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Abstract

Implicit probabilistic sequence learning (IPSL) involves extracting statistical regularities from sequences of events
without awareness, and is thought to underlie learning of language and behavioral repertoires of everyday life.
We examined whether resting-state functional connectivity networks of the caudate predicted individual differ-
ences in IPSL performance measured on a separate day. Whole-brain connectivity maps of a bilateral dorsal cau-
date (DC) seed were created for each subject and examined for voxelwise correlations with sequence learning
performance, as well as with overall response speed. Higher learning scores (but not overall response speed)
were associated with stronger resting-state connectivity between the DC and right medial temporal lobe, as
well as with lower resting-state connectivity between the DC and premotor regions involved in motor planning.
Thus, how well one learns probabilistic regularities without awareness is predicted by the strength of a striato-
cortical network in the resting brain.
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Introduction

Implicit learning refers to the effortless acquisition of
information without explicit knowledge of what has been

learned (Reber, 1989). Implicit probabilistic sequence learning
(IPSL) is a specific type of implicit learning that involves
extracting statistical regularities from sequences of events, a
skill which is crucial for important life skills such as learning
languages or developing new routines (Lewicki et al., 1987;
Newport and Aslin, 2004). Here, we focus on how the intrin-
sic functional communication among neural regions known
to underlie IPSL relates to individual differences in learning
performance.

To accomplish this, we used the Triplets Learning Task
(TLT) (Howard et al., 2008). In the TLT, as in more traditional
sequence learning (SL) tasks such as the serial reaction time
(RT) (Nissen and Bullemer, 1987) and Alternating serial RT
(Howard and Howard, 1997) tasks, participants are exposed
to a series of stimuli in which a probabilistic regularity is
embedded, such that some events are more predictable
from earlier events than others. During the task, subjects
learn the regularity, responding increasingly faster to more

versus less predictable events, even though they are unable
to distinguish between them in subsequent recognition
tests (Howard et al., 2008; Simon et al., 2011a, 2011b). The
TLT allows for precise control of event timing and reduces
motor-response sequencing, enabling us to examine implicit
learning uninfluenced by motor fluency.

Evidence from studies using a variety of methods (including
patient groups, diffusion tensor imaging [DTI], task-related
functional magnetic resonance imaging [fMRI], and genetics)
indicates that IPSL in the TLT and related SL tasks depends
on the functional and structural integrity of a subcortical-
cortical network, including the caudate, frontal cortices, and,
potentially, the medial temporal lobes (MTL) (Bennett et al.,
2011; Gheysen et al., 2011; Rieckmann et al., 2010; Rose et al.,
2002; Schendan et al., 2003; Simon et al., 2011b, 2012; Smith
and McDowall, 2004; Wilkinson, et al., 2009). While frontal
regions are thought to support the attentional and motor-
planning demands of IPSL tasks, the caudate and, more
controversially, the MTL may underlie the formation of associ-
ations that are necessary for learning in the tasks (Rose et al.,
2002; Schendan et al., 2003; Simon et al., 2012). These latter re-
gions are the focus of the present study.
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The fact that the caudate and MTL, regions once thought to
subserve distinct and functionally incompatible learning sys-
tems (e.g., Robbins, 1996; Squire, 1987), are sometimes coacti-
vated in implicit SL tasks suggests that optimal SL
performance may depend on the efficiency of their interaction
(Henke, 2010). This would be the case even if such interac-
tions are competitive, as a number of task-related fMRI stud-
ies suggest (e.g., Albouy et al., 2008). Efficient caudate/MTL
interactions—whether competitive or cooperative—may be
facilitated by their ongoing communication not only during
IPSL tasks, but also during a task-free state. Patterns of tem-
porally correlated brain activity at rest (termed intrinsic, or
resting-state functional connectivity [rsFC]) often mirror the
brain activation patterns observed during cognitive tasks
(Smith et al., 2009), suggesting that functional networks dur-
ing cognitive tasks maintain their network configuration dur-
ing rest [for review, see (Fox and Raichle, 2007)].

Close correspondence between task-evoked and resting
functional networks also suggests that individual differences
in network functions at rest should be associated with learn-
ing performance. Indeed, rsFC of task-relevant networks
relates to individual differences in the consolidation of
learned information, such that individuals with superior per-
formance on a preceding learning task display the greatest
changes in rsFC from a pre- to postlearning resting scan
(e.g., Albert et al., 2009; Vahdat et al., 2011; Wegman and Jan-
zen, 2011). In addition, the baseline (i.e., pretask) strength of
rsFC in task-relevant networks can predict individual differ-
ences in subsequent performance, by which individual differ-
ences in the strength of selective resting-state networks relate
to learning and memory ability (Baldassarre et al., 2012; Gor-
don et al., 2013; Wang et al., 2010a, 2010b; Ystad et al., 2010).
No studies so far, however, have examined whether rsFC can
predict learning performance when subjects are not explicitly
informed of task goals and are learning probabilistic relation-
ships that they cannot verbalize.

Here, we investigate whether individual differences in
IPSL can be predicted by the rsFC of a task-relevant region,
the caudate. We measured rsFC of a bilateral caudate seed
either before learning or well outside the timeframe when
consolidation might be expected to influence intrinsic con-
nectivity patterns. We then correlated rsFC with SL perfor-
mance, as well as with average response speed on the TLT.
Our primary interest was in the relationship between rsFC
and sequence-specific learning, but we examined average re-
sponse speed to test whether the striato-cortical networks
supporting sequence specific learning are distinct from
those supporting other aspects of task performance. We ex-
amined whole-brain caudate connectivity but were particu-
larly interested in correlations between the caudate and
MTL, given evidence that these regions interact during IPSL
tasks in healthy populations. We hypothesized that greater
positive correlations in the spontaneous activity of the cau-
date and MTL at rest (indicating stronger intrinsic communi-
cation between these regions) would predict better SL, but
not response speed.

Materials and Methods

Subjects

Twenty-two Georgetown University undergraduates (14
female) aged 18 to 22 years (M – SD = 20.43 – 0.98) partici-

pated for payment. They were recruited from a pool of 50
subjects in an unrelated experiment in which resting-state
scans were acquired. As a result of this recruitment proce-
dure, behavioral testing occurred on a varying number of
days (17–367 days; M – SD = 96 – 102 days) after the scan. In
addition, two subjects who had completed behavioral testing
179 and 542 days before the scan were retained, because the
long delay made it highly unlikely that learning-related con-
solidation influenced their resting-state connectivity. Correla-
tional analysis confirmed that the time between the scan and
behavioral testing was unrelated to the behavioral measures.
Furthermore, our results did not change when these two sub-
jects were removed.

Procedures were approved by Georgetown University’s
Institutional Review Board. Exclusion criteria included (1)
self-reported use of psychotropic medication (e.g., stimulants,
anti-anxiety/depression); (2) self-reported history of neuro-
logical injury or disease, seizure disorder, psychiatric diagno-
sis; and (3) contraindications for MRI—for example, metal
implants in the body, or pregnancy.

Behavioral testing

Subjects completed the TLT (Howard et al., 2008) on a sep-
arate test day either after (N = 20; M – SD = 96 – 102; ranging
from = 17–367 days) or preceding (N = 2; M – SD = 360 – 256
days) the scanning session. A schematic of the TLT is
shown in Figure 1. Subjects viewed a horizontal row of four
open circles centered on a computer screen. In each trial, a

FIG. 1. Schematic of the Triplets Learning Task. Each trial,
or ‘‘triplet,’’ consists of the sequential presentation of two
red cues and a green target. Subjects are instructed to view
the first two red cues of each triplet and to respond only to
the location of the green target using a corresponding re-
sponse button.
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three-event sequence of circles (a ‘‘triplet’’) was filled in se-
quentially red, red, and then green. Subjects were instructed
to observe the first two red ‘‘cues’’ and to indicate the location
of the green ‘‘target’’ by pressing a spatially corresponding
button as quickly as possible with their right hand. Cues
were displayed one after the other for 120 ms each (150 ms
inter-stimulus interval) and were followed by the target,
which remained in view until participants made a correct re-
sponse. The next trial began after a 650 ms delay. Repetitions
(e.g., 111) and trills (e.g., 121) were not presented, because
they have strong pre-existing response tendencies (Boyer
et al., 2005; Cleeremans and McClelland, 1991; Howard
et al., 2008). Without being known to subjects, the TLT con-
tained a probabilistic regularity such that for a randomly cho-
sen set of 16 triplets the target was likely to follow the cues
(High Probability triplets, p = 0.90) whereas for the remaining
32 triplets, the target was unlikely (Low Probability triplets,
p = 0.10) (Simon et al., 2011a).

Subjects completed 750 trials in *30 min. Short breaks oc-
curred after every 50-trial block, during which the subject’s
mean RT and accuracy were displayed along with instruc-
tions to ‘‘focus more on speed,’’ ‘‘focus more on accuracy,’’
or ‘‘speed and accuracy are about right.’’ The instructions
were based on the subject’s mean accuracy for the preceding
block of trials and were intended to drive all subjects to 92%
accuracy.

Calculating SL scores

As in previous studies using the TLT, we used SL scores,
which measure learning unbiased by individual or group dif-
ferences in overall RT (Howard et al., 2008; Simon et al.,
2011a). To determine these scores, median RTs were calcu-
lated for all correct responses for each triplet for each subject
(overall accuracy in the task was high, *93%, so we omitted
a few trials). These median RTs were then correlated with the
actual triplet frequencies for that subject. Subjects who show
greater sequence-specific learning display greater negative
correlations between RT and triplet frequency, as responses
are faster to triplets that occur with greater frequency and,
thus, have more predictable targets. For ease of interpreta-
tion, the correlations were multiplied by �1 so that higher
SL scores reflect greater SL.

fMRI data acquisition

Subjects were scanned for 5:04 min during the resting state,
in which they were told to relax with eyes closed but to stay
awake and to not think of anything in particular. All subjects
verbally confirmed that they had remained awake for the du-
ration of the scan. Imaging was performed on a Siemens Trio
3T scanner (Erlangen, Germany). For the resting scan, 152
whole-brain images were acquired using a gradient echo
pulse sequence (37 slices, TR = 2000 ms, TE = 30 ms, 192 ·
192 mm FOV, 90 degree flip angle, and voxel dimensions
3 mm isotropic). The first 4 images of this run were discarded
to allow for signal stabilization. This scan was followed by ac-
quisition of a high-resolution T1-weighted structural scan
(MPRAGE) lasting 4:18 min (TR/TE = 2300/2.94 ms, TI = 900
ms, 90 degree flip angle, 1 slab, 160 sagittal slices with a
1.0 mm thickness, FOV = 256 · 256 mm, and matrix = 256 ·
256, resulting in an effective resolution of 1.03 mm isotropic
voxels).

Image preprocessing

Using SPM8 (Wellcome Department of Cognitive Neurol-
ogy, London, United Kingdom) implemented in MATLAB
(Version 7.10; Mathworks, Inc., Sherborn, MA), images
were corrected for translational and rotational motion by
realigning to the first image of the resting-state scan. All sub-
jects demonstrated less than 1.0 mm of translational motion in
any one direction (max translation = 0.94 mm) and less than
0.5� of rotation around any one axis (max rotation = 0.35�).
Since micro-movements have been shown to lead to spurious
correlations in previous functional connectivity studies
(Power et al., 2012), framewise displacement (M – SD = 18 –
0.08 mm) was included as a regressor of no interest in all
group-level analyses reported next, a procedure recommen-
ded to reduce motion artifact while preserving the power of
the study’s design and reducing the likelihood of Type II
error (Satterthwaite et al., 2012; Van-Dijk et al., 2012). Images
were slice-time corrected, normalized to an EPI template, and
smoothed using a Gaussian kernel with full width at half
maximum of 8 mm. For normalization, all functional images
for each subject were realigned to the first image using 2nd-
degree B-spline interpolation. This image was then used as
the source image, which was transformed to a standard
SPM-EPI template in Montreal Neurological Institute (MNI)
atlas space available in SPM8. The parameters used to trans-
form the source image to the template were then applied to all
functional images. The quality of the registration process was
assessed by visual inspection.

Finally, a band-pass filter of 0.01–0.1 Hz was applied to the
data to remove non-neuronal temporal trends and to restrict
signal variation to the frequency range established in the liter-
ature for fluctuations in resting-state data (Biswal et al., 1995).

Functional connectivity calculation

Seed region-of-interest creation. A bilateral dorsal cau-
date (DC) seed region of interest (ROI) based on coordinates
from Di Martino et al. (2008) was created using Marsbar (Brett
et al., 2002) as two spheres of radius 6 mm centered around
the coordinates [13 15 9] and [�13 15 9]. The seed location
is depicted in Figure 2. Following Di Martino and colleagues,
we chose our seed coordinates to be consistent with findings
from a meta-analysis of fMRI and positron-emission tomo-
graphy human neuroimaging studies (Postuma and Dagher,
2006), which demonstrated that there are functionally distinct
anatomical regions within the human striatum. Specifically,
dorsal regions of the caudate (defined as those where
z > 7 mm) were found to be more coactivated with cortical re-
gions involved in cognitive processes, while ventral regions
are coactivated with cortical regions underlying limbic and
motivational functions. In addition, this seed is consistent
with a previous event-related fMRI study using the TLT,
which reported greater task-dependent activation in dorsal
regions of caudate body in response to sequences occurring
with high versus low probability (Simon et al., 2012).

Nuisance signal identification. To identify the effects of
motion and physiological noise (i.e., respiration, heart rate),
time series approximating these signals were calculated for
the resting-state scan. Physiological noise was approximated
by obtaining signal time series from white matter and cere-
brospinal fluid segmentations of the MPRAGE image
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(Van-Dijk et al., 2010). Motion was obtained from the six re-
alignment parameter time courses from the motion correction
preprocessing step. Global signal regression was not per-
formed as a preprocessing step, because studies have
shown that this procedure can artificially induce negative cor-
relations in functional connectivity data (Murphy et al., 2009).

Voxelwise rsFC calculation. For each subject, partial cor-
relations were conducted between the bilateral DC seed time
series and the time series of every voxel in the brain, while
partialling out the motion and physiological noise time series.
Each subject’s individual connectivity maps were visually
inspected in order to confirm that they were not corrupted
by motion artifact. The resulting r-values were converted to
normally distributed Z-scores using Fisher’s transformation
to allow further statistical analysis of correlation strengths.
This produced a brain map of intrinsic connectivity strength
with the DC during rest for each subject.

Overall connectivity. We identified overall patterns of
connectivity with the DC by entering subjects’ individual
connectivity maps into a voxelwise one-sample t-test using
SPM8. All group-level results were restricted to gray matter
using an explicit gray matter mask from the SPM toolbox.
Monte-Carlo-based correction for multiple comparisons
(Ward, 2000) was carried out using tools implemented in
Analysis of Functional Neuroimages (AFNI) software (Cox,
1996). Briefly, we estimated the smoothness of the prepro-
cessed data using the 3dFWHMx utility, and then used the
3DClustSim tool to conduct 10,000 Monte-Carlo simulations
of random noise activations with that same smoothness,
within the same whole brain volume as the primary analyses.
These simulations revealed that clusters exceeding both a
voxelwise alpha level of p < 0.005 and a size of 100 voxels oc-
curred less than 5% of the time, corresponding to a corrected
p < 0.05 cluster-level significance threshold.

Connectivity correlations with SL scores and response
speed. The single-subject whole-brain maps of DC connec-
tivity strength were entered as the dependent variable into
two regressions testing for correlations with subjects’ SL
scores and average response speed, respectively, in a voxel-
wise fashion. Average response speed was calculated by de-
termining each subject’s median RT for all correct responses
in each 50-trial block, and then averaging across blocks to
obtain a single mean RT value for each subject. Results
were corrected for multiple comparisons at p < 0.05 using
the Monte-Carlo correction threshold described earlier.

Results

Sequence learning performance

Subjects’ SL scores indicated that they had become sensi-
tive to the probabilistic regularity in the task: An independent
sample t-test confirmed that overall SL scores (M – SD = 0.19 –
0.08) were significantly greater than zero, t(21) = 10.81,
p < 0.0001. As predicted, subjects also responded significantly
faster on average to high probability (M – SD = 326 – 32 ms)
than to low probability (M – SD = 343 – 35 ms) triplets, t(21) =
7.8, p < 0.0001.

Importantly, individual SL scores did not correlate with
subjects’ overall RT or accuracy, indicating that our learning
measure was not biased by individual differences in speed or
accuracy. Further, overall mean accuracy (M – SD = 0.93 –
0.03) indicated that the end-of-block feedback was successful
at driving subjects to respond with *92% accuracy.

DC connectivity networks

Mean resting-state connectivity networks of the DC
observed across all subjects are shown in Figure 3 and
Table 1. Connectivity patterns were similar to those observed
by Di Martino et al. (2008) using the same seed.

FIG. 2. Location of the bi-
lateral dorsal caudate (DC)
seed. The seed was created as
two spheres centered around
coordinates [13 15 9] and [�13
15 9].

FIG. 3. Resting state func-
tional connectivity (rsFC)
network associated with a bi-
lateral DC seed across all
subjects. Red represents posi-
tive connectivity, and blue
represents negative connec-
tivity. Results are corrected
for multiple comparisons at
p < 0.05.
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Correlations between DC connectivity and SL scores

Consistent with our hypothesis, voxelwise regression
using individuals’ SL scores as the predictor resulted in a pos-
itive correlation with a cluster in the right parahippocampal
gyrus extending into the right hippocampus (k = 117 voxels;
peak MNI coordinates [38 �30 �14]; r = 0.74, p < 0.0001),
such that subjects who had greater connectivity between
the DC and this region tended to show greater learning
(Fig. 4). Notably, this was the only positive correlation be-
tween whole-brain intrinsic connectivity of the DC and SL
scores to survive correction. This correlation occurred despite
the fact that the average value of intrinsic connectivity
between the DC and this region was close to zero at the
group level (M – SD =�0.043 – 0.19).

Follow-up analysis revealed that the positive correlation
between DC connectivity and SL scores was specifically

driven by the right DC. We separately calculated the whole-
brain connectivity maps of the left and right DC, and entered
these as the dependent variables into two regressions testing
for correlations with SL scores in a voxelwise fashion. As in
the analysis using the bilateral DC connectivity maps, the
regression using the right DC connectivity maps revealed a
positive correlation with a similarly located cluster in the
right parahippocampal gyrus (k = 139 voxels; [38 �32 �14];
r = 0.76, p < 0.0001). This cluster was not present in the regres-
sion using the left DC connectivity maps.

In addition, there were three regions whose connectivity
to the DC negatively correlated with SL scores, such that
subjects with greater connectivity between the DC and
these regions tended to show less learning: the left postcentral
gyrus (BA1; k = 210 voxels; [�46 �16 28]; r =�0.78, p <
0.0001), the right precentral gyrus (BA8; k = 108 voxels;
[46 8 44]; r =�0.70, p < 0.0001), and the right medial superior

Table 1. Whole-Brain Connectivity of the Dorsal Caudate Seed

Connectivity Region BA MNI coordinates (x y z) Peak Z k

Positive Caudate body 12 14 �2 6.53 37283
Middle cingulate 24 16 18 �4 6.42
Superior frontal gyrus 10 �20 52 8 6.07
Anterior cingulate 9/32 10 30 24 6.03
Thalamus �4 �6 8 5.99
Middle frontal gyrus 8 8 38 20 5.96
Inferior parietal lobule 40 �48 �64 44 4.94 1448
Middle occipital gyrus 19 �40 �82 36 2.87
Inferior parietal lobule 39 56 �60 40 4.65 1790

40 40 �62 46 4.53
Angular gyrus 1 56 �64 34 4.38 1362
Medial temporal gyrus 21 �56 �26 �14 4.26
Inferior temporal gyrus 20 �46 �26 �8 4.13

37 �62 �50 �10 3.25
Middle cingulate 31 �2 �30 40 4.23 1572

24 0 �10 34 4.00
23 �10 �56 10 3.47
30 14 �52 20 3.32

Precuneus 31/7 2 �44 38 3.65
Cuneus 17 10 �68 20 3.48

Negative Fusiform gyrus 37 �28 �50 4 2.96 137

MNI, Montreal Neurological Institute.

FIG. 4. Positive correlation between rsFC of the DC seed and sequence learning scores. (A) Positive correlation between se-
quence learning (SL) scores and DC connectivity was observed in a cluster in the right parahippocampus, extending into the
right hippocampus (peak Z = 3.70). (B) Scatter plot depicting the z-transformed correlation coefficients between the DC and
this cluster (x-axis) and SL scores (y-axis). MTL, medial temporal lobe.
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frontal gyrus (BA8; k = 118 voxels; [12 28 46]; r =�0.71,
p < 0.0001; Figure 5).

Correlations between DC connectivity
and response speed

Average response speed correlated with connectivity of the
DC to a cluster located in the right cuneus (BA 18; k = 125
voxels, [16 �88 12]; r =�0.66, p = 0.001) and left medial supe-
rior frontal gyrus (BA 10/32; k = 140 voxels, [�14 44 22];
r =�0.67, p = 0.001), such that subjects with stronger connec-
tivity between the DC and these regions tended to have faster
average response times. No regions correlated negatively
with response speed. Further, the correlation between DC-
MTL connectivity and average response speed (r =�0.15,
p = 0.50) was reliably smaller than that observed with SL
scores (z = 3.4, p = 0.0007). In sum, DC-MTL connectivity pre-
dicted SL but not overall speed in the task.

Discussion

This study investigated whether DC connectivity at rest is
related to individual differences in the implicit learning of
sequential, probabilistic regularities in a sample of healthy
adults. Supporting our hypothesis, subjects with greater pos-
itive rsFC between the DC and a cluster in the right MTL had
superior learning. Importantly, individual differences in
overall task performance cannot account for this relationship,
as SL scores were not correlated with subjects’ overall speed

or accuracy, and DC-MTL connectivity was not related to
subjects’ overall response speed in the task. Faster overall re-
sponse speed related, instead, to stronger connectivity of the
DC with cuneus and medial frontal gyrus, regions associated
with visual processing (Vanni et al., 2001) and response selec-
tion under uncertainty (Critchley et al., 2001), respectively.
Thus, the strength of a DC-MTL network in the resting
brain predicts how well one learns sequential probabilistic
regularities, but does not predict overall task speed.

To our knowledge, this is the first study which shows that
IPSL performance is correlated with connectivity of a task-
relevant region (the DC) at rest. Since all scans were collected
either before learning or well outside the timeframe when
consolidation might be expected to occur, our finding sug-
gests that rsFC is an intrinsic factor predictive of implicit SL
aptitude. The relationships we observed between SL perfor-
mance and rsFC of the DC with the MTL and frontal motor
regions may, therefore, reflect the integrity and functional
segregation of a task-relevant neural network.

Our results are consistent with those of previous studies
using task-dependent fMRI, which find that implicit probabi-
listic types of learning depend on an interaction between the
caudate and MTL. Specifically, MTL contributions to learning
may predominate early in training, while the caudate be-
comes particularly relevant to performance later (Albouy
et al., 2008; Poldrack et al., 2001; Rieckmann et al., 2010;
Schendan et al., 2003; Simon et al., 2012). Further, implicit
motor sequencing tasks show that greater SL is associated

FIG. 5. Negative correla-
tions between resting func-
tional connectivity of the DC
seed and SL scores. As
depicted in the left column of
the figure, negative correla-
tions between SL scores and
DC resting connectivity were
observed in clusters in the left
postcentral gyrus (peak
Z = 4.38), right medial supe-
rior frontal gyrus (peak
Z = 3.81), and right precentral
gyrus (peak Z = 4.10). On the
right are scatter plots depict-
ing the z-transformed corre-
lation coefficients between the
DC and these clusters (x-axis)
and SL scores (y-axis).
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with a pattern of increasing striatal and decreasing MTL
BOLD signal with practice, whereas individuals who do not
show this pattern demonstrate less learning (Albouy et al.,
2008; Rieckmann et al., 2010). These studies support the
idea that a precisely coordinated interaction (i.e., a shift
from hippocampus-dominant to caudate-dominant process-
ing) between these regions is related to learning ability. As
with these earlier task-dependent fMRI studies, our results
also support the importance of the interaction between the
DC and MTL by showing that the magnitude of IPSL is re-
lated to the strength of their connectivity at rest. A stronger
positive intrinsic functional association between these regions
at rest may enable more efficient interregional activation/
inhibition during the course of learning (i.e., promote ‘‘read-
iness to learn’’), thereby facilitating the observed interaction
between the DC and MTL during SL. Future studies could
examine this interpretation by combining task dependence
with rsFC.

An important caveat is that it is still unclear exactly
how the caudate and MTL interact during IPSL; the task-
dependent activation of these regions during implicit tasks
has been interpreted as both competitive (e.g., Poldrack and
Packard, 2003) and cooperative (e.g., Schendan et al., 2003).
Therefore, the positive relationship we report between DC-
MTL rsFC and ISPL does not allow us to make any conclu-
sions about whether the MTL is necessary for IPSL, as it is
plausible that a more positive resting connection between
the DC and MTL reflects the potential for more efficient sup-
pression of the MTL during IPSL tasks. Interpretation of the
MTL’s role in IPSL is further complicated by the fact that
there is some behavioral evidence of preserved SL in patients
with MTL damage (Nissen and Bullemer, 1987; Nissen et al.,
1989; Reber and Squire, 1994), suggesting that this region may
not be necessary for IPSL. However, such clinical groups
sometimes show less learning than healthy controls when
the to-be-learned sequences are more complex (the sort stud-
ied here) and/or when training is extended (Curran, 1997;
Nemeth et al., 2013; Vandenberghe et al., 2006), implying
that MTL involvement may be necessary under certain condi-
tions. Despite the mixed evidence from IPSL studies in clini-
cal groups, the bulk of the (albeit correlational) evidence in
healthy samples, such as the one tested here, have shown
that both caudate and MTL are activated during IPSL, al-
though frequently on different timescales. This could, there-
fore, indicate that these regions have distinct contributions
to this type of learning (Gheysen et al., 2011).

It is notable that rsFC between DC and MTL predicts IPSL
performance, even though there are a few direct anatomical
connections between these regions. This is not surprising in
light of evidence indicating that a direct anatomical connec-
tion is not necessary for functional connectivity in the resting
state (Honey et al., 2009). For SL, our earlier work using DTI
tractography suggests that this DC-MTL functional relation-
ship may be mediated via connections with the dorsolateral
prefrontal cortex (DLPFC) (Bennett et al., 2011). Early in train-
ing, SL scores were positively correlated with the microstruc-
tural integrity of the tract between the right MTL and DLPFC,
while later in training, learning scores positively correlated
with the integrity of left caudate to DLPFC tract. Moreover,
individual differences in the integrity of the left caudate-
DLPFC tract mediated the age differences in late-training
learning between younger and older adults, such that ac-

counting for that variability eliminated age differences in
learning. Thus, it is possible that the observed connectivity
between caudate and MTL was mediated by the DLPFC,
and further, that variability in caudate-DLPFC and MTL-
DLPFC anatomical connections could underlie learning
differences. Future studies could combine fMRI functional
connectivity and DTI to examine this possibility.

Although we did not predict any negative relationships,
connectivity between DC and several motor planning regions
was negatively correlated with SL. Higher SL scores were
predicted by less positive, more negative connectivity be-
tween the DC and clusters in the left postcentral gyrus
(BA1), right precentral gyrus (BA8), and right medial superior
frontal gyrus (BA8). These negative correlations are interest-
ing in light of anatomical (e.g., Lehéricy et al., 2004) and func-
tional neuroimaging evidence (e.g., Lewis et al., 2003) in
humans, suggesting that distinct striatal subregions underlie
motor and cognitive processes. Specifically, the caudate may
be primarily involved in networks supporting cognitive func-
tions, receiving input from and projecting to the DLPFC,
while the putamen may be primarily involved in motor
functions, receiving input from and projecting to frontal
motor areas [for reviews see (Alexander and DeLong, 1986;
Seger, 2008)]. Thus, the superior learning we observed in sub-
jects with less resting-state connectivity between the DC and
these regions might indicate that SL is maximized when
the supporting motor and cognitive circuits remain weakly
associated at rest. Importantly, the negative correlations we
detected do not imply that frontal motor regions are unim-
portant for task performance, but rather that they might be
involved in distinct striato-cortical loops from those support-
ing sequence-specific learning. Such functional segregation of
motor and cognitive networks at rest might facilitate more
efficient adaptation to the limited motor demands of the
TLT and a greater commitment of DC and MTL activity to
sequence-specific learning. Another possibility is that these
negative correlations occur because the TLT does not involve
motor sequencing, a key difference between this task and more
traditional SL tasks, such as the serial reaction time task. Rep-
lication using other tasks would, therefore, be informative.

Alternative interpretations

One important alternative interpretation of the present re-
sults relates to the implicit nature of the TLT and whether it,
or any implicit task for that matter, is truly ‘‘process pure.’’
That is, there could be occasional influences of explicit mem-
ory. Several published studies have used sensitive recogni-
tion tasks to show that learning in the TLT is implicit
(Howard et al., 2008; Simon et al., 2011a, 2011b, 2012), but
our only measure of awareness in the present study came
from a postexperiment interview (Simon et al., 2011a).
Although no one accurately described the regularities from
the TLT or reported using explicit strategies, this type of
awareness test is arguably less sensitive than others used in
prior studies. Therefore, one alternative interpretation for
the present results is that subjects who displayed more effec-
tive cooperative interaction between explicit and implicit
memory systems revealed enhanced learning. We cannot
rule out this possibility here. However, if MTL activation dur-
ing IPSL reflects influences from explicit memory processes,
then MTL activation would be expected to increase with

PREDICTING IMPLICIT SEQUENCE LEARNING 607



training, as people are most likely to become aware at later
stages of the task. The fMRI studies of IPSL cited here, how-
ever, show that MTL activation decreases over the course of
training. It is, therefore, unlikely that the implicit-explicit dis-
tinction can entirely account for MTL activation during IPSL.

Limitations and future directions

The present results should be interpreted in light of some
limitations. First, the length of our resting scan was relatively
short; longer scans may be more sensitive to individual differ-
ences (Anderson et al., 2011; Birn et al., 2013). However, reli-
able estimates of functional connectivity can be obtained in as
little as 4 min (Van-Dijk et al., 2010; p. 15), suggesting that our
scan length is sufficient. Second, our sample size is relatively
small, although comparable (or larger) than that of other pub-
lished studies using similar tasks (e.g., Bennett et al., 2011;
Rieckmann et al., 2010; Schendan et al., 2003; Simon et al.,
2012). Since the chances of Type I error increase in small sam-
ples, however, replication with a larger sample is desirable,
and future studies focusing on individual differences should
consider acquiring longer scans.

Third, our method of recruitment did not permit a tightly
controlled interval between the scan and behavioral testing.
Nevertheless, there was no evidence that the time interval
separating the scan from behavioral testing influenced learn-
ing, and our pattern of results remained when the two sub-
jects scanned after behavioral testing were removed from
the analyses. Thus, our results do not reflect consolidation
processes resulting from the learning task itself. More studies
of rsFC are needed, however, in order to better understand
the stability (and experience-induced plasticity) of resting
networks over time.

Conclusion

Our results are the first to show a relationship between
IPSL and rsFC of the DC and task-relevant regions and sug-
gest that the predictive value of resting networks is not exclu-
sive to explicit, goal-directed cognition. As predicted, subjects
who had greater positive connectivity between the DC and
MTL at rest revealed greater SL, adding to existing fMRI
and DTI evidence that the MTL supports IPSL in conjunction
with the caudate. In addition, our unexpected finding that
subjects with more negative connectivity between the DC
and frontal motor regions at rest revealed less learning sug-
gests that there may be functional segregation within neural
networks not only during tasks, but also at rest. Future re-
search should extend these findings by examining additional
characteristics associated with resting-state connectivity (e.g.,
age, genotype, and lifestyle) and by combining resting-state
fMRI with task-dependent fMRI and DTI techniques. Such
research would help bolster evidence that resting-state
connectivity is an intrinsic factor contributing to individual
differences in a variety of cognitive processes, now including
IPSL.
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