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Abstract

Correlations in spontaneous, infra-slow ( < 0.1 Hz) fluctuations in gamma band (70–100 Hz) signal recorded using
electrocorticography (ECoG) reflect the functional organization of the brain, appearing in auditory and visual sen-
sory cortex, motor cortex, and the default mode network (DMN). We have developed a data-driven method using
co-modulation in spontaneous, infra-slow, and gamma band power fluctuations in ECoG to characterize the con-
nectivity between cortical areas. A graph spectral clustering algorithm was used to identify networks that appear
consistently. These networks were compared with clinical mapping results obtained using electrocortical stimu-
lation (ECS). We identify networks corresponding to motor and visual cortex with good specificity. Anatomic and
functional evidence indicates that other networks, such as the DMN, are also identified by this algorithm. These
results indicate that it may be possible to map functional cortex using only spontaneous ECoG recordings. In ad-
dition, they support the hypothesis that infra-slow co-modulations of gamma band power represent the neuro-
physiological basis underlying resting-state networks. Methods examining infra-slow co-modulations in
gamma band power will be useful for studying changes in brain connectivity in differing behavioral contexts.
Our observations can be made in the absence of observable behavior, suggesting that the electrical mapping of
functional cortex is feasible without the use of ECS or task-mediated evoked responses.

Key words: default mode network; endogenous connectivity; functional networks; gamma band; infra-slow
fluctuations; spontaneous ECoG

Introduction

Evolving technology and analytical approaches in neu-
roscience have led to a greater emphasis on large-scale,

inter-connected networks as a key architecture for orchestrat-
ing cognitive and sensorimotor function. Such connectivity is
evident even in the spontaneous activity of the brain, and it
has been seen using modalities such as resting-state func-
tional magnetic resonance imaging (rsfMRI), electroencepha-
lography (EEG), magnetoencephalography (MEG), and
electrocorticography (ECoG). In this study, spontaneous
ECoG is used in a data-driven fashion to identify functional
networks. Our approach clusters electrodes based on co-
fluctuations in high-gamma (HG; 70–100 Hz) power within
a given time period and iterates this process over multiple
segments to determine how consistently electrodes appear
in the same cluster across time. This metric is called cluster-
ing stability, and it is used to derive stable, functionally con-

nected networks. We call this analysis infra-slow clustering
(ISC). It identifies electrodes overlying functional cortical
fields corresponding to motor, visual, and default mode net-
work (DMN) cortex. These networks show functional rela-
tionships that are consistent with rsfMRI studies of resting-
state networks. ISC provides a method for analyzing endog-
enous connectivity between brain regions in the resting state,
and it can be useful for analyzing temporal dynamics of these
interactions in differing behavioral or attentional states.

It has become increasingly clear that general cognitive and
sensorimotor functions emerge as a dynamic interplay be-
tween functionally connected but spatially distributed corti-
cal regions, and these are evident even in the spontaneous
activity of the brain. Providing a primary role in this shift
are innovations in the imaging modalities, specifically within
rsfMRI and corresponding computational estimates of func-
tional connectivity (fc), which plot voxel-wise correlations
of infra-slow ( < 0.1 Hz) blood oxygenation level-dependent
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(BOLD) signal fluctuations extracted during a resting period
(Kelly et al., 2012). Through studies of fc, it has become evi-
dent that general cognitive and sensorimotor function emerge
as a dynamic interplay between functionally connected, but
spatially distributed cortical regions, in which segregated cor-
tical hubs contribute a specialized component to the overall
global function (Deco et al., 2011). More recent studies, how-
ever, have observed experimentally induced BOLD shifts and
modulations between discrete networks, proposing the no-
tion that adaptive and flexible function is facilitated through
the dynamic interaction across multiple systems (Bassett
et al., 2011; Bianciardi et al., 2009).

Despite being an intuitively plausible mechanism underly-
ing the application of rsfMRI, fc BOLD measurements are
rooted in a complex physiological pathway linking neural ac-
tivity to cerebrovascular changes. As a consequence, numer-
ous non-neural ‘‘noise’’ has been shown to alter patterns of
fc (Power et al., 2012). Scalp-based electrophysiological
(e.g., EEG and MEG) studies, which are less susceptible to ce-
rebrovascular noise, have attempted to reconcile such dis-
crepancies by combining resting-state periods with, for
example, large-scale coherence measurements (Murias
et al., 2007). However, scalp-based recordings provide poor
resolution of deep cerebral structures and low signal to
noise within the HG (e.g., 75–200 Hz) range, a band of activity
that most strongly reflects evoked cortical activity ( Jerbi et al.,
2009). Other efforts have used invasive, sub-dural recordings
typically done for clinical mapping of epileptic foci. Such
ECoG recordings are extracted directly from the cortical sur-
face and allow for a very high signal-to-noise ratio within the
HG range (Crone et al., 1998). Increases in HG band power
have been shown to reflect local cortical function (Crone
et al., 1998; Miller et al., 2009), and, accordingly, ECoG has
been used to characterize the neurophysiological basis of
the rsfMRI resting state fc phenomenon. Results from several
studies converge on the hypothesis that spontaneous, infra-
slow co-fluctuations ( < 0.1 Hz) in HG band power appear to
reflect the functional organization of various, known cortical
fields. This observation has been noted within the auditory
and visual sensory cortex (Leopold and Logothetis, 2003;
Nir et al., 2008), motor cortex (He et al., 2008) as well as the
DMN (Ko et al., 2011).

These studies suggest that functional cortical fields may be
mapped using spontaneous, infra-slow co-modulations of
HG power in ECoG. Analogous studies mapping sensorimo-
tor cortex using spontaneous signal at infra-slow time scales
are proposed in the fMRI and ECoG literature (Breshears
et al., 2012; Zhang et al., 2009). In the current study, we use
a graph spectral clustering algorithm to simultaneously iden-
tify several functional networks exhibiting correlations in
infra-slow ( < 0.1 Hz) fluctuations in HG (70–100 Hz) band-
limited power (BLP). This method is distinct from those mea-
suring slow cortical potentials ( < 0.5 Hz) directly (Breshears
et al., 2012). We compared clusters identified with ISC to
functional maps derived from electrocortical stimulation
(ECS), the gold standard for the clinical identification of
motor and visual systems, and found that this algorithm is
highly specific. Additional functional networks thus identi-
fied appear anatomically consistent with relevant large-
scale networks such as the DMN. Finally, the functional
relationships between networks appear consistent with
those determined using fMRI, exhibiting anti-correlated ac-

tivity as seen in other studies (Fox et al., 2006). Our results in-
dicate that infra-slow spontaneous modulations in HG
ECoG signal can be used to identify functional networks,
support the notion that modulations in HG power represent
an electrophysiological correlate to the BOLD fluctuations
used to characterize resting-state networks, and may be use-
ful in the study of functional relationships between these
cortical regions over time and between behavioral contexts.
Our observations can be made in the absence of observable
behavior and persist in asleep patients (Breshears et al.,
2010), implying that the electrical mapping of functional cor-
tex may be possible without the use of ECS or task-based
evoked responses. This would be particularly useful in
peri-operative mapping for resection of seizure foci or tu-
mors near eloquent cortex, when an awake craniotomy
may not be feasible.

Materials and Methods

Subjects

Subjects were selected from patients undergoing invasive
sub-dural electrode monitoring for seizure localization at
Seattle Children’s Hospital and Harborview Medical Center
(Seattle, WA). Recordings from four children and four adults
were screened for use. These subjects were selected, because
they possessed long, spontaneous ECoG recordings that
had been pre-processed as described in a previous study
(Ko et al., 2011). One subject was eliminated from analysis
due to excessive artifact over motor cortex electrodes during
clinical monitoring. One subject was excluded, as the pre-
processed data did not include electrode coverage of motor
cortex, leaving three children and three adult subjects for clus-
tering analysis. Demographic and clinical data are included in
Table 1. All data gathering was done in accordance with pro-
tocols approved by the Institutional Review Board at Seattle
Children’s Hospital and the University of Washington.

ECoG acquisition, cortical mapping,
and electrode localization

Sub-dural platinum electrode arrays and strips (Ad-Tech,
Racine, WI) with 2.3 mm diameter exposed and 10 mm
inter-electrode distance were implanted. Data were acquired
using standard XLTEK (Oakville, Canada) clinical system pa-
rameters. These impose a high-pass filter on AC-coupled data
at about 0.1 Hz. Sampling rates ranged from 250 to 2000 Hz.
Data were gathered over a long period (6–23 h) of time, and
contiguous seizure- and artifact-free segments were identi-
fied. Segments recorded during awake behavior restricted
to the hospital bed were used for analysis. Periods during
which patients appeared to be asleep as determined by
video monitoring were excluded, as polysomnography was
not available for accurate sleep staging. For each subject,
more than 18,000 sec of data were analyzed.

A cortical mapping of motor areas was performed using
standard clinical protocols. Briefly, motor responses were
elicited with pair-wise stimulation of electrodes with high-
frequency (50 Hz), alternating polarity square pulses lasting
2–5 sec, starting at an intensity of 1–2 mA and progressing
until 10 mA was reached or after discharges were noted.

Surface electrode positions were localized using the Location
on Cortex (LOC) package (Miller et al., 2007) from anterior-
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posterior and lateral skull X-rays. In pediatric patients, elec-
trodes were localized from high-resolution postimplantation
CT scans using the Bioimage Suite (Papademetris et al., 2006).

Anatomic localization of resting-state networks with anti-
correlated activity was performed using fMRI seed locations
described in previous studies (Fox et al., 2005, 2006). These
sites are delineated in Table 2.

ECoG analysis and spectral clustering

The use of spontaneous HG power fluctuations has been
established in other studies of connectivity, and allows an ex-
amination of arbitrarily low frequencies that are not otherwise
accessible due to the high-pass filter used in most clinical re-
cording systems (He et al., 2008; Ko et al., 2011; Nir et al.,

Table 1. Subject and Clustering Data

Subject S1 S2 S3 S4 S5 S6

Age/sex 11/F 11/F 7/F 24/M 43/F 20/F

Sampling rate (Hz) 500 500 500 250 2000 500

Electrode number 118 98 94 126 116 126

Mapping modality ECS ISC ECS ISC ECS ISC ECS ISC ECS ISC ECS ISC

Hand motor electrode G44 G55 G55 G12 G11 G6
G45 G45 G56 G56 G13 G19 G7 G7
G46 G46 G62 G14 G20 G20 G13

G47 G63 G63 G20 G20 G26 G26 G14 G14
G53 G53 G64 G64 G21 G27 G27 G15 G15
G54 G54 G22 G28 G28 G16
G55 G55 G28 G28 G33 G21
G56 G29 G29 G35 G35 G22 G22
G61 G61 G30 G36 G36 G23 G23
G62 G62 G31

G64 RMF13
MFP4 RMF14 RMF14
MFP5 RMF15 RMF15

RIMP7 RIMP7
RIMP8 RIMP8

Leg motor MFP4 RSMP7 G2
MFP5 RSMP8 G3 G3
MFP12 MFP12 RSMP15 RSMP15 G10 G10
MFP13 MFP13 RSMP16 RSMP16 G11

Face motor G37 G23 G29
G38 G24 G30

G45 G45 G30 G36
G46 G32 G37 G37

G53 G53 G38 G38 G38
G54 G54 G40 G44
G62 G47 G47 G45 G45

G48 G48 G46 G46
G52
G53

RAF
3
RAF
4

Visual electrodes RIMP1 RIMP1
RIMP2 RIMP2
RIMP9 RIMP9
RIMP10 RIMP10

True False

Positive 53 13 66

Negative 584 28 612

Totals 637 41 678

Sensitivity 0.65 PPV 0.80

Specificity 0.98 NPV 0.96

Demographic data for subjects are presented here. In addition, electrodes identified as motor and visual system mapping using ECS or ISC
are presented for comparison.

G, grid; LAI, left anterior interhemispheric; MFP, medial frontal-parietal; RMP, right medial parietal; RSMP, right superior medial parietal;
RIMP, right inferior medial parietal; ECS, electrocortical stimulation; ISC, infra-slow clustering.
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2008). In addition, correlations in the infra-slow component of
BLP have been shown to be more specific to the functionally
related cortex (Nir et al., 2008). Our approach employs cluster-
ing of electrodes based on co-fluctuations in HG power within
a given time segment and iterating this over multiple segments
to produce a similarity matrix reflecting how consistently elec-
trodes appear in the same cluster across segments. Our hy-
pothesis is that the composition of clusters during individual
segments might change (as correlations between electrode
time-series change over time), but that consistent networks
would emerge over a large enough number of time segments.
This is because the clinical recordings used may not reflect a
true ‘‘resting state,’’ as patients are awake and without any
controls imposed on their behavioral state. Shorter-term
changes in correlations between electrodes could represent be-
haviorally mediated interactions between networks. However,
over enough time, a ‘‘resting state’’ configuration should be
more consistent than dynamic configurations associated with
specific activities.

ECoG voltage signals were re-referenced to the common
average. Spectral power time series were generated by com-
puting the fast-Fourier transform after application of a Han-
ning window to nonoverlapping segments. Segment length
was chosen to give a 2 Hz frequency resolution at a sampling
rate of 2 Hz, where v(t)i is the time-dependent ECoG voltage
from electrode i,

P( f , t)i = jFFT[v(t)i]j
2 (1)

is a time-series representation of the average power of each
Fourier component of the voltage during each 0.5 sec seg-
ment. The HG BLP was generated by averaging P( f, t)i for
f = 70–100 Hz. This approach to generating gamma BLP has
been previously described (Ko et al., 2011).

Inter-electrode correlations specific to functional corti-
cal fields are more pronounced at infra-slow frequencies

(Nir et al., 2008). We, therefore, low-pass filtered our HG
power time series using a finite impulse response filter
(length 100 sec) to isolate the infra-slow ( < 0.1 Hz) fluctua-
tions. This time series is denoted x(t)i for each electrode i.
Correlation coefficients between each time series were gen-
erated using nonoverlapping, 300-sec segments of x(t)
with a total number of segments denoted segn. This choice
of segment length was chosen to be commensurate with
the time scales used in the acquisition of rsfMRI, and, in
part, to provide a sufficient number of samples for use in
the clustering analysis, and it has been used in previous
studies (Ko et al., 2011; Nir et al., 2008).

For a given segment, for electrodes i and j,

qi, j =
cov(x(t)i, x(t)j)

std(x(t)i) · std(x(t)j)
(2)

gives the Pearson correlation coefficient. Significant correla-
tions were determined by a comparison to surrogate data
generated by time shifting x(t)i by a random time lag for
each electrode. This lag was longer than the segment length
and shorter than the total length of the signal. This preserves
auto-correlations while destroying correlations between elec-
trode time series. Surrogate correlations were calculated as
described earlier for 2000 surrogate time series. Significant
correlations were selected using a False Discovery Rate
(FDR) q = 0.025 in a two-tailed fashion, identifying significant
positive as well as negative correlations. Only positive corre-
lations were used for clustering.

In principle, any of several clustering algorithms might be
effective. We chose a normalized spectral clustering algo-
rithm as described by Shi and Malik (2000) and von Luxburg
(2007). A schematic of the algorithm is shown in Figure 1.
Given a vertex set E = fe1, . . . eng, where n is the number of
electrodes, a weighted adjacency graph

Gs = ([ri, j]i, j = 1:n),

where

ri, j = qi, j, if positive and significant
0, otherwise

�
(3)

was created using significant correlations for each segment
s = 1 . . . segn. Several methods for determining neighborhood
size exist; we chose a mutual k-nearest-neighbors graph that
was constructed with knn = 2. This was determined empiri-
cally as a good balance between generating trivial clusters
containing one or two electrodes (knn = 3), and one or two
very large clusters (knn = 1). The nearest-neighbors graph,

W = ([wi, j]i, j = 1:n)

where

wi, j = ri, j if neighbors
0, otherwise

�
(4)

has vertices ei 2 E of degree di = +n
j = 1wij. The matrix D is

defined with d1...n on the diagonal. The graph Laplacian is
L = D�W, which was used to solve the generalized eigenpro-
blem Lt = kDt.

The gap heuristic (von Luxburg, 2007) was used to select
an ideal number of clusters to identify denoted K. The eigen-
numbers k were examined, and the number of clusters was

Table 2. Talairach Coordinates of Anti-Correlated

Resting-State Networks

Brodmann’s
area

Anatomic
name Side

Talairach
coordinates

Task negative
network

31 pCC M (�2, �36, 37)
19 LP L (�47, �67, 36)

R (53, �67, 36)
32/10 MPFC L (�3, 39, �2)

R (1, 54, 21)
Task positive

network
7 IPS L (�23, �66, 46)

R (25, �58, 52)
7/40 iPL L (�42, �44, 49)

R (47, �37, 52)
6 FEF L (�24, �12, 61)

R (28, �7, 54)
6/32 SMA M (�2, 1, 51)

46 DLPFC L (�40, 39, 26)
R (38, 41, 22)

19 MT L (�47, �69, �3)
R (54, �63, �8)

pCC, posterior cingulate cortex; LP, lateral parietal; MPFC, medial
prefrontal cortex; IPS, inferior parietal sulcus; iPL, inferior parietal
lobule; FEF, frontal eye fields; SMA, supplementary motor area;
DLPFC, dorsolateral prefrontal cortex; MT, middle temporal gyrus;
M, medial; L, left; R, right.
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chosen when the differential between consecutive eigennum-
bers exhibits a ‘‘gap,’’ where

k > 0 and D(ki, iþ 1)i = 1...n� 1 >
1

2
rk: (5)

The matrix U 2 Rn · K was then defined with the eigenvec-
tors v1 . . . vK as columns, with vectors yi corresponding to the
rows of matrix Y. The k-means algorithm was used to cluster
each (yi)i = 1...n into clusters c1 . . . cK.

This process was iterated across all segments to create the
matrix

Mn · n · segn = [ui, j, s]i, j = 1...n;s = 1...segn

ui, j, s =
1, if ei and ej are in same cluster for segment s

0, if otherwise

�
(6)

and across multiple segments,

Msum = +segn
s = 1([Mi, j, s])i, j = 1...n (7)

This matrix reflects what we call clustering stability, and
was normalized to the unit scale. It is a measure of how
often a given electrode pair clusters together over all time seg-
ments. If electrodes i and j were to cluster together across
every segment, Msum

i, j = 1, and if they never cluster together,
Msum

i, j = 0. A similarity graph is constructed using values of
Msum (Fig. 1C, right). The spectral clustering algorithm is ap-
plied as described earlier to give a final clustering C0 . . . CK,
where singleton clusters are grouped into C0.

Data analyses

As is obvious from Figure 1C, there is variation as to how
often a given electrode pair clusters with other electrodes.
While Msum (Eq. 7) represents clustering stability integrated
over the entire signal, the matrix M (Eq. 6) represents the clus-
tering relationship between each electrode pair during each
time segment, and it can be used to examine spatial relation-
ships. At any given time t, a certain percentage of electrode

FIG. 1. Infra-slow spectral clustering algorithm. (A) i, Gamma band-limited power (BLP) is low-pass filtered at < 0.1 Hz
(red). Nonoverlapping, 300 sec segments are created (blue dividing lines) ii, Correlation coefficients for each segment between
all electrodes are compared with surrogate time series, and significant interactions between channels are represented in a ma-
trix here denoted R. iii, This is converted to a mutual nearest-neighbor adjacency matrix W with the number of neighbors
(knn = 2). iv, The normalized spectral clustering algorithm is applied as described in the ‘‘Materials and Methods’’ section.
An abbreviated plot of generated eigennumbers illustrates the ‘‘gap heuristic’’ used to select the number of clusters used,
and the k-means algorithm is used to identify electrode clusters (on x-axis). v, An adjacency matrix denoted M is used to rep-
resent clustering of electrodes for one time segment. (B) A cumulative sum of M across all segments is used to generate a final
clustering as shown for subject S5. Electrocortical stimulation (ECS) mapping of hand (yellow lines) and leg (red lines) motor
areas is shown on this template brain, along with clusters that correspond (light blue, yellow electrodes). (C) Left: The cumu-
lative sum of M values over time that is used for the final clustering. Right: The nearest-neighbors matrix used for final clus-
tering. The algorithm results are denoted with each cluster represented by a colored rectangle corresponding to the electrode
colors in (C).
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pairs have clustered together; if one examines a constant
group of electrodes over time, values of M can be used to
give an estimate of the spatial stability of that cluster over
the entire signal; in other words, the percentage of a given
cluster of electrodes that is present during a given time seg-
ment can be calculated using these values, and displayed as
a function of time. Within-cluster averages of significant cor-
relation in infra-slow HG power between groups of elec-
trodes can be examined similarly, along with standard error
of the means. Statistical significance was determined via boot-
strapping in which electrode identities were shuffled before
calculation of these within-cluster statistics. p-Values were
calculated using 2000 bootstrap samples, and significance lev-
els were set for an FDR of q = 0.05.

The functional relationship between clusters was also ana-
lyzed by examining anti-correlations. Given the matrix of sig-
nificant correlations (including negative correlations)

Rsig = ([ri, j]i, j = 1:n)s = 1...segn (8)

and the final clustering C0 . . . CK, let R
sig
c represent a rear-

rangement by cluster. For a given cluster k,

Rsig
ck

= ([rx, y]x = ck , y = 1...n)s = 1...segn (9)

gives all significant interactions within itself and with other
clusters. This can be consolidated into a single number that
is normalized for cluster size

NRck
=

# of R
sig
ck

< 0

total # of R
sig
ck

(10)

and provides a measure of anti-correlation between clusters.
Bootstrapping by shuffling electrode identity as described
earlier (2000 samples) identifies clusters with a significantly
higher proportion of negative correlations between their elec-
trode pairs (FDR = 0.05).

The reliability of the algorithm was evaluated by generating
‘‘sub-clustered’’ networks, essentially resampling the clustering
in a jackknife-like process. Each sample starts with the signal at
some time t, representing a 300-sec segment, and the clustering
process is iterated over a number of segments (segnsub = 20) less
than the total signal. For a given starting point,

Msub
t = +

tþ segn

s = t

[ui, j, s]i, j = 1...n (11)

is analogous to Msum for the entire signal. The sub-clustering is
repeated by sliding this 20-segment window across the entire
signal for each subject for a total number of iterations nsub. A
normalized two-dimensional correlation was used to evaluate
the similarity between each value of Msub

t and Msum, giving a
measure of how well sub-clustering correlates with the final
clustering at each time point. In addition, this resampling of net-
works can be used to determine how quickly the clustering al-
gorithm derives a stable series of networks, using the correlation
between Msub

t� 1 and Msub
tþ 1 (Fig. 1D), with the repeated iterations

giving an estimate of variation over the course of the signal.

Results

ISC identifies functional networks

ECS mapping was used to identify functional cortical
areas; our clinical data included results for motor function

in all subjects, and visual cortex and language mapping in
one subject each. In each of six subjects, spectral clustering
of correlations in infra-slow gamma band power fluctuations
produced networks corresponding to motor cortex as identi-
fied using cortical stimulation mapping (Fig. 2). Interestingly,
our algorithm provided somatotopic specificity, identifying
hand versus leg versus face motor cortex. Other functional
networks were identified as well. In one subject, visual cortex
was mapped during seizure monitoring, and a corresponding
cluster of electrodes was identified by our algorithm (Fig. 2A).
In one subject with bilateral electrode coverage, the face
motor cluster identified using ISC included electrodes on
the side contralateral to but consistent with ECS mapping
of facial motor areas (Fig. 2B). This shows that our algorithm
identifies long-distance and inter-hemispheric interactions.

Overall, this algorithm identified a total of 64 sensorimotor
or visual electrodes with 53 true positives. The sensitivity of
this approach is only about 65%. However, the specificity of
our clustering was quite good at 98%, with a negative predic-
tive value of 95% (Table 1).

ISC networks exhibit large-scale anti-correlated behavior

Our algorithm also detects attentional networks related to
and including the DMN. Three subjects (S1, S4, S6) possessed
electrode coverage of the posterior cingulate cortex, an ana-
tomic region consistently identified as belonging to the
DMN (Damoiseaux et al., 2006; Fox et al., 2005), and our algo-
rithm identified a cluster overlying this region in each of these
subjects (Fig. 3). Furthermore, these clusters exhibited func-
tional relationships to cortical areas consistent with task-
positive regions as reported in the fMRI literature (Fox et al.,
2005, 2006). Those regions with infra-slow gamma band activ-
ity that are negatively correlated with the DMN cluster corre-
spond to seed regions identified with attentional systems in
the rsfMRI literature, including the frontal eye fields (FEF), in-
ferior parietal lobule (iPL), and dorsolateral prefrontal cortex
(DLPFC) in particular (Fig. 3). The Talairach coordinates for
these regions are listed in Table 2. In contrast, the DMN re-
gions do not exhibit significantly anti-correlated activity
with the motor or visual clusters (Fig. 3). This result mirrors
the large-scale architecture seen in rsfMRI (Fox et al., 2006).

fc varies over time

Over all subjects, the significant positive correlations within
a cluster, �qin are higher than significant positive correlations
between electrodes in different clusters, �qout (Fig. 4B). This
holds across all subjects and is statistically significant by Stu-
dent’s t-test (S1 : �qin=�qout = 0:41=0:31; S2 : �qin=�qout = 0:42=0:33;
S3 : �qin=�qout = 0:37=0:33; S4 : �qin=�qout = 0:41=0:33; S5 : �qin=�qout

= 0:34=0:30; S6 : �qin=�qout = 0:34=0:32; all p < 0.0001). The aver-
age significant correlation in a cluster appears to vary from
cluster to cluster, and, in some cases, is below the average sig-
nificant correlation between nonclustered, singleton electrodes
(Fig. 4B). This is not surprising, as the algorithm uses the mea-
sure of cluster stability M to construct clusters rather than only
correlation values; since we use a mutual nearest-neighbors
graph as a similarity measure, singleton electrodes may be sig-
nificantly correlated with other electrodes that have other,
more strongly correlated interactions. On the other hand,
some electrode pairs may have lower correlation values but
still consistently sub-cluster together.
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Similar to correlation, the cluster stability measure is higher
for clusters compared with noncluster electrodes, and exhibits
greater variation over time compared with correlation values
(Fig. 4C, D). Motor clusters tend to have a higher within-cluster
stability, with an average across subjects of 0.44 (range: 0.32–
0.52, SD: 0.062) compared with 0.37 (range: 0.19–0.59, std:
0.077) for nonmotor clusters ( p = 0.005 by Student’s t-test).
The variation in average stability across clusters is surprising,
with some clusters having very low stability values. For exam-
ple, for subject S5, average cluster stability can be as low as 0.2
for several clusters (Fig. 4C, right).

Two factors would appear to contribute to the variation in
clustering stability: Electrodes may variably sub-cluster with
other functional networks over time, and a given electrode
may not have significant interactions with any other electrode

for some segments, reflecting heterogeneity in electrode–
electrode interactions over time. In other words, the sub-
clustering results for any one given time segment does
not necessarily resemble the final clustering over the whole
signal.

Stable clusters emerge over time

However, despite the variation in cluster stability, the re-
sults of this algorithm over a long period of time appear reli-
able. We examined this in two ways, using multiple subsets of
the signal analyzed, calculating Msub

t (Eq. 11) for these sub-
sets. Msub

t begins to resemble itself relatively quickly, with a
normalized two-dimensional cross-correlation of more than
98% within six 300-sec segments (Fig. 5A, B). After 1 h, the

FIG. 2. Spectral clustering
identifies clusters corresponding
to motor and visual cortex map-
ped using ECS. ECS results are
denoted with colored lines as
follows: blue for hand motor,
cyan for face motor, red for leg
motor, and green for visual cor-
tex. Clusters derived from the
infra-slow clustering (ISC) algo-
rithm are denoted in corre-
sponding electrode colors. (A)
Results for subject S4 show a
cluster of electrodes (blue elec-
trodes) that is spatially consistent
with ECS mapping of hand
motor cortex (blue lines). Clusters
corresponding to ECS mapping
of leg motor (red electrodes, red
lines) and visual cortex (green
electrodes, green lines) are shown
on the right. (B) ISC identifies
bilateral face motor cortex in
subject S6. Note that ECS testing
was not performed on the right
side, but the location of the ISC
cluster is anatomically consistent
across both hemispheres. (C)
Schematic representation of elec-
trodes with ISC and ECS map-
ping shown for the remaining
subjects shows that each subject
has an ISC-identified cluster that
corresponds spatially with the
ECS maps.
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FIG. 3. ISC identifies clusters overlying putative default mode network (DMN) cortex, which show anti-correlated activity
with dorsal attentional networks. (A) For subject S1, one ISC cluster overlies the posterior cingulate cortex (pCC), a region as-
sociated with the DMN in functional magnetic resonance imaging (fMRI) studies. Cortex underlying electrodes that have sig-
nificant negatively correlated activity compared with those over the pCC are shaded blue. In addition, one ISC cluster,
overlying the frontal eye fields (FEF), inferior parietal lobule (iPL), and dorsolateral prefrontal cortex (DLPFC), all areas
shown to be anticorrelated with the pCC, is shown with inverted red triangles. Other electrodes are omitted for clarity. (B)
The percentage of significant negative correlations between electrodes overlying DMN cortex and all other electrodes is
shown, colored by clusters. The blue bar labels DMN electrodes; the red bar with asterisk indicates the cluster over FEF,
iPL, and DLPFC shown in (A). This cluster has a significantly higher proportion of negative correlations with the DMN
than randomly generated networks ( p < 0.004). (C) Left: Results of similar analyses with subject S4, showing extensive nega-
tively correlated activity. DMN is indicated by yellow shading of cortex and red electrodes; anti-correlated areas are shaded in
blue. The pCC and typically anti-correlated areas are labeled. Right: Again, one ISC cluster overlies pCC, and is significantly
anti-correlated with a cluster (inverted purple triangles) that overlies anti-correlated fields derived from previous fMRI studies
[iPL, middle temporal gyrus (MT), DLPFC].
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FIG. 4. Clustering over individual time
segments varies significantly over the course
of the signal. (A) Labeled schematic showing
clustering results for subject S5. Clusters are
numbered and also colored for identification.
(B) Left: Histogram showing the significant
correlation between electrodes within a sin-
gle cluster (red line) and between electrodes
in different clusters (black line) for the same
subject. The difference in mean values is sig-
nificant by Student’s t-test (mean within: 0.34,
mean between 0.3, p < 0.001). Right: The av-
erage significant correlation across time for
each cluster is quite variable and can be very
low. Singleton electrode interactions (gray)
appear to be stronger than some clusters. (C)
Left: The cumulative sum of cluster stability
M over the entire signal is grouped by clus-
ters as indicated by colored rectangles. Note
that this matrix shows that electrodes often
seem to sub-cluster with electrodes outside
the final clustering. In addition, not all elec-
trode interactions within a cluster are present
throughout the entire signal. These two fac-
tors contribute to the high variation in cluster
stability, as seen on the right, where the av-
erage Mcluster

k for each cluster is shown with
error bars denoting standard deviation. (D)
The average significant correlation and clus-
ter stability for the hand motor cluster
(denoted H, light blue) is shown over
6000 sec. A small change in average correla-
tion creates a large change in cluster stability.
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results from the various subsets of data resemble the cluster-
ing results using the entire signal very strongly, with a corre-
lation of 95% (Fig. 5B).

In short, the ISC algorithm identifies clusters of electrodes
corresponding to functional cortex, using correlations in
infra-slow gamma band power fluctuations. This includes
motor and visual cortex as determined using ECS, and puta-
tive DMN and attentional network cortex using anatomic lo-
cation and the anti-correlated infra-slow fluctuations between
these areas. While there appears to be heterogeneity within
these clusters when time segments are viewed independently,
the cumulative sum across time segments stabilizes quickly
and allows our algorithm to produce reliable clustering re-
sults after about one half hour.

Discussion

Using a graph-based, spectral clustering algorithm and
infra-slow co-fluctuations in HG BLP, we are able to reliably
group electrodes into clusters that reflect functional organiza-
tion of the brain. Inter-electrode correlations in HG power
have shown clear selectivity for functional networks (Ko
et al., 2011; Leopold et al., 2003; Nir et al., 2008), but these pre-
vious ECoG studies used a priori knowledge of cortical func-
tional topography to select either regions of interest or ‘‘seed’’
electrodes for correlational comparisons. While others have
used data-driven methods to map sensorimotor cortex
using slow cortical potentials (Breshearset al., 2012), ISC is

unique insofar as it examines HG power to classify electrodes
into functionally relevant networks. In doing so, it avoids
problems associated with clinical amplifiers that impose a
high-pass filter on ECoG signal.

ISC correspondence with function

We present three lines of evidence suggesting a good cor-
respondence between ISC clustering of infra-slow HG band
responses and functionally connected networks. First and
most importantly, identified clusters were consistent with
the results from ECS mapping, the gold standard for func-
tional mapping. Next, clusters detected by this algorithm
are spatially distinct yet span significant distances—some
clusters map to the corresponding cortex on the opposite
hemisphere (Fig. 2B), and the attentional clusters anticorre-
lated with DMN clusters simultaneously cover distinct and
distant areas of cortex such as the iPL and DLPFC (Fig. 3A).
This implies that these clusters are not merely the result of
local effects such as volume conduction. Finally, the DMN
clusters identified by ISC exhibit HG modulations that are
negatively correlated with electrodes overlying areas com-
mensurate with dorsal and ventral attentional systems, a
functional relationship consistent with fMRI studies (Fox
et al., 2005, 2006).

These results have several implications. First, the high
specificity of this algorithm may be useful in tailoring clinical
functional mapping performed with ECS. In addition, the

FIG. 5. The results of ISC, though variable over single time segments, approaches a stable clustering. (A) The cumulative sum
of M is shown for five consecutive time segments (Msub

t for t = 1, . . . , 5). Msum, the sum over the entire signal, is shown on the far
right. The cumulative sum quickly begins to resemble the final configuration. (B) Left: Two-dimensional correlation between
clustering results when the cumulative sum is compared with itself at two time points (t�1) and (t + 1). The correlation between
clustering results approaches 98% in about one half hour. This result pools values across all subjects, with standard error shown.
Right: The cumulative sum of clustering results also becomes very similar to the final clustering, but more slowly. At 3600 sec,
correlation between sub-clustering results and the final results is at 95% across all subjects (with standard error shown).
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anatomic locations and functional behavior of our clusters
also provide support that infra-slow fluctuations in HG
band power represent the neurophysiological basis of rest-
ing-state networks illuminated by rsfMRI BOLD fluctuations.
Importantly, the identification of a functional relationship be-
tween clustered electrodes at this time scale has important
implications for understanding the mechanisms contributing
to how different regions of the brain interact during a resting
state. Although rsfMRI assessments of fc do reveal dynamic
patterns of connectivity, they rely on cerebrovascular changes
that are correlated to neural activity resulting in the addition
of confounding non-neural sources of noise. ECoG record-
ings, on the other hand, more precisely reflect the raw spon-
taneous activity of neuronal populations. Therefore, future
ECoG efforts coupled with ISC will likely yield a greater un-
derstanding of the functional role and significance of sponta-
neous yet functionally organized neural activity.

Variations in cluster stability

ISC identifies sub-clusters of electrodes during time seg-
ments measured in hundreds of seconds, and repeats this
over time; the final grouping of electrodes is based on the per-
sistence of these sub-clusters across all time segments. Other
approaches to the examination of functional networks over
time also provide evidence of frequency-dependent network
motifs, with core connections that appear frequently and con-
currently, independent of transient activity. These template
networks were also shown to be similar when measured on
different days, implying that they are stable across very
long time periods (Kramer et al., 2011). We not only find a
similar persistence in fc over long periods of time, but also
note that individual time segments can produce very differ-
ent clustering results. In other words, we see significant cor-
relations in infra-slow HG band activity that are transient,
and others which are persistent. This may result from the
lack of behavioral control during the clinical recordings we
use; infra-slow modulation of gamma band power may
change during differing behavioral contexts, thereby chang-
ing correlations between these signals. The rsfMRI literature
suggests this may be the case, with scale-dependent temporal
variability in network connectivity over time (Chang and
Glover, 2010), and dynamic changes evident in measures of
modularity corresponding to learning of motor tasks (Bassett
et al., 2011). The heterogeneity in the persistence of these in-
teractions is worthy of further investigation to determine
whether this reflects shorter-lived connectivity that is ran-
dom, context-related, or evidence of a more complex tempo-
ral structure which fluctuates on a separate time scale.

Limitations

This study does not compare rsfMRI and ECoG data; instead,
it uses ECS as a surrogate for identifying the cortex involved in
somatomotor functional networks. Examining co-fluctuations
in infra-slow HG power concurrently with BOLD signal
would be more ideal, but such data were not available.

There are discrepancies between cortical stimulus mapping
and functional areas identified using spectral clustering. This
may arise not only from inaccuracy of our method but also
from several confounding factors. Our methods measure cor-
relations of cortical fluctuations from beneath electrodes,
while the bipolar stimulation used during cortical stimulation

mapping involves the cortex between two electrodes, and as a
result a one-to-one correspondence between the two tech-
niques may not be precise. Moreover, the notion of ‘‘func-
tional connectivity’’ as characterized by our algorithm, and
functional status as determined by ECS, are fundamentally
different insofar as fc is likely to indicate involvement in a
particular functional system; while ECS identifies a cortex
that, if disturbed, causes dysfunction in a particular func-
tional system. This distinction is important, and may explain
similar discrepancies in mapping when using other non-ECS
modalities for identifying functional cortex (Breshears et al.,
2012; Miller et al., 2011). Nevertheless, this technique has
good specificity for identifying functionally relevant cortex,
and mirrors functional relationships that are borne out by
studies using other modalities.

Conclusions

This study shows successful data-driven identification
of functional networks corresponding to motor, visual, and
DMN cortex, using endogenous co-fluctuations in infra-slow
HG power. Using measures of connectivity in spontaneous
ECoG, ISC identifies clusters of electrodes overlying cortical
fields with good specificity when compared with ECS, and
clusters thus identified show some functional relationships
consistent with fMRI studies of anti-correlated resting-state
networks. Changes in connectivity measured by ISC over
time may reflect interactions between networks as a function
of behavioral or attentional state.

Acknowledgments

Research reported in this publication was supported by
the National Institutes of Health under award numbers
T32 NS 07144, 5K01 MH086118-03, and R01 NS065186. The
content is solely the responsibility of the authors and does
not necessarily represent the official views of the National
Institutes of Health.

Author Disclosure Statement

No competing financial interests exist for the authors of
this article.

References

Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM,
Grafton ST. 2011. Dynamic reconfiguration of human brain
networks during learning. Proc Natl Acad Sci USA 108:
7641–7646.

Bianciardi M, Fukunaga M, et al. 2009. Modulation of spontane-
ous fMRI activity in human visual cortex by behavioral state.
Neuroimage 45:160–168.

Breshears JD, Gaona CM, et al. 2012. Mapping sensorimotor cor-
tex with slow cortical potential resting-state networks while
awake and under anesthesia. Neurosurgery 71:305–316.

Breshears JD, Roland JL, et al. 2010. Stable and dynamic cortical
electrophysiology of induction and emergence with propofol
anesthesia. Proc Natl Acad Sci USA 107:21170–21175.

Chang C, Glover G. 2010. Time–frequency dynamics of resting-
state brain connectivity measured with fMRI. Neuroimage
50:81–98.

Crone NE, Miglioretti DL, et al. 1998. Functional mapping of hu-
man sensorimotor cortex with electrocorticographic spectral

NETWORK MAPPING WITH SPONTANEOUS ECOG MODULATION 501



analysis. II. Event-related synchronization in the gamma
band. Brain 121:2301–2315.

Damoiseaux JS, Rombouts SA, et al. 2006. Consistent resting-
state networks across healthy subjects. Proc Natl Acad Sci
USA 103:13848–13853.

Deco G, Jirsa VK, et al. 2011. Emerging concepts for the dynam-
ical organization of resting-state activity in the brain. Nat Rev
Neurosci 12:43–56.

Fox MD, Corbetta M, et al. 2006. Spontaneous neuronal activity
distinguishes human dorsal and ventral attention systems.
Proc Natl Acad Sci USA 103:10046–10051.

Fox MD, Snyder AZ, et al. 2005. The human brain is intrinsically
organized into dynamic, anticorrelated functional networks.
Proc Natl Acad Sci USA 102:9673–9678.

He BJ, Snyder AZ, et al. 2008. Electrophysiological correlates of
the brain’s intrinsic large-scale functional architecture. Proc
Natl Acad Sci USA 105:16039–16044.

Jerbi K, Ossandon T, et al. 2009. Task-related gamma-band
dynamics from an intracerebral perspective: review and im-
plications for surface EEG and MEG. Hum Brain Mapp 30:
1758–1771.

Kelly C, Biswal BB, et al. 2012. Characterizing variation in the
functional connectome: promise and pitfalls. Trends Cogn
Sci 16:181–188.

Ko AL, Darvas F, et al. 2011. Quasi-periodic fluctuations in de-
fault mode network electrophysiology. J Neurosci 31:11728–
11732.

Kramer MA, Eden UT, et al. 2011. Emergence of persistent net-
works in long-term intracranial EEG recordings. J Neurosci
31:15757–15767.

Leopold DA, Logothetis NK. 2003. Spatial patterns of spontane-
ous local field activity in the monkey visual cortex. Rev Neu-
rosci 14:195–205.

Leopold DA, Murayama Y, et al. 2003. Very slow activity fluctu-
ations in monkey visual cortex: implications for functional
brain imaging. Cereb Cortex 13:422–433.

Miller KJ, Abel TJ, et al. 2011. Rapid online language map-
ping with electrocorticography. J Neurosurg Pediatr 7:
482–490.

Miller KJ, Makeig S, et al. 2007. Cortical electrode localization
from X-rays and simple mapping for electrocorticographic re-
search: The Location on Cortex (LOC) package for MATLAB. J
Neurosci Methods 162:303–308.

Miller KJ, Zanos S, et al. 2009. Decoupling the cortical power
spectrum reveals real-time representation of individual finger
movements in humans. J Neurosci 29:3132–3137.

Murias M, Swanson JM, et al. 2007. Functional connectivity of
frontal cortex in healthy and ADHD children reflected in
EEG coherence. Cereb Cortex 17:1788–1799.

Nir Y, Mukamel R, et al. 2008. Interhemispheric correlations of
slow spontaneous neuronal fluctuations revealed in human
sensory cortex. Nat Neurosci 11:1100–1108.

Papademetris X, Jackowski M, Rajeevan N, Okuda H, Constable
RT, Staib LH. 2006. BioImage Suite: An integrated medical
image analysis suite, Section of Bioimaging Sciences, Depart-
ment of Diagnostic Radiology, Yale School of Medicine.
www.bioimagesuite.org

Power JD, Barnes KA, et al. 2012. Spurious but systematic corre-
lations in functional connectivity MRI networks arise from
subject motion. Neuroimage 59:2142–2154.

Shi J, Malik J. 2000. Normalized cuts and image segmentation.
IEEE Trans Pattern Anal Mach Intell 22:888–905.

von Luxburg U. 2007. A tutorial on spectral clustering. Stat Com-
put 17:395–416.

Zhang D, Johnston JM, et al. 2009. Preoperative sensorimotor map-
ping in brain tumor patients using spontaneous fluctuations in
neuronal activity imaged with functional magnetic resonance
imaging: initial experience. Neurosurgery 65:226–236.

Address correspondence to:
Andrew L. Ko

Department of Neurological Surgery
Oregon Health & Science University
Center for Health & Healing, CH8N

3303 SW Bond Avenue
Portland, OR 97239

E-mail: and@ohsu.edu

502 KO ET AL.


