consists of transforming
spike values from the range of [2.5r, N) to [2.5r, 4r)–the pur-
pose of this gradual mapping is to make the despiking proce-
dure be a continuous function of the data. In addition to
reducing the contribution of sudden spikes to correlation
estimates, we also found that despiking improved the con-
vergence at the volume registration step ( Jo et al., 2013).
Slice-timing correction was not performed in these datasets
since the NIfTI-1 formatted files contained no slice timing
information.

Motion correction, spatial normalization, and spatial
smoothing. Motion correction was done by rigid body regis-
tration of EPI images to a base EPI volume. Alignment of EPI
data to the T1-weighted volume was accomplished via an af-
fine transformation (Saad et al., 2009), as was the spatial nom-
alization of the T1-weighted volume to the MNI avg152 T1
template, in MNI stereotaxic coordinates. All three affine trans-
formations were multiplied, and then applied at once to the
original EPI data to prevent multiple resampling steps. Time
points with excessive motion were flagged using jjdjj2, the L2

norm of the first differences of motion estimates. This criterion
is part of AFNI’s standard processing stream, and while not
identical to the frame-wise displacement in Power et al.
(2012a) and similar variants ( Jenkinson et al., 2002; Sat-
terthwaite et al., 2013), it serves the same function. At a jjdjj2
threshold of 0.2 mm (in a single TR), we censored on average
2.9% of the time series (0% and 32.8% at minimum and maxi-
mum, respectively). Data were subsequently spatially
smoothed with an isotropic Gaussian smoothing kernel (full-
width-at-half-maximum, FWHM = 6 mm).

Simultaneous nuisance-removal, censoring, and bandpass
filtering. The default regression model used here contains 6
motion estimates (angles and translations) and their first dif-
ference terms only. Variants include the addition of the global
signal, the global signal’s first difference, and second order
versions of motion estimates and their first differences.
Note that when tissue-based regressors, such as the global
signal are to be used, they must be extracted before spatial
smoothing and must be subject to the same bandpass filter-
ing, if any, that was applied to the time series at the point
of nuisance regression. Otherwise, frequency components in
stop bands will be introduced back via the regressors of no in-
terest. Here bandpass filtering, censoring, and nuisance-
removal regression were done simultaneously. By combining

these three subprocesses in one linear regression model, there
is no conflict between bandpassing and censoring.

Individual correlation maps for DMN and Group Statistics.
Subjects were separated into two subgroups (high- and
low-motion groups) by jjdjj2, the average of jjdjj2 across
time frames. There were 92 and 78 subjects in each group
from the Cambridge-Buckner and Beijing_Zang cohorts, respec-
tively. For each subject, Fisher z-transformed (Fisher, 1915)
Pearson correlation volumes were computed using a seed
time series extracted from a voxel in the Posterior Cingulate
Cortex (PCC) located at (MNI 4L, 55P, 26S) mm in the MNI
stereotaxic coordinate system (Greicius et al., 2003). After
preprocessing and PCC seed correlations, we performed
two-sample t-tests with or without GSReg and subject-level
covariates, comparing correlations between the groups of
largest and smallest movers. PCC locations from other stud-
ies [i.e., (Van Dijk et al., 2012)] yielded similar results. Other
groupings, based on jjdjj2 were also considered. In addition
to the Big (top 50%) versus Small movers, we also split each
population into quartiles with the first quartile comprising
subjects with the top 25% of jjdjj2. Lastly to consider group
contrasts under comparable amounts of movement, we rear-
ranged subjects into two equally sized groups in a manner
that minimized group averaged difference of jjdjj2.

Results

GCOR in simulated brain

In what follows we compare group mean and mean differ-
ence in correlations between all region pairs in our simulated
brain model. We begin by comparing mean correlations from
the three level-II models with one sample t-tests on group C
created with a weighting matrix with fully interconnected re-
gions. For the models simulated, correlation between any
voxel pair is significantly different from zero. We focus first

FIG. 3. A scatterplot of group mean correlations (b0), under
model Level-II Base (gold standard, x-axis), versus those from
Level-II Global Signal Regression (GSReg) and Level-II
Global Correlation (GCOR). Similar colors show correlations
of the seed from region 1 with voxels from a particular region;
‘‘o’’s are for correlations after GSReg (si,j), ‘‘ · ’’s are for corre-
lations with GCOR (ri,j, Level-II CGOR), and gray is for the
x = y line.
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on how correlation values change under the three level-II
models. Figure 3 is a scatterplot of group mean correlations
(b0) under model Level-II Base (gold standard, x-axis), versus
those from Level-II GSReg and Level-II GCOR. For clarity,
only correlations with a seed from region 1 are shown. Corre-
lations with voxels from a particular region are color-coded;
‘‘o’’s are for group mean correlations after GSReg, and ‘‘ · ’’s
are for group mean correlations with GCOR (Level-II
GCOR). The plot is a graphical depiction of what Equation
3 prescribes, that after GSReg the correlations are altered dif-
ferently at different region pairs—that is, the GSReg correla-
tions are not just a shifted-down version of the original
values—in a manner entirely predetermined by the initial co-
variance of the data. With GCOR, the correlations are un-
changed in the one sample t-test. A similar picture emerges
for the seed placed in any other region of the simulated brain.

In all that follows, we consider what happens to means of
correlation differences (b1) between two groups. For the first ex-
ample, we consider two groups C versus CB that differed
only by the amount of background correlation. To generate
CB, we uniformly increased the values in the first row of
weights matrix W used for C. This resulted in stronger fluc-
tuations from the background source in group CB in all
regions of the model. Naturally, when contrasting inter-
regional correlations between the two groups, significant dif-
ferences are ubiquitous as shown by the correlation contrast
matrix (Fig. 4, CB–C b1 Base). Axis labels and the black verti-
cal and horizontal lines delineate the boundaries of the 9 re-
gions forming the model. Each pixel in the matrix is colored
to reflect the difference (b1) in Fisher z- transformed correla-
tions between a voxel pair in the first group and the same
pair in the second group. Contrasts that failed to reach signif-
icance at p < 0.01, Bonferroni corrected for the number of re-
gion pairs, were not colored. To draw a parallel with brain
imaging displays, each column m of the matrix represents

the group contrast volume obtained with the seed time series
taken from voxel m.

Since the only difference between the groups C and CB

was the background induced change in correlation, the
ideal background adjusted contrast result should show no
significant difference in inter-regional correlations. As the
contrast matrices in the top row show, both of Level-II
GCOR and Level-II GSReg show very few regions with sig-
nificant differences. To consider the effects of the different ap-
proaches on the estimated correlation differences, we also
graph the correlation difference obtained under Level-II
GCOR (‘‘ · ’’s) and Level-II GSReg (‘‘o’’s) versus the difference
from model Level-II Base. Compared to the default model,
both GSReg and GCOR result in smaller correlation differ-
ences between C and CB. However, the change with GSReg
is considerably more variable than with GCOR and for
some regions the correlation differences were higher than in
the base model where background changes were ignored.
In contrast, correlations differences with GCOR model were
more linearly dependent on the initial correlation differences.
It is important to note at this stage that the results from Level-
II GCOR would change markedly if the covariate distribution
in group CB is markedly offset from that of group C. To illus-
trate, we generate another group CBB with background con-
tribution weight increased by 0.6 relative to C instead of 0.3
in group CB. Figure 4B shows the distributions of the
GCOR values for the three groups C, CB, and CBB. Row C
in Figure 4 shows the results with CBB substituting for CB.
Correlation matrices showed similar behavior as with the
lower background increase (Fig. 4A); however, the correla-
tion difference estimates became more variable under
GCOR, reflecting the increasing correlation between the cova-
riate and the grouping variable. The standard deviation of the
residuals from a linear fit of b1 Adjusted to b1 Base increased
five-fold in Figure 4C relative to Figure 4A. When

FIG. 4. (A) Correlation contrast (b1) matrices from Level-II models Base, GCOR, and GSReg for the two groups C and CB.
Each pixel in the matrix is colored to reflect the difference in Fisher z-transformed correlations between a voxel pair in the first
group and the same pair in the second group (b1). Contrasts that failed to reach significance at Bonferroni corrected p < 0.01
were not colored. The scatter plot graph shows correlation difference obtained under Level-II GCOR (‘‘ · ’’s) and Level-II
GSReg (‘‘o’’s) versus the difference from model Level-II Base. Here as in the remaining plots, differences from all voxel
pairs are plotted and significant difference are highlighted with starker colors. Under Level-II GCOR significant differences
are in red, while sub-threshold ones are in orange. Under Level-II GSReg significant differences are in black, while sub-thresh-
old differences are in gray. The gray line marks x = y. (B) Distribution of GCOR values for groups C, CB, and CBB. (C) Same as
A, but for groups C and CBB.
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background-induced correlations differ markedly between
groups, the use of either GCOR as a covariate or GSReg can
mask existing group differences.

Next, we examine level-II outcomes when focal changes in
connection strengths exist between the two groups. To do so
we increased the connection weights between regions 1 and
2 to generate group CL. We emphasize that this focal increase
in connection weights does not necessarily result in correlation
changes restricted to the regions with weight change. Chang-
ing the connection weight between regions 1 and 2 can also
change the correlation of region 2 with other connected regions
in the model in a manner that depends on the other weights in
W. The partial derivative of the correlation between regions
with respect to a change in one of the weights depends, in
part, on other connection weights to this area. For example,
the partial derivative of the expected correlation between vox-
els in regions 1 and 2 with respect to w1,2 is given by: w1,1/
(r1r2)�(w1,2 w2

Tw1)/(r1r2
3). Nonintuitively, the change in cor-

relation between two regions can be positive or negative with
an increase in a connection between them, depending on the
initial connection weights. One can alter the weighting matrix

W such that a focal weight change results in a focal correlation
change between the affected region pair by disconnecting the
two regions from everything but themselves and the back-
ground. We consider both scenarios in what follows, begin-
ning with the widely connected W matrix that was also
used for the data in Figure 5A.

For group CL, we increased the two connection weights be-
tween regions 1 and 2, and carried out the computations up to
and including the Level-II two-sample t-tests. The first matrix
shows the correlation difference between two groups in the
absence of background level differences. The results in this
matrix constitute the ‘‘gold standard’’ correlation differences
between CL and C, and what one hopes to recover when dif-
ferences in background signal levels are equalized. In this
simulation, using the fully connected weighting matrix, we
find that the increase in w1,2 and w2,1 resulted in significant in-
creases in correlations of voxels in region 1 and region 2.
There were also significant positive and negative changes in
correlations between region 1 and regions 3, 4, and 6, and be-
tween region 2 and regions 5 and 7. A similar pattern emerges
with level-II GCOR test (CL–C GCOR) as shown in the

FIG. 5. Group contrast matrices and corresponding scatter plots for widely connected models (A) and models with indepen-
dent networks (B). The top row in each panel shows contrasts between groups C and CL where only connections between
regions 1 and 2 were increased. The second row shows contrasts between C and CBL in which both local and background con-
nections were increased. Shaded matrices show significant contrasts when background levels are different between groups but
no corrections are applied. The x-axis in the scatter plots is the ideal contrast (from the top left matrix CL–C Base) one wishes to
recover after adjusting for global correlation differences with GSReg or GCOR. Coloring conventions follow those of Figure 4.
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second matrix in row 1. With level-II GSReg test (CL–C
GSReg), the pattern was also similar albeit with more accen-
tuated differences in both directions. The change in effect size,
the magnitude of the average correlation difference, with
level-II models is more evident in the scatter plot of correla-
tion difference under Level-II GSReg and GCOR versus the
gold standard difference from CL–C Base. As in the previous
simulations, the differences with GCOR are more linearly de-
pendent on those from the ideal base model, while those with
GSReg were considerably less so. Nonetheless the regions
showing significant differences were comparable to those of
the gold standard. In the next simulation, shown in row 2, we
created another group CBL where both background and local
weights w1,2 and w2,1 were increased. As in the case with no dif-
ference in background levels, both GCOR and GSReg identify
regions with significant correlation differences that are compa-
rable with those from the ideal case. The correlation contrast
matrix showing CBL–C from the Base level II test is shaded
as it now represents a contrast of no interest since no correction
for background fluctuations was carried out.

A different picture emerges if we repeat the previous com-
parisons with a different generative model, where regions 1
and 2 are made independent from the remaining regions by
severing their input from and output to all other regions, ex-
cept for input from the background. The results, as shown in
Figure 5B, are arrayed in the same manner as those for the
widely connected models. For the ideal case, the average cor-
relation matrices now show significant differences only be-
tween regions 1 and 2. This difference is recovered with
level-II GCOR (row 3, CL–C GCOR). However, the results
from level-II GSReg (row 3, CL–C GSReg) are markedly dif-
ferent with significant correlation differences appearing be-
tween region 1 and regions 3, 7, and 9, for example, where
no correlation differences existed. The scatter plot still
shows that overall; the difference estimates under GCOR
are more linearly dependent on the ideal difference compared
to GSReg. Comparing the estimates for CBL and C, where the
differences are from increases from both local connections
and widespread background connections, GCOR does re-
cover the regions with significant changes in correlation,
while GSReg distorts the results considerably.

It is important to note from the scatter plots that both GCOR
and GSReg bias correlation differences in a manner that de-
pends on the initial covariance structure of the data. While
this has been shown in closed form for the GSReg estimates
in Equation 3, differential biasing also occurs when the cova-
riate is derived from the same data in the regions of interest.

GCOR and head motion in empirical data

The above simulations showed that, while GSReg can help in
attenuating GCOR differences between groups, it does so at the
risk of introducing significant correlations and correlation dif-
ferences where none may have existed before—and there is
no obvious way to detect if this effect is present in any given
dataset. In contrast, regressing GCOR in the Level-II analyses
adjusted for differences in GCORs with fewer distortions. Turn-
ing to the empirical data, we now examine the three level-II
models to alleviate GCOR differences induced, presumably
or at least, in part, by head motion. Figure 6 shows the results
of the high- versus low-movers group contrasts in real data
from FCON-1000 projects (http://fcon_1000.projects.nitrc.org).

Figure 6A shows group differences from the Cambridge set.
The first column is from preprocessing that includes motion re-
gressors only—without GSReg and without the GCOR covari-
ate at the t-test level (Level-II Base). The contrast yielded false
positives when no true positives would have been expected
from this (presumably) uniform population of subjects. The t-
test result from the data was quite dramatic: four clusters cov-
ering a volume of 412,209 mm3 (15,267 voxels) were observed
(uncorrected p < 0.01, FWE corrected a < 0.05 (Saad et al.,
2006), jt(182)j > 2.575).{ The results were markedly different
when adding GSReg to the preprocessing (Fig. 6A, Column
b1 GSReg), with a considerable reduction in the extent of re-
gions showing significant differences. Using GCOR as a cova-
riate at the group level, the reduction was also considerable
as with the GSReg case compared to Level-II + GSReg (Fig.
6A, Column b1 GCOR). Figure 6B shows similar tests con-
ducted with the Beijing_Zang set. The contrast in the first col-
umn, without GSReg and GCOR, resulted in just one
significant cluster that barely met the relatively liberal statistical
threshold; that cluster had 92 voxels when the cutoff for FWE
correction was at 79 voxels (see Fig. 6B, Column b1 Base).
Using GSReg or GCOR resulted in no significant differences be-
tween top and bottom movers.

On average, GCOR is greater in subjects with more motion
(Beijing_Zang; 29 lm average motion difference per TR, aver-
age DGCOR = 0.02: t(154) = 2.10, p = 0.037; Cambridge_Buckner;
25 lm average motion difference per TR, average DGCOR =
0.04: t(182) = 3.91, p = 0.00013); however, the correlation be-
tween GCOR and average motion is relatively weak (Beijing_-
Zang: R2 = 4.3%; Cambridge_Buckner: R2 = 11.0%) as shown in
Figure 6C.

We also considered alternative random subject groupings,
where the average motion difference was selected to be neg-
ligible ( < 0.1 lm), with group result tests summarized in
Table 1 and Supplementary Figure S1 (Supplementary Data
are available online at www.liebertpub.com/brain). Though
not reliably present (practically none in the Cambridge_Buck-
ner set if one corrects for the repeated testing, an average of
1 per grouping in the Beijing_Zang set), clusters generated
from these groupings were comparable in size to those ob-
served under the extreme motion difference grouping (see
Table 2and Fig. 6A, B), once subject-to-subject fluctuations
were accounted for with GSReg or GCOR.

Discussion

Noise and brain-wide fluctuations

In this paper, we are considering that fluctuations in GCOR
are dominated by nuisance sources, not emanating from the
regions for which we seek to estimate correlation structure
or more critically correlation structure changes, present to
varying degrees throughout the brain, and therefore, warrant
correction. (However, in some cases GCOR differences might
largely be the result of differing functional connectivity be-
tween the regions of interest. Under such scenarios, correct-
ing for GCOR difference would be ill advised.) One such
proxy for a nuisance/noise source is end-tidal CO2

{We chose to report FWE corrected clusters instead of showing
changes in z, because it is difficult to attach physiological meaning
to magnitude changes in correlation measures, particularly since
they are affected by changes in both signal and noise.
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FIG. 6. (A) Two sample t-tests of group differences in correlations with a seed in the default mode network (Binder et al.,
1999; Greicius et al., 2003). The two groups were formed from the Cambridge_Buckner portion of the FCON1000 dataset by split-
ting an otherwise homogenous group into the upper and lower 50% of movers. Time points of resting state EPI data with per-
TR motion exceeding 0.2 mm were censored. Column b1 Base shows results from Level-II Base, where preprocessing included
the six motion estimates and their derivatives. In column b1 GSReg, the global signal was added as a nuisance regressor in
preprocessing. Column b1 GCOR is from data preprocessed the same way as for b1 Base, but the per-subject brain-wide
average correlation (global correlation; GCOR) was used as a scalar covariate for the group analysis. Group differences
were thresholded at an FWE-corrected significance level of 0.05. For each column only the largest 4 clusters are displayed.
(B) Results from the Beijing_Zang set of FCON1000 data paralleling those of A. (C) Scatter plots of subject average motion ver-
sus GCOR. Blue and red dots show values from subjects in the bottom and top moving groups, respectively. For each group,
vertical bars show the average amount of motion and horizontal bars show the average GCOR.

Table 1. Two-Sample T-Test Results Between Pseudo-Random Subgroups

b1 Base b1 GSReg b1 GCOR

Data set
Pseudo-random

subgroups
Group average

difference in jjdjj2 (mm) Clusters Voxels Clusters Voxels Clusters Voxels

FCON 1000: Cambridge_
Buckner (N = 184)

Set #01 < 0.0001 2 599 1 129 4 963
Set #02 < 0.0001 - - - - - -
Set #03 < 0.0001 - - - - - -
Set #04 < 0.0001 1 112 - - - -
Set #05 < 0.0001 - - - - 3 268

FCON 1000: Beijing_
Zang (N = 156)

Set #01 < 0.0001 - - 1 161 - -
Set #02 < 0.0001 - - 1 100 - -
Set #03 < 0.0001 - - - - - -
Set #04 < 0.0001 1 116 1 227 1 160
Set #05 < 0.0001 1 97 1 122 - -

The seed location is in the left posterior cingulate cortex (PCC) at [4L, 55P, 26S] mm in MNI coordinates. The threshold level is FWE-
corrected a < 0.05. In column b1 Base, low order polynomials and motion estimates were the only nuisance regressors. In column b1 GSReg,
the global signal regressor (GS) was added as a nuisance regressor. In column b1 GCOR, the global correlation averaged over the brain
mask (GCOR) was added as a subject level covariate in the t-test.
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fluctuations known to strongly affect correlations, which as
such would need to be eliminated (Birn et al., 2006; Chang
and Glover, 2009; Gotts et al., 2012; Wise et al., 2004). Such
a noise source is temporally coherent across the brain and
can therefore, affect correlation levels between regions
throughout the brain. Motion might also be considered such
a noise source, to the extent that its effect on the signal is
also coherent across wide regions of the brain. The most com-
monly used approaches for handling such noise sources in-
volve linearly projecting models of their effect on the BOLD
signal. Modeling physiological contributions, however, typi-
cally requires the acquisition of physiological parameters dur-
ing the scan. Absent such recordings, one can rely on semi-ad
hoc techniques to separate noise from signal (Beall, 2010;
Kundu et al., 2012; Smith et al., 2012), or attempt to capture
spatially coherent noise with the global signal (GS) and pro-
ject it from the data as a nuisance regressor (GSReg). The
GS can certainly reflect some noise fluctuations, and GSReg
can render two groups with differing breathing depths (for
example) more comparable, with correlations and correlation
differences more consistent across scan runs and subjects (Fox
et al., 2009; Satterthwaite et al., 2012; Yan et al., 2013). How-
ever, GSreg comes at a cost that cannot be ignored, and while
the case against GSReg has been made in various forms, we
are compelled to expand on it further because of its continued
recommended use—in some cases, being requested by jour-
nal referees. Global nuisance fluctuations in correlation can
also be measured with GCOR and in this work we explored
whether or not it can be used to correct for brain-wide corre-
lations in fluctuations.

Why not GSReg?

Given the common (and well-motivated) drive to use
GSReg, we begin by addressing the following question that
arises from the empirical results in Figure 6: If GSReg removed
false positives between low and high moving groups, why do we rec-
ommend against its use? The principal reason we disparage its
use has little to do with the increase in negative correlations
(Fox et al., 2009; Murphy et al., 2009), the discarding of useful
neuronal information potentially present in this average (Leo-
pold and Maier, 2012; Scholvinck et al., 2010), or the uncer-
tainty about the degree to which the GS captures noise

induced features, such as motion, respiration, etc. Rather,
the use of GSReg is particularly problematic when comparing
groups with expected differences in the spatial structure of
signal correlation Gotts et al., 2013. It is widely acknowledged
that correlations are negatively biased on average with the
use of GS regression; however, the crucial observation that
this bias is variable between regions and fully dependent
on the original covariance structure due to signal and noise
is often ignored (Saad et al., 2012b)—and it is usually regional
differences in correlations that are of interest in group studies.
Adding unknown and potentially group-dependent biases to
the correlations is a bad idea. In a single group, where it is rea-
sonable to assume the same noise-free spatial correlation
structure, this variable bias might be of less concern. How-
ever, single group tests are rarely the goal of resting state
studies. Indeed, resting state studies that compare groups
and whose principal hypotheses and results are predicated
on there being differences in correlation structure between
the groups, are precisely the case in which the inappropriate
bias is most problematic. For the empirical data in this study,
these distortions were not as much a cause for concern in the
two-sample t-tests because the two groups are not expected to
differ in their true inter-regional correlation patterns, since
the groups were selected only based on their subjects’ level
of head motion. However, the GSReg-induced distortions
could vary differently when groups have differing correlation
structures (Saad et al., 2012b), not just a global change in com-
mon fluctuations [see Gotts et al. (2013), for a detailed exam-
ple in the case of Autism Spectrum Disorders]. GSReg can
then introduce differences between regions where none actu-
ally exists between the groups (or can mask differences that
do exist). This can be seen from the closed form expression
of correlation bias caused by GSReg (Eq. 3) and is best exem-
plified by the results in Figure 5, where the projection of the
GS introduced correlation differences between the rest of
the simulated brain and regions 1 and 2 where none existed
before. Given the group contrast after GSReg, one is led to
very different conclusions about brain connectivity changes
than what was built into the model.

Naturally, the effect of applying GSReg depends on the un-
derlying generative model. We have shown here that with a
widely inter-connected model, GSReg level-II results recover
the expected differences (Fig. 4); however, the results are

Table 2. Two Sample T-Test Results Between Motion-Based Groupings

b1 Base b1 GSReg b1 GCOR

Data set Subgroups
Group Average

Difference in jjdjj2 (mm) Clusters Voxels Clusters Voxels Clusters Voxels

FCON 1000: Cambridge_
Buckner (N = 184)

Big vs. small movers 0.025 4 15,267 3 352 6 692
Quartiles 1 vs. 2 0.0195 1 88 2 259 1 83
Quartiles 2 vs. 3 0.01 8 1,575 2 200 2 326
Quartiles 3 vs. 4 0.0091 - - - - - -

FCON 1000: Beijing_
Zang (N = 156)

Big vs. Small Movers 0.0292 1 92 - - - -
Quartiles 1 vs. 2 0.0174 - - - - - -
Quartiles 2 vs. 3 0.0131 - - - - - -
Quartiles 3 vs. 4 0.0147 - - - - - -

For comparisons named ‘‘Big versus Small Movers,’’ subjects are evenly divided into two subgroups by the levels of jjdjj2. For ‘‘Quartiles’’
comparisons, subjects are evenly divided into four subgroups by jjdjj2. Quartile 1 contains the subjects having the biggest head movements,
and Quartile 4 includes the subjects having smallest head movements. The seed location is in the left posterior cingulate cortex (PCC) at [4L,
55P, 26S] mm in MNI coordinates. The threshold level is FWE-corrected a < 0.05.
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markedly different when the changes are between relatively
isolated (and here independent) sets of regions. We empha-
size the obvious, that the generative models used here are
very simple, but they are informative nonetheless. For exam-
ple, in a highly connected model, changing the weight be-
tween only two regions can potentially result in correlation
changes throughout the brain, particularly when one is not
limited by SNR. The level-II changes one observes empirically
are considerably more focal, and if the sparse nature of the
differences is not due to high type-II errors, one would be in-
clined toward favoring more sparsely connected models
where GSReg is particularly problematic.

Should GCOR always be used to correct
for brain-wide correlation differences?

We have shown that GCOR, the average of the brain-wide
correlation matrix, can be readily estimated from the time se-
ries data. This measure reflects brain-wide changes in correla-
tion levels and as such it is tempting to consider it as a
covariate at the group level to compensate for brain-wide cor-
relation differences between groups of subjects that are
mostly driven by nuisance sources. With GCOR used as a
covariate centered on the overall (across both groups)
mean, one can estimate group differences at the same level
of GCOR. With GSReg, the average correlation across the
brain is always zero in both groups; however, even though
the average correlation is matched after GSReg, the process
is mathematically different from covariate modeling at
level-II. As with all applications of covariates, centering out-
side the range of observed values, is ill advised. Therefore,
centering at GCOR of 0 is inappropriate, as a zero center
would be distant from most GCOR values and the results
would not be interpretable. For GCOR to be used as a cova-
riate, it will be necessary for GCOR values to overlap con-
siderably between the two groups. In cases with little
overlap, the covariate becomes more correlated with the
grouping variable and can easily mask true group differ-
ences. This makes GCOR conservative compared to
GSReg, in the sense of reducing false positives. However,
even under instances where GCOR distributions overlap be-
tween groups, there will always be an interaction between
the GCOR variable and the grouping variable, if the two
populations have different underlying correlation patterns.
Thus, the magnitude of differences (effect size), including
the sign, can be affected by the centering value. The
same criticism carries to the use of GSReg; however, with
GCOR, regions with significant group differences are more
closely related to those expected under ideal cases compared
with GSReg. Nonetheless, interpreting the magnitude of the
correlation differences, whether using GSReg or using
GCOR, can be misleading; with decreases appearing as in-
creases and vice versa.

In the empirical case considered, here there was consider-
able overlap in GCOR distributions between the high and
low moving groups in both cases, making the use of GCOR
acceptable. However, if we consider a case where one popu-
lation’s breathing patterns differs markedly from the other,
resulting in GCOR distributions with little overlap, GCOR’s
use as a covariate would mask any underlying group differ-
ences. Thus, one can say that the more one needs to equalize
GCORs across groups, the less useable GCOR would be be-

cause it would eliminate true group differences. With
GSReg, however, the comparison under these circumstances
would yield significant differences that may be artifactual.
At the very least, GCOR is useful in assessing the types of dif-
ferences that exist between the two populations. Correcting
for global changes in correlation is best carried out with
time-series denoising procedures that do not entangle nui-
sance estimates with signals from the regions of interest. To
draw parallels with the simulations, if one could sample the
signal from the background source, it could much more safely
be projected out of the data to correct for background signal
differences. Though not carried out in this study for lack of
data (physiological measures were not provided for the
FCON1000 Cambridge and Beijing sets), physiological
denoising is highly recommended, as physiological noise dif-
ferences are certain to affect correlations over wide regions of
cortex and can lead to false RS-FMRI inferences and/or Type
II errors (Gotts et al., 2012). Adding the average inter-TR mo-
tion as another covariate is safe and should not eliminate true
differences, as long as this covariate is also not highly corre-
lated with the grouping variable.

Small motion differences are not a likely source
of significant false positives

At first blush, the results in Figure 6 confirm the conclu-
sions first presented by Van Dijk et al. (2012) that motion dif-
ferences results in false positives, when comparing groups
with systematically differing levels of motion. However,
further probing invites more nuanced conclusions. With
no GCOR or GSReg corrections, the same contrast between
top and bottom movers using the Beijing_Zang set resulted
in only one significant cluster that barely met the relatively
liberal statistical threshold. This finding was quite surpris-
ing, since in the Beijing_Zang set the average difference in
motion between top and bottom movers was larger
(29 lm) than in the Cambridge_Buckner set (25 lm). Despite
differences in image acquisition that might explain some
of this discrepancy, it is difficult to reconcile these two find-
ings if motion per se were the prominent driver of the spuri-
ous results under these groupings. As acknowledged in
Satterthwaite et al. (2013), one does not know with certainty
that resultant differences at the group level are driven by
motion difference, despite motion being the grouping vari-
able. In an effort to understand the factors behind this
discrepancy between the two sets, we examined single-
subject correlation results and found some to have markedly
increased correlations compared to others. It is such differ-
ences that motivate the use of the GS as a nuisance regressor
in the literature. Indeed, as shown earlier, either, including
the GS as a regressor of no interest in the preprocessing
stage or using GCOR as a covariate at the group level also
greatly reduced the difference between top and bottom
movers in the Cambridge_Buckner set and eliminated the
one cluster in the Beijing_Zang set.x

xAdding a measure of average motion as a covariate in these tests
completely wipes out the false positives; however, this constitutes no
proof of its utility as it confounds with the subject-grouping variable
in these synthetic tests. Nonetheless, in comparisons where there is
considerable overlap in amounts of motion between groups, it
would be recommended to include average motion magnitude as a
covariate.

BRAIN-WIDE CORRELATIONS 349



These results show that the false positives are driven to a
considerable extent by sources that can be captured with
the GCOR measure as a covariate or by regressing out the
GS. Such global measures (1 number or 1 time-series per sub-
ject) are unlikely to capture the spatially varying effects of
motion considerably better than the 6, 12, or 24 regressors
(Satterthwaite et al., 2013) used to model the motion, even
if all these models fail to account for spin-history effects of
motion. In fact, we find that in high motion datasets, correla-
tion estimates with GSReg become more sensitive to the effect
of motion ( Jo et al., 2013). On average, GCOR is greater in
subjects with more motion, although the correlation between
GCOR and average motion is relatively weak. These global
measures are likely also reflecting a combination of brain-
wide fluctuations, both neuronal in origin (Leopold and
Maier, 2012; Scholvinck et al., 2010), and signal changes re-
lated to breathing or heart rate changes (Beall, 2010;
Bianciardi et al., 2009; Birn et al., 2008a; Birn et al., 2008b;
Chang et al., 2009; Chang and Glover, 2009; Shmueli et al.,
2007). To be clear, we are not suggesting that differences in
motion cannot lead to false positives, as motion certainly
biases correlation measures. However, the effect is not so pro-
nounced that small differences in motion between groups,
such as those considered here would necessarily result in sig-
nificant group differences in correlation if appropriate pre-
processing steps and/or group-level covariates have been
applied. Further supporting this notion, is the appearance
of above-threshold false positive clusters under alternative
groupings where the average motion difference was negligi-
ble. Rather, we suspect the differences are more likely driven
by differences in noise of physiological origins.

These results are a mixed blessing in that small differences
in motion between groups are not necessarily cause for great
concern. However, they also point to the importance of proper
physiological denoising (Beall, 2010; Bianciardi et al., 2009;
Birn et al., 2008a, 2008b; Chang et al., 2009; Chang and Glover,
2009; Shmueli et al., 2007; Wong et al., 2012) for group-level
resting-state inferences, a practice that receives significantly
less attention (to date) than GSreg. To ascertain properly
whether or not minute motion differences can lead to false pos-
itives, we would require a dataset acquired with physiological
recordings of respiration and heart rate, along with compara-
ble data acquired with pulse sequences that lessen the effects
of motion on the acquired volumes; thus, allowing for a
more careful parcellation of noise sources. Denoising proce-
dures that utilize external physiological measurements (Birn
et al., 2008b; Chang et al., 2009; Glover et al. 2000; Shmueli
et al., 2007) or that can decompose the data into noise and sig-
nal sources (Kundu et al., 2012) are important for reliable infer-
ences from RS-FMRI data.

Degree-of-freedom loss

Despite our hesitation in ascribing unexpected false posi-
tives to the grouping by motion, it is important to model mo-
tion’s contribution as best as practicable. It stands to reason
therefore, that a better basis set for modeling motion would
be more beneficial. Recent recommendations (Satterthwaite
et al., 2013) suggest the use of 24 motion-derived regressors
despite the diminished returns in terms of variance explained
per regressor. However, there is a cost for pursuing such ag-
gressive denoising that gets little attention in some papers:

the number of nuisance regressors projected from resting
state time series is quite large compared to, or in some cases
larger than, the degrees of freedom in the data (see Counting
Degrees of Freedom in Supplementary Material). To re-state
the obvious, one should be more parsimonious when it
comes to nuisance components. The residual’s variance will
invariably get reduced as we project out more and more com-
ponents. There are approaches for selecting among a large
number of explanatory variables (Miller, 2002); however,
they may not be practical or appropriate for massively uni-
variate FMRI data. Whether the goal is to reduce motion, res-
piration, or other noise sources, one must consider the cost
and the benefit of the cleanup. In the context of motion, the
benefit would be the elimination of significant artifactual dif-
ferences attributable to motion. To that end, the processing
approaches must result in a statistical group test with the
usual multiple comparison corrections (Bullmore et al.,
1996; Genovese et al., 2002; Nichols and Hayasaka, 2003;
Smith and Nichols, 2009), not just maps of variance reduction,
and a careful consideration of whether or not persistent dif-
ferences may driven by factors other than motion.

Conclusion

GCOR is a readily computable parameter from any resting-
state dataset that can be used to assess GCORs. In group com-
parisons, GCOR at the very least can be used to check whether
or not considerable differences exist in GCORs between two
groups. When GCOR differences exist and are considered to
be driven by nuisance sources, the use of GCOR as a subject-
level covariate can guard against false positives when external
measurements of major contributors to these variations, such
as respiration, are not available. As we show in simulations,
this approach is an improvement over GSReg, which can intro-
duce highly significant differences where none existed before.
The approach is conservative, in that when GCOR is correlated
with the grouping variable, true correlation differences fail to
reach significance. However, the effect size (group differences
in correlation) can be biased in either direction, confounding
the interpretation of significant differences. Therefore, the use
of GCOR as a covariate should only be a last resort because,
as with GSReg, its interaction with the grouping variable is in-
evitable. The proper approaches for correcting nuisance-in-
duced GCORs remain careful denoising procedures,
including motion parameter estimates, physiological parame-
ter measurements, and recent promising denoising decomposi-
tions or prospective methods in as far as these methods avoid
contaminating nuisance estimates with signals aggregated
over the regions of interest (gray matter).

We examined the relationship between GCORs measured
with GCOR and the amount of motion in empirical resting
state data and found it to be weak. While adding GCOR (or
GSReg), considerably reduced the amount of false positives
between high and low moving groups, we find reasons to
doubt that the differences were caused primarily by motion.
Rather, the differences may have been caused by differing
physiological noise, which is reflected in GCOR.
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