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Abstract

Comprehension of narrative stories plays an important role in the development of language skills. In this study,
we compared brain activity elicited by a passive-listening version and an active-response (AR) version of a nar-
rative comprehension task by using independent component (IC) analysis on functional magnetic resonance im-
aging data from 21 adolescents (ages 14—18 years). Furthermore, we explored differences in functional network
connectivity engaged by two versions of the task and investigated the relationship between the online response
time and the strength of connectivity between each pair of ICs. Despite similar brain region involvements in au-
ditory, temporoparietal, and frontoparietal language networks for both versions, the AR version engages some
additional network elements including the left dorsolateral prefrontal, anterior cingulate, and sensorimotor net-
works. These additional involvements are likely associated with working memory and maintenance of attention,
which can be attributed to the differences in cognitive strategic aspects of the two versions. We found significant
positive correlation between the online response time and the strength of connectivity between an IC in left in-
ferior frontal region and an IC in sensorimotor region. An explanation for this finding is that longer reaction time
indicates stronger connection between the frontal and sensorimotor networks caused by increased activation in
adolescents who require more effort to complete the task.
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Introduction

COMPREHENSION OF NARRATIVE STORIES involves com-
prehending short spoken sentences, which elicits multiple
levels of dynamic language processing including phonological,
semantic, and syntactic (Gaillard, 2004; Humpbhries et al., 2007,
Karunanayaka et al., 2007; Szaflarski et al., 2012; Vannest et al.,
2009b; Xu et al., 2005). This dynamic process is supported by a
complex and extensive language networks covering frontopar-
ietal, frontotemporal, and temporoparietal regions (Berl et al.,
2010; Hickok and Poeppel, 2007; Karunanayaka et al., 2007;
Schmithorst et al., 2007; Szaflarski et al., 2012). Previous func-
tional magnetic resonance imaging (fMRI) studies have shown
that narrative comprehension skills play an important role in
language development (Holland et al., 2007; Karunanayaka
etal.,2007; Lin et al., 2011; Schmithorst et al., 2006, 2007; Sza-
flarski et al., 2012; Vannest et al., 2009b) and in building a
foundation for reading (Horowitz-Kraus et al., 2013).

A recent 10-year longitudinal fMRI study of narrative com-
prehension in 30 children starting at age 5—7 revealed progres-
sively and linearly increasing involvement of Brodmann (BA)
21/22 and adjacent banks of the superior temporal sulci during
the developmental period from ages 5-16 (Szaflarski et al.,
2012). Their findings of the overall activation in bilateral tem-
poral brain regions were remarkably similar to the results pre-
viously reported in cross-sectional studies from 313 children
(ages 5—18 years) (Holland et al., 2007; Karunanayaka et al.,
2007; Schmithorst et al., 2006, 2007). A passive-listening
(PL) version of the narrative comprehension task was used
in these studies. Given the complexity of narrative comprehen-
sion, an active-response (AR) version of the task was devel-
oped to overcome the disadvantages of the PL task including
loud gradient noise during the presentation of the auditory
stimuli and lack of online performance measure (Vannest
et al., 2009a). The AR task utilizes a sparse temporal sam-
pling fMRI design to acquire multiple volumes near the
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peak of the hemodynamic response curve while it allows an
auditory stimulus of short stories to be presented when the
MRI scanner is silent; so, there is no background noise from
the MRI gradients (Gaab et al., 2003; Schmithorst and Holland,
2004a). Moreover, comprehension question session was added
to the AR task to monitor ongoing comprehension of narrative
stories. Vannest et al. (2009a) found that both versions of the
narrative comprehension task stimulated similar brain activa-
tion patterns in the primary auditory cortex (PAC), superior
temporal gyrus (STG) bilaterally, and left inferior frontal
gyrus (IFG) by using a general linear model (GLM) analysis
on fMRI data from 20 children (ages 11-13 years). In addition,
more extensive activation in the dorsolateral prefrontal cortex
and anterior/posterior cingulate cortex (PCC) were involved
during the AR task (Vannest et al., 2009b).

In the current analysis, we aim to demonstrate the similari-
ties in the cortical networks for narrative comprehension
whether performing the PL or AR versions of the paradigm.
Doing so supports the validity of using the PL task in young
children (Schmithorst et al., 2006, 2008), even sleeping chil-
dren (Patel et al., 2007; Wilke et al., 2003), who might not
be able to perform the AR task. We also explore the participa-
tion of the additional response related brain regions engaged
during the AR compared with the PL version of the narrative
comprehension task. As previously noted by Vannest et al.
(2009b), we expect attention, working memory, and auditory
language association regions to participate in narrative com-
prehension. Using the AR version of the narrative comprehen-
sion task we aim to quantitate the participation and
connectivity of these brain regions in the narrative compre-
hension network by relating connectivity to a real-time mea-
sure of comprehension during the task. In addition, using
independent component analysis (ICA), a multivariate data-
driven approach, we aim to explore the hierarchical connectiv-
ity within language networks stimulated by the two versions of
the narrative comprehension task to quantitatively examine
the participation of higher order cognitive components in
comprehension of spoken narrative.

Given the importance of narrative comprehension in lan-
guage and neurocognitive development and the need to im-
prove our understanding of hierarchical language networks
involved in the narrative comprehension, the present study
has the overarching goal to expand our understanding of lan-
guage networks in the brain. Previous studies, using PL para-
digms and more rudimentary fMRI data analysis strategies
such as GLM (Vannest et al., 2009b), have provided a picture
of the basic brain network for comprehension of narrative sto-
ries (Gaillard, 2004; Karunanayaka et al., 2007; Lin et al.,
2011; Schmithorst et al., 2007; Szaflarski et al., 2012). The
current analysis adds to this basic network structure by exam-
ining the connections between primary auditory, auditory as-
sociation, attention, working memory, and other multimodal
language regions in the brain. We also examine the role that
these regions and their connections play in narrative compre-
hension performance. Our hypothesis is that the AR narrative
comprehension task will engage a similar auditory language
network to the PL version of the task but will also activate ad-
ditional brain regions that are specifically related to the re-
sponses required during the task. Further, we expect that
these additional brain regions will connect with high order se-
mantic, expressive, and associative language areas of the brain
in a way that correlates with comprehension of the narrative.
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Given this theoretical framework and motivation, the current
study examines the hypothesis according to a three-step pro-
cess. First, we use ICA to identify independent component
(IC) spatial maps for both tasks. Then, the corresponding IC
time courses (TCs) are used to investigate the functional net-
work connectivity (FNC) between IC spatial maps. At last, we
examine the correlation between the connectivity strength
with the online measure of response time reflecting task per-
formance for the AR task. This approach will test the primary
hypothesis and add to our understanding the narrative compre-
hension networks in the human brain. Finally, the results of
our three-step analysis can also validate our previous work
monitoring the emergence of narrative comprehension skills
in children using fMRI with either the PL version or the AR
version of the narrative comprehension task.

Materials and Methods
Participants

Twenty-one healthy, native English-speaking adolescents
(meantSD=16.5%1.1 years, 11 boys and 10 girls, 2 left-
handed) were drawn from a longitudinal subgroup recruited
from a larger cross-sectional sample of participants previ-
ously included in our fMRI studies of language development
(Holland et al., 2007). This cohort of 21 participants was
scanned in the final year of the longitudinal study in year
12, using both the AR and PL versions of the narrative com-
prehension fMRI paradigm. Nine of the original 30 subjects
were not scanned in this year due to orthodontic braces, mov-
ing out of the area, or unable to schedule the scans around
school and work commitments. All participants had no his-
tory of neurological or psychiatric disorders and agreed to
participate in the study after providing written informed con-
sent by parents and participant. This study was approved by
the Institutional Review Board at Cincinnati Children’s Hos-
pital Medical Center.

Paradigms

PL version. The PL version of the narrative comprehen-
sion task uses a periodic block design consisting of a 30-
sec story listening and a 30-sec random tone listening as
the on-off conditions (Karunanayaka et al., 2007; Vannest
et al., 2009b). Each story is composed of 10 sentences with
simple words and a variety of syntactic constructions. The
stories were developed by a speech-language pathologist
with language development expertise and were designed to
contain vocabulary, syntax, and concepts that could be un-
derstood by a 5-year-old child. This design was important
to the longitudinal study in which participants began their
participation beginning at the age of 5. The tones used for
the control condition were each of 1-sec duration at random
frequencies (400-2500 Hz) and random intervals (1-3 sec).
All participants were instructed to listen to the stories care-
fully in the scan session to answer story-related questions
after the image acquisition.

AR version. The AR version of the task enables to pres-
ent auditory story segments without MRI scan noise by using
temporal sparse fMRI acquisition technique (Schmithorst
and Holland, 2004b). There were three conditions including
story listening, question answering, and pure tone listening.
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A coherent story (differing in content, but similar in structure
and word frequency to the stories presented in the PL task)
was divided into 15 segments of two sentences with a 5-
sec duration. Each story segment was followed by a 6-sec
data acquisition with three whole-head volumes acquired
with a 2-sec repetition time (TR). After presentation of
each story segment and sequential data acquisition, a rele-
vant comprehension question was presented to the partici-
pant who was instructed to answer YES/NO regarding the
context of the story segment by button push, which was fol-
lowed by another 6-sec acquisition period. The third condi-
tion consisted of 5-sec random tone listening followed by a
third 6-sec acquisition period. The diagram of the paradigm
can be found in our previous publication (Vannest et al.,
2009a).

While the content of the stories in both versions of the nar-
rative comprehension task is nearly identical, there is one key
difference that likely affects the neurocognitive response to
the stimulus. The PL version presents each story as a contin-
uous narrative stream of 10 sentences in sequential order
without interruption. The AR on the other hand splits the
story into two sentence segments, interleaved with the
comprehension questions. This difference in the presentation
format allows real-time monitoring of task performance.
However, the interrupted narrative stream also produces dif-
ferences in brain activity related to storage of story segments
in working memory while responses are generated. This dif-
ference may affect responses to comprehension questions and
the integration of the story content and overall comprehen-
sion process.

Data acquisition

All images were acquired on a Philips Achieva 3T MRI
scanner (Philips Medical Systems, Best, The Netherlands). A
T2*-weighted, gradient-echo, echo planar imaging sequence
was used with fMRI parameters: TR/TE =3000/38 msec for
the PL task design, TR/TE =2000/38 msec for the AR task de-
sign, matrix size =64 x 64, slice thickness =5 mm, resulting in
a voxel size=4x4x5mm>. During the PL task, the whole-
head volumes were acquired at 110 time points for a total im-
aging time of 5.5 min. The initial 10 time points acquired from
the first rest interval were discarded to allow T1 relaxation
equilibrium. For the AR task, we used a customized sparse ac-
quisition protocol called Hemodynamics Unrelated to Sounds
from Hardware (HUSH) to acquire the images at the peak of
the hemodynamic response by taking advantage of the slow
rising hemodynamic response (about 6 sec after the onset of
stimulus) (Schmithorst and Holland, 2004b). This sparse
image acquisition method allows us to present auditory stimuli
or collect verbal responses during completely silent gradient
intervals. In each experimental condition, the scanner acquired
three consecutive whole-head volumes with TR of 2 sec after
each stimulus. During the AR task, the whole-head volumes
were acquired at 137 time points for a total imaging time
of 9min. The initial two time points were discarded due to
the effects of T1 relaxation equilibrium. In addition, a high-
resolution T1-weighted three-dimensional anatomical scan
was acquired using an inversion recovery prepared turbo
gradient echo acquisition protocol with the following param-
eters: TR/TI/TE=8.1/1052/3.7 msec and spatial resolution
of 1x1x1mm. Audiovisual stimuli were presented using
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an MRI compatible audio-video system with binocular goggles
and pneumatic headphones (Avotec, Inc.; SS3100/SV7021).

Data analysis

Pre-processing. During image reconstruction, a multiecho
reference scan was initially used to correct Nyquist ghosts and
geometric distortion due to BO field inhomogeneity (Schmi-
thorst et al., 2001). Reconstructed fMRI data were then pre-
processed offline using SPMS8 software (www.fil.ion.ucl.ac
.uk/spm/), including slice timing correction, realignment, and
coregistration, normalization, and spatial smoothing with an
8-mm full width at half-maximum Gaussian kernel. For the
PL task, all images were fed into the pre-processing pipeline to-
gether. For the AR task, the volumes were grouped according to
1st, 2nd, or 3rd volume of each sparse acquisition and were then
fed into the pre-processing pipeline separately. This is due to the
different mean intensity of the 1st, 2", and 3rd volumes as a re-
sult of different characteristic of T1 relaxation of the HUSH
protocol. Following pre-processing as described above for the
PL data, the Ist, 2nd, and 3rd volumes from the AR task
were fed into the ICA as three sessions.

Independent component analysis. The pre-processed
image volumes were submitted to subject-wise group ICA
(Calhoun et al., 2001b) implemented in the Group ICA of
fMRI Toolbox (GIFT, http://mialab.mrn.org/software/gift/
index.htm; Fig. 1 for all the steps). ICA is a multivariate
data-driven method that does not assume a hemodynamic re-
sponse function (Calhoun et al., 2001a). The subject-wise con-
catenation technique has been shown to produce the best
overall performance compared to other proposed methods
(Schmithorst and Holland, 2004b; Svensen et al., 2002).
Using the minimum description length (MDL) criteria modi-
fied to account for spatial correlation (Li et al., 2007) built into
GIFT we estimated 16 components (15.7%2.4, mean+ SD)
for the PL task and 17 (17.0£4.2, mean+SD) for the AR
task, respectively. The MDL model selection criterion is
designed to estimate the optimal dimension of the signal sub-
space in fMRI data before the Principal Component Analysis
(PCA) reduction step. Due to the different data acquisition
techniques, PL and AR data were subjected to MDL criteria
separately and returned different MDL values. Prior to the
first data reduction, all fMRI data were pre-processed using
an intensity normalization procedure. The fMRI data were
scaled to percent signal change from the mean, and the time se-
ries of each voxel was then divided by its average intensity. For
the PL fMRI data, the PCA reduction was first done at the sub-
ject level. PCA was used to reduce the data dimension as a pre-
processing step to simplify and reduce the complexity of the
ICA step as is standard practice in fMRI ICA processing
(Schmithorst et al., 2006). Twenty-four principle components
(PCs) from each subject were concatenated temporally for fur-
ther PCA reduction at the group level. For the AR fMRI data,
the PCA reduction was first done at the volume level and at the
subject level, and then 26 PCs from each subject were temporal
concatenated for another group-level PCA reduction (Fig. 1).

After the PCA reductions, we performed group ICA using
the FastICA algorithm (Hyvarinen, 1999) and ICASSO (Him-
berg et al., 2004) implemented in GIFT. FastICA is a stochas-
tic and iterative algorithm, so it possibly yields different results
at every run. ICASSO runs the FastICA algorithm several
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FIG. 1. Flow chart showing the pipeline used to process

the multisubject functional magnetic resonance imaging
(fMRI) data from the two versions of the narrative compre-
hension task through the group independent component anal-
ysis (ICA) and back projection to generate the independent
component (IC) maps and time courses shown in Figure 2.

times to ensure that the ICA identifies global rather than local
minima, which improves the robustness of estimated results
(Remes et al., 2011). We performed 25 ICASSO runs with dif-
ferent initial values. In ICASSO, the similarity between the ICs
from each run was measured by the absolute correlation and a
group-average agglomeration strategy was used to identify the
cluster of IC estimates. The “‘centrotype” of each cluster, as
the most reliable IC estimate, was used to obtain the TCs for
each subject. The “‘centrotype” of each cluster is defined as
the estimate from 25 ICASSO runs that is most similar to
other estimates in the cluster (Ma et al., 2011). For the PL
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fMRI data, the subject-specific TCs and spatial maps were es-
timated using a GICA3 back-reconstruction method in GIFT,
which has been shown to provide accurate spatial maps and
time series (Erhardt et al.,, 2011). For the AR task, since
GICA3 is not suitable for the two levels of subject-specific
PCA data reduction (volume-subject), the subject-specific
TCs and spatial maps were estimated using the spatiotemporal
regression (STR, or dual regression) method, which is based
on least squares (Beckmann et al., 2009; Calhoun et al.,
2004; Filippini et al., 2009).

ICs with the average intracluster similarity, defined by
a mutual information measure (Ma et al., 2011), from 25
ICASSO repetitions above 0.8 were selected to be further
inspected visually and to be sorted according to the (tem-
poral) correlation coefficient with the pertinent PL or AR
task design matrix. Two additional criteria were used to
select from among ICs that met the stability requirement
of ICASSO (ICS >0.8): (1) TC of the IC must signifi-
cantly correlate (p<0.05, Bonferroni-corrected) with the
relevant story stimulus design matrix, (2) the average Four-
ier component of the IC TC should correspond to the task
frequency with an absolute phase difference of less than
60° from the task TC. Using these criteria four task-related
ICs from the PL fMRI data and six task-related ICs from
the AR fMRI data were selected for subsequent FNC
analysis.

Prior to FNC analysis, a one-sample #-test was performed
using SPMS8 on the individual spatial IC maps on a voxel-
wise basis to determine the cortical regions active across
subjects (p <0.001, family-wise error [FWE]-corrected and
extent threshold of 20 voxels). In addition, for the AR
fMRI data, we also compared the spatial IC maps among
the three volumes using paired #-tests (p<0.001, FWE-
corrected and an extent threshold of 20 voxels).

Functional network connectivity. To determine functional
temporal connectivity among spatial ICs, the TC of each spa-
tial IC was analyzed in the FNC Toolbox (version 2.2, an ad-
dition toolbox for GIFT) (Demirci et al., 2009; Jafri et al.,
2008; Londei et al., 2006). A constrained maximal time-
lagged correlation method was used to compute Pearson’s
correlation between each pair of selected ICs and constrain-
ing the lag between the TC (Jafti et al., 2008). For the PL
task, maximal lag for the correlation calculation was 6 sec
(2*TR, TR=3sec). For the AR task, maximal lag was
4sec (2*TR, TR=2sec). All results were corrected for mul-
tiple comparisons between networks using p <0.05 false dis-
covery rate (FDR)-corrected. In addition, a Wilcoxon rank
sum test was used to compare correlations between the two
tasks for four similar ICs (p <0.05, Bonferroni-corrected).
For each task, we also compared FNC between boys and
girls (p <0.05, Bonferroni-corrected).

Correlation between connectivity and response time. The
AR version of the narrative comprehension task requires the
participant to answer questions related to each pair of sen-
tences presented in story segments during the scan. The re-
sponse time to each question is recorded for each subject’s
button-push responses. We used Spearman rank order corre-
lation coefficient (usually referred to as Spearman rho) to
compute the correlation between response time and connec-
tivity strength (p <0.05, Bonferroni-corrected).
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FIG. 2.

IC maps superimposed on a canonical brain image template from SPMS8. Significant clusters are determined by

one-sample z-test among all (n=21) subjects using p<0.001 (family-wise error [FWE] corrected and an extent threshold
of 20 voxels). (al) Four ICs for the passive-listening (PL) task; (a2) mean time courses (TCs) for the PL task from each
IC is plotted as a solid line with standard error of the mean (SEM) as a dashed line; (b1) six ICs from average of three
image volumes for the active-response (AR) task; (b2) mean TCs for the AR task from each IC is plotted as a solid line
with SEM as a dashed line. The images are in neurological orientation (left is left). All the ICs are color coded. Red:

IC1; green: IC2; blue: IC3; magenta: IC4; orange: IC5; purple: IC6.

Results

Performance data

For the PL task, participants correctly answered questions
on the postscan comprehension test (mean =+ standard devia-
tion=71.7% % 13.8%), which were based on the stories pre-
sented during the scan. For the AR task, performance data
were collected from the comprehension test during the imag-
ing scan. Unlike the PL version, the AR version provided us
with real-time measures of both comprehension accuracy
and response time. The mean accuracy from the AR task
was 92.1% +10.7%, which is significantly higher than the
PL task (p <0.00003). The mean response time was 800.6 *
219.2 msec.

Independent components

The spatial maps of the four task-related ICs for the PL
task and the six task-related ICs for the AR task are superim-
posed over a canonical template in SPM8 (Fig. 2 and
Table 1; p<0.001, FWE-corrected and an extent of 20 vox-
els). The corresponding average TCs extracted from the
“centrotype’” of clusters are plotted in Figure 2. In Figure
3, two-dimensional curvilinear component-analysis (CCA)
projections of the clustered 25 ICASSO runs of ICA estima-
tes are plotted, and the ICs that met our selection criteria
above for the FNC analysis are marked with black font let-
ters. Note the first criterion for IC selection from each task
is related to the stability of the IC over 25 ICASSO runs.
The stability is reflected in the compactness of the CCA
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FIG. 3. Two-dimensional curvilinear component analysis projections of the clustered IC estimates from 25 runs of
ICASSO. The pair-wise similarities S;; inside each cluster are marked with red lines. Note that the pairwise similarity
graph between estimates inside clusters is omitted if the average intracluster similarity is above 0.90. The best estimate (cen-
trotype) of each cluster is circled with light blue. ICs selected for each task and used in subsequent analysis are marked re-
spectively. Color images available online at www.liebertpub.com/brain

projections represented in Figure 3, and the best estimate of
the centrotype location is indicated as a cyan circle around
the dot of IC estimate. Descriptions of the spatial location
and function of each IC selected from the two tasks are pro-
vided below.

IC1 corresponds to the auditory network (Kalcher et al.,
2012; Schopf et al., 2010) including bilateral PAC (BA 41/
42), posterior part of STG (BA 22/38), and insula for both
tasks. IC1 for the AR task also extends superiorly to sensori-
motor areas, including bilateral precentral and postcentral
gyrus (BA 3, 6, 43), and right lateral inferior parietal lobule
(IPL; BA 40).

IC2 corresponds to the left-lateralized frontal language
network (Karunanayaka et al., 2007) including the left lateral
IFG covering the pars triangularis (BA 45), pars opercularis
(BA 44), and pars orbitalis (BA 47). Both the PL and AR
tasks yield similar significant clusters in IC2 with strong
left lateralization (Fig. 2 and Table 1).

IC3 incorporates the temporal language network, includ-
ing the left lateral Wernicke’s area (BA 22) and the right lat-
eral middle temporal gyrus (MTG; BA 21), for the AR task.
For the PL task, IC3 also captures activity in STG (BA 22)
and the left lateral postcentral gyrus (BA 40, 43), bilateral
precentral gyrus (BA 6, 13, 43, 44), and left lateral IPL
(BA 40; Fig. 2 and Table 1).

IC4 most prominently features an attention network in-
cluding anterior (ACC) and PCC and precuneus bilaterally
(BA 23, 29, 30, 31), in addition to the left lateral parahippo-
campal gyrus, for both the PL and AR tasks (Fig. 2 and Table
1). In addition, for both versions of the task, IC4 detects a
temporoparietal language network covering the left lateral

angular gyrus (BA 39), the right lateral supramarginal
gyrus (BA 40), and the right lateral STG (BA 22/39).

Both IC5 and IC6 are only present in the AR task. IC5 cor-
responds to sensorimotor network covering precentral and post-
central gyrus (BA 4, 6), likely caused by the button pushes used
to register subject responses to the questions about the stories.

IC6 captures the left dorsolateral prefrontal network in-
cluding dorsolateral prefrontal cortex (BA 6, 9, 46), cingu-
late gyrus, and thalamus (Fig. 2 and Table 1). These brain
regions are considered to be involved in higher order neuro-
cognitive functions known to subserve working memory and
attention and are. During the narrative comprehension task
IC6 regions are most likely involved with modulation of
the semantic association and retrieval and syntactic process-
ing regions in IC2 (BA 44, 45, 47) (Sabb et al., 2007; Schmi-
thorst et al., 2006).

Comparison of volumes

The AR fMRI data contains three image volumes that
were input into the ICA as separate sessions for each subject.
Through STR back-reconstruction, the spatial maps of ICs
for each volume were generated and compared using paired
t-tests (p <0.001, FWE-corrected and an extent threshold of
20 voxels; Fig. 4). There was no region that survived after
multiple comparison correction, which indicates that the spa-
tial map for each IC did not show significant difference
among the three volumes. Consequently, including each vol-
ume instead of the average of the three volumes in the group
ICA (Fig. 1 for all the steps) is a valid and effective method
to extract meaningful TCs for the FNC analysis.
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FIG. 4.

Time (volumes)

ICs from each volume of the fMRI data during the AR task are superimposed over canonical brain image template

from SPMS. Significant clusters are determined by one-sample #-test among all subjects using p <0.001 (FWE corrected and
an extent threshold of 20 voxels). (v1) Six ICs from volume #1; (t1) Solid line indicates the mean TCs for volume #1 with
standard error of the mean (SEM) indicated by the dashed lines; (v2) six ICs from volume #2; (t2) solid line indicates the
mean TCs for volume #2 with SEM indicated by the dashed lines; (v3) six ICs from volume #3; (t3) solid line indicates
the mean TCs for volume #3 with SEM indicated by the dashed lines.

Functional network connectivity

The FNC correlation matrices of the time-series data be-
tween each IC for each task are shown in Figure 5
(p<0.05, FDR-corrected). We found significant correlations
between all ICs for each task (Fig. 5). Among pairwise cor-
relations between IC1, IC2, IC3, and IC4, there was no sig-
nificant difference between the two tasks (p<0.05,
Bonferroni-corrected). There was also no significant gender
difference among all pairwise correlations for each task
(p<0.05, Bonferroni-corrected). In Figure 5, additional sig-
nificant connections between IC5-6 and IC1-4 for the AR
data indicated that these connections are likely related to
the additional sensory motor and cognitive aspects of the
AR task related to holding the story segments in working
memory to make appropriate judgments about the narrative
to answer the questions, and holding and preparing to use
the buttons to make responses to the questions during the
next phase of the task.

FNC correlation with response time

For the AR task, we used Spearman rank order correlation
coefficient to test whether there were significant correlations
between response time and connectivity strength between
ICs. We found significant correlation between response time
and connectivity strength between IC2 and IC5 (p<0.05,
Bonferroni-corrected; Fig. 6). Note that this connection is be-
tween the left lateralized IFG network and sensory motor
areas in the central sulcus related to button responses.

Discussion

The main findings from our study can be summarized in
five key points: (1) The AR task stimulates more extensive
FNC than the PL task with higher order neurocognitive ele-
ments needed for online narrative comprehension; namely
attention and working memory. (2) Only the AR task elicits
the sensorimotor (IC5) and the left dorsolateral prefrontal
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FIG. 5. Functional network connectivity (FNC) maps are shown in three-dimensional rendered brain space ( p <0.05, false
discovery rate corrected). Correlation matrices are plotted using red gradient color to represent correlation strength. All the
ICs are color coded. Red: IC1; green: IC2; blue: IC3; magenta: IC4; orange: ICS5; purple: 1C6.

(IC6) networks. (3) The two versions of the narrative com-
prehension task activate similar brain networks including
auditory, temporo-parietal, and frontoparietal language net-
works covering PAC, Wernicke’s area, and Broca’s area.
(4) The spatial maps of ICs from each of the three sequential
volumes acquired during the AR task highlight the same cor-
tical regions. (5) Significant correlation is found between the
online response time during the AR task and the strength of
connectivity between IC2 and IC5 (IFG-sensorimotor). In
the following paragraphs, we discuss these findings and
their relevance to the current literature in detail.

The study demonstrates that attention and working mem-
ory are key elements of the narrative comprehension network
in the adolescent brain as demonstrated by the multiple con-
nections between IC6 and other elements of the narrative
comprehension network. In this respect, this higher-order
neurocognitive component of the narrative comprehension
network represents a hub for processing of the narrative
stream for comprehension (Bullmore and Sporns, 2009;
Sporns, 2012). Using ICA we have validated previous

models for narrative comprehension using the PL task
while extending this model using the AR task in 21 ado-
lescents to examine the FNC between ICs for both tasks.
In addition, we have investigated the correlation between
the basic brain network activated during story listening
and higher-order neurocognitive elements that enable nar-
rative comprehension using the AR version of the narra-
tive comprehension task.

The AR task activated additional bilateral sensorimotor
(ICS5) and left dorsolateral prefrontal (IC6) networks, which
can be attributed to the different cognitive strategic aspects
of the two versions as we reported in our previous study
(Vannest et al., 2009a). In our previous study (Vannest
et al., 2009a), we used GLM to identify the differences in
brain activity between the two versions, whereas in this
study we used ICA to further explore the complex narrative
comprehension networks between the two versions. During
the AR task, the increased activation in the dorsolateral pre-
frontal networks is likely associated with working memory
and maintenance of attention (Paulesu et al., 1993; Smith
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FIG. 6. The FNC between IC2 and IC5 (indicated by the yellow line) is positively correlated with response time for n=21
participants. The linear regression between response time and FNC for this connection is highly significant with Spearman’s

rho=0.71 (p=0.004).

et al., 1998; Vannest et al., 2009a). The sensorimotor network
covering precentral and postcentral gyrus is associated with
motor planning of the button push. An additional region of ac-
tivation in the ACC on the medial surface of the frontal lobe
of the IC4 is likely to be involved in the regulation of atten-
tion and contributes to performance monitoring as suggested
by other studies (Carter et al., 1998; Macdonald et al., 2000).

We found a great deal of overlap in spatial maps of IC1, IC2,
1C3, and IC4 between the two versions, which indicates similar
functional-anatomic network involvements. For both tasks,
major regions in IC1 and IC3, including the left lateral STG
(BA 21/22), MTG (BA 21/22), and PAC (BA 41/42), IPL
(BA 40), precentral and postcentral gyrus (BA 6, 43), are re-
lated to perception of aurally presented story stimuli and
word recognition, in line with other studies (Binder et al.,
2011; Maiza et al., 2011; Mar, 2004; Schmithorst et al.,
2006; Scott and Wise, 2004; Szaflarski et al., 2012; Xu
et al., 2005). The left lateralized network covering IFG (BA
45/47) in IC2, which is crucial to syntactic processing is pres-
ent in both versions (Karunanayaka et al., 2007; Szaflarski
et al., 2012; Vannest et al., 2009a). Somewhat surprisingly,
conventional Broca’s area (BA 44) is only present in IC2
for the PL task but not for the AR task. This activity points
to the role of BA 44 in syntactic processing of the narrative
stream, which weighs more heavily in the PL task than the
AR task (Karunanayaka et al., 2007). The PCC present in
IC4 was hypothesized to be associated with the incorporation
of information into a story structure (Mar, 2004). The parahip-
pocampal gyrus in IC4 is associated with memory encoding
and retrieval, in line with previous studies (Gaillard, 2004;
Karunanayaka et al., 2007; Mar, 2004; Schmithorst et al.,
2006; Xu et al., 2005). Xu and coworkers (2005) observed
right hemisphere activity increased dramatically at the end

of story when narrative details must be combined into a coher-
ent whole. The right lateral supramarginal gyrus (BA 40) and
STG (BA 22/39) in IC4 likely contribute to the synthesis of
narrative story segments into a coherent whole story (Xu
et al., 2005).

In the AR version of the narrative comprehension task, we
found no significant difference among the spatial maps of
ICs between volumes after FWE-correction, though we
found less activation in bilateral auditory network for the
third volume compared with the other two volumes. This
finding indicates that the third volume is least sensitive to
the brain activity associated with the auditory stimulus
that ended at least 4 sec prior to acquisition of the volume.
In other words, the third volume is most sensitive to the
brain activity involved in the late stage of whole narrative
comprehension process including syntactic processing and
integration.

FNC, a recent extension of functional connectivity mea-
sure, was used to characterize FNC among ICs (Havlicek
et al., 2009; Jafri et al., 2008). This novel approach proposed
by Jafri and colleagues (2008) has been successfully utilized
to compare resting state networks (RSNs) between schizo-
phrenia patients and healthy controls, and to investigate
RSNs among patients with temporal lobe epilepsy, mixed
partial epilepsy, and healthy controls (Luo et al., 2012). In
this study, we used FNC method to investigate the network
connectivity among ICs instead of ROI-based structural
equation modeling technique. The AR task elicited two addi-
tional ICs (IC5 and IC6), which reduced the connectivity
among the other four ICs (IC1, IC2, IC3, and IC4; Fig. 5).
For the PL task, the macro-level connectivity among net-
works greatly resembled the macro-level connectivity
model detected by our previous large cohort fMRI studies
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(Karunanayaka et al., 2007; Schmithorst et al., 2007). How-
ever, further investigation of effective connectivity using
high temporal resolution data from magnetoencephalogra-
phy is necessary to establish directed information flows
and causal relationship within the networks.

As noted in the Methods section, the AR task differs from
the PL task in terms of the continuity of the story segments
presented to the listener. The AR task may place demands
on additional higher order neurocognitive domains that are
not required to the same extent for the PL task. In particular,
the neural elements highlighted in IC6 represent attention,
working memory, and other executive functions that are
not activated to the same extent in the PL task. Yet, the
mean accuracy of correct responses to comprehension ques-
tions for the AR task is significantly higher than for the PL
task. This could be due to the proximity of the comprehension
questions to the story segments in the AR task compared with
the PL task, in which comprehension tests are administered
after the MRI scanning session. The magnitude of the differ-
ences in response accuracy between the tasks may also be
attenuated because the questions during the AR task are an-
swered in the MRI scanner; an unnatural setting that could
be a distractor for children. It is also possible that the response
accuracy in the AR task condition is improved because the
listener has only to answer questions that are directly related
to the two sentence story segment heard immediately prior to
the questions. In this case the listener does not need to retain
the entire story sequence in memory to provide accurate re-
sponses. On the other hand, the listener does not have the en-
tire narrative stream of each story available during the AR
task to provide context for comprehension accuracy.

To further understand the neural substrates supporting AR
narrative comprehension task, we correlated online perfor-
mance data from the AR version with the connection strength
for all of the network combinations. Interestingly, only one
network connection between IC2 and IC5 showed significant
positive correlation with the response time (Fig. 6). The
major region in IC2 covers the left IFG (BA 45/47), an
area crucial for controlled semantic retrieval processes
(Gabrieli et al., 1998; Thompson-Schill et al., 1997). The
main regions in IC5 include MFG (BA 6), precentral and
postcentral gyrus (BA 4, 6), which are crucial for motor plan-
ning (Table 1). Our results suggest participants who took lon-
ger time to respond to the comprehension questions are likely
to maintain stronger connection between the IFG and premo-
tor cortex because they need more time to retrieve the story
contents. This finding is consistent with our expectation that
those who require less effort to answer the questions would
also respond more quickly.

Conclusions

In summary, this is the first study that uses ICA paired with
FNC analysis to examine how the language networks change
with subtle changes in the structure of a narrative comprehen-
sion task. Both versions of the task successfully engaged lan-
guage networks supporting narrative comprehension. Besides
the similarity, the AR task elicited more extensive networks
involving additional memory, attention, self-monitoring,
and premotor planning networks due to the requirement of
real-time responses to the comprehension questions. Thus,
the AR task may be appropriate for older children or adults,
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but not for younger children, whereas the PL task can be
used even when the participant is sleeping (Wilke et al.,
2003) or is in sedation (Patel et al., 2007). Furthermore, the
use of temporal sparse acquisition technique in the AR task
allows us to acquire real-time behavior measures, leading to
our findings of significant positive correlation between the
online response time and the connectivity strength between
the frontal language network and sensorimotor network,
which connects behavioral measures with imaging data.
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