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Repeatability Analysis of Global and Local Metrics
of Brain Structural Networks

Jennifer Andreotti,1 Kay Jann,1,2 Lester Melie-Garcia,1,3 Stéphanie Giezendanner,1

Thomas Dierks,1 and Andrea Federspiel1

Abstract

Computational network analysis provides new methods to analyze the human connectome. Brain structural net-
works can be characterized by global and local metrics that recently gave promising insights for diagnosis and
further understanding of neurological, psychiatric, and neurodegenerative disorders. In order to ensure the val-
idity of results in clinical settings, the precision and repeatability of the networks and the associated metrics must
be evaluated. In the present study, 19 healthy subjects underwent two consecutive measurements enabling us to
test reproducibility of the brain network and its global and local metrics. As it is known that the network topology
depends on the network density, the effects of setting a common density threshold for all networks were also
assessed. Results showed good to excellent repeatability for global metrics, while for local metrics it was
more variable and some metrics were found to have locally poor repeatability. Moreover, between-subjects dif-
ferences were slightly inflated when the density was not fixed. At the global level, these findings confirm previous
results on the validity of global network metrics as clinical biomarkers. However, the new results in our work
indicate that the remaining variability at the local level as well as the effect of methodological characteristics
on the network topology should be considered in the analysis of brain structural networks and especially in net-
work comparisons.

Key words: network metrics; repeatability; structural connectivity; test–retest

Introduction

The human brain is a large and complex system of
interconnected regions. Computational network analysis

gives the tools to analyze large-scale networks such as the
human connectome, and recently this approach gave interest-
ing insights into the human brain functional and structural or-
ganization as well as on the relationship between them
(Bullmore and Sporns, 2009; Dennis et al., 2012a; Echter-
meyer et al., 2011; Guye et al., 2010; Hermundstad et al.,
2013; Jann et al., 2012; Wang et al., 2013; Wedeen et al.,
2005). Recent studies also highlight the potential advantage
of relating functional and structural connectivity to behavioral
response and disease-related impairments (Bernhardt et al.,
2011; Guye et al., 2010; He et al., 2009; Langer et al., 2012;
Li et al., 2009; Liu et al., 2008; Zhao et al., 2012).

Structural connectivity may be assessed by the combina-
tion of diffusion-weighted imaging (DWI) tractography
and methods of gray matter parcellation. The parcellation

is used to define the regions of interest (ROIs) that become
the nodes of the network, while the edges are defined by trac-
tographic maps based on DWI datasets. Mostly, an edge be-
tween two nodes exists if a putative fiber tract between the
ROIs defining the nodes is reconstructed by the tractography
algorithm. In addition, a weight can be attributed to each
edge to better quantify connectivity. In the literature, the ques-
tion of the effects of different weights or thresholds on the net-
works has been addressed (Cheng et al., 2012; Iturria-Medina
et al., 2007; Rubinov and Bassett, 2011; Sanabria-Diaz et al.,
2010; van den Heuvel and Sporns, 2011). Several scalar met-
rics can be computed from the connectivity matrix of the
network and enable a better understanding of the complex
organization and topology of the connectome.

Since the process from data acquisition to networks met-
rics involves several steps, it is prone to several potential
sources of bias and errors inducing variability in the outcome
(Vaessen et al., 2010). As reliable and repeatable measures
are fundamental to draw solid clinical conclusions, the
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question of repeatability of the network and of the metrics
characterizing its architecture is essential. Previous works
assessed the repeatability of the connectivity matrix (Cam-
moun et al., 2012; Hagmann et al., 2008) as well as the re-
peatability of the network metrics (see Table 1), mostly
with focus on the global metrics (Bassett et al., 2011;
Buchanan et al., 2013; Cheng et al., 2012; Dennis et al.,
2012b; Owen et al., 2013; Vaessen et al., 2010). Vaessen
and associates (2010) analyzed the interscan repeatability
of small-world properties of structural brain networks vary-
ing the parameters of the diffusion tensor imaging (DTI) se-
quence. Bassett and colleagues (2011) assessed the interscan
repeatability of topological and physical graph metrics with
different atlases (ROIs), resolutions, and acquisition schemes
(DTI/diffusion spectrum imaging [DSI]), and Cheng and as-
sociates (2012) analyzed repeatability of weighted global
metrics. The most recent study was presented by Owen and
colleagues (2013) and addressed the question of repeatability
intra- and intersite. All these studies showed a general low-
moderate to good Interscan repeatability for global metrics,
except for the latter in which good to excellent repeatability
was found for most of the binary metrics. In these works, an-
alyses on the local level were much less detailed and presented
for selected measures only. Only the latest work of Buchanan
and associates (2013) presents a more systematic analysis of
four local metrics. Available results suggest that at the local
level (edges, nodes) variability is larger than for the summary
global metrics (Bassett et al., 2011; Buchanan et al., 2013;
Owen et al., 2013; Vaessen et al., 2010).

Despite the fact that previous works already focused on
the reliability of networks and their metrics, there is still a
lack of knowledge in this field as many methodological deci-
sions have to be taken at each step of the analysis that could
potentially affect reliability of the results. The effects on re-
liability were considered only for part of these methodolog-
ical characteristics, and it is fundamental to have a more
detailed knowledge on the effects of each of these on the re-
liability of the results to obtain a pipeline that guarantees sta-
ble results across measurements. Additionally, because of
the complexity of these methods, a large variability exists
in previous studies at different levels such as the tractogra-
phy algorithm, the diffusion characterization, the acquisition
method, the maximal b-value, the weighting scheme, and the
thresholds applied (Table 1). Considering this variability in
previous works and the fact that in total only 93 subjects
were included in these studies, it is clear that further analyses
on networks metrics reliability are mandatory. Therefore, in
this work, a test–retest analysis of structural brain networks
and their metrics is presented to replicate previous results
and to assess new questions in this field. Both these aspects
are fundamental for the application of brain network analysis
in clinical research. For global network metrics and the con-
nectivity matrices, a summary of previous results is given in
order to highlight replications and better place our analysis in
relation to previous literature. In addition, three specific
questions that were not covered in previous works are con-
sidered. First, the effects of variability across measurements
on the average network are considered. Second, a systematic
analysis of the repeatability of local binary and weighted
metrics is presented. Finally, the effects of using a common
density threshold for all the individual networks on the met-
rics repeatability are evaluated. Many network metrics de-

pend on the number of nodes and edges composing the
network. Therefore, a density threshold is often used to ob-
tain networks with the same number of edges, but the bene-
fits and drawbacks of this threshold are an open issue in
the field.

Methods

Subjects and measurements

Nineteen healthy subjects participated in the study (10 fe-
male, 9 male; mean age – standard deviation [SD] 26.1 – 2.7
years) and gave their written informed consent before begin-
ning the study. Exclusion criteria were as follows: any cur-
rent or previous neurological or psychiatric disorder, intake
of psychotropic medication or psychoactive substances
(e.g., caffeine, nicotine, or alcohol less than 6 h before mea-
surement), as well as standard exclusion criteria for magnetic
resonance imaging (MRI) investigations. The study was ap-
proved by the ethics committee of the Canton of Bern, Swit-
zerland.

Images were acquired on a Siemens Trio 3T scanner (Sie-
mens Erlangen). The protocol for DWI used a spin-echo (SE-)
echo-planar imaging (EPI) sequence with two 180� radio fre-
quency (RF) pulses (repetition time [TR]/echo time
[TE] = 6800/93 msec, matrix size = 128 · 128, field of view
(FOV) = 256 · 256 mm2, 50 slices, slice thickness = 2 mm,
gap thickness = 0 mm, pixel bandwidth 1346 Hz/pixel). Dif-
fusion sensitizing gradients were applied at a maximal
b-value of 1300 sec/mm2 and along 42 noncollinear direc-
tions. Additionally, four sets of images were acquired
using b-value 0 sec/mm2. Each subject underwent two con-
secutive DWI sessions. The use of consecutives measure-
ments without interruption may decrease the variability
because of distinct repositioning (see Limitations section
for further discussion).

In addition, T1-weighted anatomical images were ac-
quired with a 3D modified driven equilibrium Fourier trans-
form (MDEFT) sequence (Deichmann et al., 2004) with a
12-channel head coil (TR/TE = 7.92/2.48 msec, matrix size =
256 · 256, FOV = 256 · 256 mm2, 176 sagittal slices, slice
thickness = 1.0 mm, flip angle = 16�, inversion with symmet-
ric timing [inversion time = 910 msec], fat saturation).

Data processing

1. Motion and eddy currents correction of diffusion
weighted (DW) images was performed in the func-
tional magnetic resonance imaging of the brain
(FMRIB) software library version 4.1 (FSL) (www
.fmrib.ox.ac.uk/fsl; Smith et al., 2004). After coregis-
tration of DW images with T1-weighted images, an au-
tomated parcellation (Fischl et al., 2004) giving 74
cortical and 7 subcortical regions per hemisphere
was performed in FreeSurfer (Athinoula A. Martinos
Center for Biomedical Imaging, Harvard-MIT, Boston,
MA; http://surfer.nmr.mgh.harvard.edu). The obtained
structures were then used as ROIs for fiber tracking.
Because of incomplete coverage in some subjects
and/or high noise level in the DW images, lower tempo-
ral regions were excluded leaving a total of 154 ROIs
(see the section Data quality analysis in the Supplemen-
tary Material; Supplementary Data are available online
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at www.liebertpub.com/brain). Labels and names of the
ROIs can be found in Supplementary Table S1.

2. Probabilistic fiber tracking was performed in FSL
according to Behrens and colleagues (2003). A separate
connectivity map was created for each ROI. For each
map, seeds were placed in each voxel of the ROI and
an index of connectivity, representing the number of
generated paths that passed through it, was assigned
to each brain voxel. Normalized indices of connectivity
were obtained by division by the size of the seed ROI
times the number of paths started at each seed. Track-
ing parameters used were 5000 generated paths from
each seed point, 0.5 mm step size, 500 mm maximum
trace length, and – 80� curvature threshold (parameters
suggested in the FSL software package).

3. A network is given by a set of nodes connected by
edges that can be undirected or directed and weighted
or unweighted. It can be represented by the adjacency
matrix A in which each column/row is associated to a
node and the element Aij > 0, if there exist an edge be-
tween node i and node j. The weighted individual net-
works for each subject were constructed as follows:

a. Each ROI was a node.
b. An undirected edge aij between nodes i and j was

established if the sum of the normalized connectiv-
ity indices from node i to node j (or vice versa) was
higher than the connectivity threshold (Tc) (see the
section Connectivity, density, and average thresholds).

c. The edge weight w(aij) was computed as the sum of
the connectivity indices between nodes i and j. As
tractography was started in every voxel of each
ROI, the weight w(aij) was corrected by the total
number of streamlines started in nodes i and j; that
is, the weight between node i and node j was
given by the total number of reconstructed stream-
lines between the two regions divided by the number
of paths started in each seed voxel times the size of
the two nodes.

d. The elements of the adjacency matrix Aw are given
by w(aij), while the binary connectivity matrix A is
defined as Aij = 1, if Aw

ij > 0 and 0 otherwise.

4. The average network was constructed using all the in-
dividual networks and depend on the average network
threshold (Tavg). In the average network, an edge be-
tween i and j exists, if it exists in at least Tavg of the
subjects’ networks. (see the section Connectivity, den-
sity, and average thresholds). The weight of the edge is
the average of the weights in the individual networks in
which the edge exists (van den Heuvel and Sporns, 2011).

5. A further density threshold (TD) was set on the individ-
ual weighted networks in order to obtain networks with
the same number of edges (see the section Connectiv-
ity, density, and average thresholds).

Connectivity, density, and average thresholds

Two different types of threshold were set on the individual
weighted networks. First, the connectivity threshold was set
in order to eliminate low connection probabilities. In partic-
ular, an edge between two regions i and j existed only if, in at
least one of the two specific ROI tractography maps, the sum
of the normalized connectivity indices toward the other re-

gion was higher than Tc. The analyses were completed for
different Tc in order to assess the influence of this threshold
(Tc = [0.5, 1, 5, 10] · 10�4).

Second, a threshold TD on the network density (i.e., the
proportion of existing edges over the total number of possi-
ble edges) was used in order to obtain networks with the
same number of edges and nodes. Network properties and re-
producibility were assessed for different density thresholds.
For every Tc, the range of TD was from the maximum com-
mon density over all subjects (TDmax) down to 5% (Bassett
et al., 2011).

In addition, the threshold Tavg was used to define the
average network. In particular, Tavg defines the minimal
percentage of individual networks that needs to have an
edge to include it in the average network. In order to test
the influence of this threshold, Tavg was varied from 65%
to 85%.

Graph metrics

In our analysis the following binary and weighted metrics
are considered: degree (Deg), strength (Sw), clustering coef-
ficient (CC), distance measures (distance matrix [Dist]; aver-
age node distance [NDist]) and characteristic path length (L),
global (Eff) and local efficiency (LocEff), betweeness
centrality (BC), assortativity (Ax), modularity (Mod), and
small-world property (SW). The last three metrics are com-
puted only at the global level, while the others can be
assessed both globally and locally. Hubs are defined as in
van den Heuvel and Sporns (2011), while modules and mod-
ularity are computed with the algorithm of (Newman, 2004,
2006) (25 repetitions). Detailed definitions can be found in
the section Graph metrics definitions in the Supplementary
Material, and further explanations are given in Rubinov
and Sporns (2010). The notation w indicates weighted net-
work metrics.

Quantification of reproducibility

Interscan reproducibility of the network and its metrics
was evaluated by several coefficients. First, similarity be-
tween weighted matrices (connectivity, distance) was quan-
tified by the Pearson’s correlation coefficient (Cammoun
et al., 2012; Hagmann et al., 2008), while for binary matrices
the edge agreement (EA), given by the proportion of the con-
sistent edges (either present or absent) in both matrices, is
used (Owen et al., 2013). Between-subject (BS) measures
of similarity were computed by averaging over all measure-
ments.

For local and global metrics, the intraclass correlation co-
efficient (ICC) and the coefficient of variation (CV) were
computed. The first is defined as

ICC =
r2

BS

r2
BSþr2

WS

where r2
BS is the BS variance and r2

WS is the mean within-sub-
ject (WS) variance (Lachin, 2004). The ICC measures the
proportion of total variance that is accounted for by the BS
variance. Hence, ICC over 0.5 indicates that Interscan varia-
tion is lower than BS variance. A more detailed classification
of ICC values is given in Landis and Koch (1977): values
below 0.4 for ‘‘poor’’ reproducibility, between 0.4 and
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0.75 for ‘‘fair to good’’ reproducibility, and higher values for
‘‘excellent’’ reproducibility. CV is given by the mean WS
standard deviation divided by the overall mean measure
(Lachin, 2004; Tooth et al., 2005). This coefficient is a nor-
malized measure of the variability of a metric and quantifies
the smallest possibly detectable change in repeated mea-
sures. The CV gives an absolute indication on the precision
of the metric considered, while the ICC is linked to its sen-
sitivity to BS variability, but gives a measure relative to
the WS variability. Although brain structural networks are
similar among healthy subjects (Bassett et al., 2011; Hag-
mann et al., 2008), in the analysis of repeated measurements
smaller WS variability than BS variability is expected in
combination with good precision of the metrics.

In addition, the variability of the average network was an-
alyzed by constructing two separate average networks using
the two measurements. In particular, two subsets of measure-
ments were created by assigning randomly a measurement of
each subject to one of the subsets. The two average networks
were then constructed as described above (Methods: Data
Processing). The variability of the average network metrics
was quantified by the percent difference, that is, the ratio
of the difference between metrics of the two networks over
their average.

Finally, in order to evaluate similarity between module de-
compositions of the different networks, the Rand index (RI)
was used (Rand, 1971).

Software description and statistics

Graph metrics were computed using the MorphoConnect
toolbox (Melie-Garcı́a et al., 2010) and subroutines of the
Brain Connectivity toolbox (https://sites.google.com/site/
bctnet/; Rubinov and Sporns, 2010). For visualization of net-
works, BrainNet Viewer was used (www.nitrc.org/projects/
bnv/; Xia et al., 2013). Repeated-measures ANOVA (rANOVA)
analyses were used to test for differences caused by threshold
levels. In particular, one-way rANOVA was used to analyze
separately the effects of threshold TD, Tavg, and Tc. Further
on, a two-way rANOVA was used to test the effects of the
condition with/without TD at different Tc levels. In addition,
a multiple linear regression was used to analyze the relation-
ship between local metrics, repeatability, and ROI size.
When possible, box-cox transformation was used to obtain
normality. If assumptions of parametric tests were not satis-
fied, nonparametric tests were used instead (Wilcoxon Signed
Rank test, Mann–Whitney U-test, Friedman test). The signif-
icance threshold was set to p < 0.05 Bonferroni-corrected for
multiple testing. Statistical analyses were performed in R (R
Development Core Team, 2010) and Matlab (MathWorks).

Results

The average network

Properties of the average network. Weighted and binary
global metrics for the average network are summarized in
Table 2. The average network modularity was 0.66 and the
decomposition into 8 optimal modules is presented in Figure
1 (left). Larger nodes represent connector hubs and medium-
sized nodes are provincial hubs. In Figure 1 (center), the con-
nections that are stronger than the average are shown. In
addition, nodes size and color are assigned according to
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their degree. When the binary network was considered, only
4 modules were found with no inter-hemispheric module
(Fig. 1, right).

Variability in the average network. In order to evaluate
the effects of variability between measurements on the aver-
age network, two average networks were created by random
allocation of sessions to one of the two networks (see the sec-
tion Quantification of reproducibility).

Variability of global properties. The percent difference
of global measures (Supplementary Table S2) between the
two networks was of 2% on average (over all Tavg and Tc).

The highest percent difference was found for Ax with 9%
on average over all thresholds.

Variability of local properties. For the variability of
local properties, the Bland–Altman plot was considered.
Results showed a tendency of larger errors for larger metrics
values for weighted clustering coefficient (CCw), CC, Sw,
Deg, and weighted average node distance (NDistw). This ef-
fect was stronger for CCw and NDistw (Fig. 2, left).

Effects of thresholds Tavg and Tc. The effect of Tc on the
global properties of the average network is reported in Figure
2 (right). For most of the metrics the maximal change was of

FIG. 1. General structure of the average network. Left: decomposition into modules of the average network (Tc = 0.0005,
Tavg = 75%). Different colors are associated to the eight different modules. Large-sized nodes are connector hubs and medi-
um-sized nodes are provincial hubs specific to this decomposition. Center: Average network (Tc = 0.0005, Tavg = 75%) with
size and colors of nodes depending on the degree. For clarity, only edges with strength over the mean strength are shown
(unweighted). Right: decomposition into modules of the binary average network (Tc = 0.0005, Tavg = 75%). Different colors
are associated to the four different modules. Large-sized nodes are connector hubs and medium-sized nodes are provincial
hubs specific to this decomposition. Labels and names of the ROIs can be found in Supplementary Table S1. ROIs, regions of
interest; Tavg, average network threshold; Tc, threshold connectivity.

FIG. 2. Left: variability of local
network metrics of the average net-
work. Bland–Altman plots for the node
properties (CCw [top] and NDistw

[bottom]) of the two average networks.
Right: dependency of global metrics of
the average network on threshold Tc.
Plot of the ratio of global metrics with
increasing threshold Tc over the met-
rics with lowest Tc (average network
with Tavg = 75%). CCw, weighted
clustering coefficient; NDistw,
weighted average node distance.
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20–30% as compared with the value with minimal Tc, but for
CCw there was an increase of 140% and for Deg there was a
reduction of 60%. Also for the threshold Tavg, the largest ef-
fect was seen on Deg and CCw. The percent change between
measurements was not significantly different for different Tc
and Tavg (Supplementary Table S2; one-way rANOVA Tavg:
p < 0.35 and Tc: p < 0.43). The RI for the comparison of the
partition into modules to the one for Tavg = 75% and
Tc = 0.0005 (Fig. 1, left) was between 0.93 and 0.98. Overall,
RI was higher for higher threshold Tavg and Tc.

Unthresholded individual networks

Networks in which TD was not applied are denoted as
unthresholded and were analyzed to investigate the effect
of setting a common density threshold on the networks.
The analyses were completed for all Tc levels, and the
obtained results were similar. Therefore, when the effect of
Tc was not the focus of the analysis, results are reported
for Tc = 0.0005 only.

Similarity analysis: unthresholded connectivity matrices
and modules. Weighted similarity within subject (WS;
0.97 – 0.02) was higher than BS (0.78 – 0.05), and the simi-
larity between individual networks and average network
was in between the two (0.89 – 0.02). A similar situation
was found for the RI quantifying the similarity in the mod-
ules (Fig. 3, top).

Analysis of global metrics. Statistics of the global proper-
ties of the unthresholded networks are reported in Table 2.

Repeatability of global metrics for Tc = 0.0005. The av-
erage absolute ICC and CV values over all properties were,
respectively, of 0.86 – 0.11 and 4.27 – 4.39% (Table 3).
The CV values were higher for weighted than for binary met-

rics ( p < 0.001), while the ICC values were slightly lower
( p < 0.002).

Effects of threshold Tc. In general, values of ICC and
CV were not strongly affected by threshold Tc (Fig. 4;
one-way rANOVA ICC: p < 0.21 and CV: p < 0.14), although
with higher thresholds the ICC of Mod was decreased and the
CV value (absolute) of Ax was increased.

Analysis of local metrics. A summary of statistics for
local metrics of unthresholded networks is given in Table 4
for Tc = 0.0005 and in Supplementary Table S3 for all Tc.

Effects of threshold Tc. Tc had a significant effect on the
value of all metrics except NDistw and weighted betweenness
centrality (BCw). In addition, networks with lower Tc
appeared to have slightly better local repeatability, although
the effect was significant only for binary metrics and weighted
local efficiency (LocEffw) (Table S3 and Table 4). Overall,
post hoc analyses showed that the differences were stronger
for CV and for Tc = 0.0005 against lower thresholds.

Local metrics repeatability for Tc = 0.0005. Histograms
of ICC and CV values of local properties are shown in Figure
5 for Tc = 0.0005. ICC values were high on average, but lo-
cally low values were found. Overall, the CV values were
higher than for global metrics and higher for weighted than
for binary metrics.

Thresholded individual networks

In this section, the effect of a common density threshold
(TD) on individual networks is considered. The analyses
were completed for all levels of thresholds Tc and TD, and
the obtained results were similar. Therefore, when the effect
of different TD was not the focus of the analysis, results are
reported only for Tc = 0.0005 and TDmax = 12.23%.

FIG. 3. Top left: similarity of indi-
vidual networks (Tc = 0.0005) WS and
compared with the average network.
The central line indicates the average
BS similarity. The narrow interval is
given by – SD and the large interval
indicates the range of BS similarity.
Top right: similarity of decomposi-
tions into modules WS and compared
with the average network
(Tc = 0.0005). The central line indi-
cates the average BS RI and the inter-
val – SD. Bottom: edge agreement of
individual networks WS and compared
with the average network. The central
line indicates the average BS similar-
ity. The narrow interval is given by –
SD and the large interval indicates the
range of BS similarity. Left: individual
networks with Tc = 0.0005. Right: in-
dividual networks with Tc = 0.0005
and TDmax = 12.23%. BS, between-
subject; RI, Rand index; SD, standard
deviation; TDmax, maximum common
density; WS, within-subject.
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Similarity analysis, modules, and hubs classification

Similarity of thresholded connectivity matrices and mod-
ules. The similarity analysis of connectivity matrices and
the decomposition into modules was very similar as for the
unthresholded matrices. The median number of modules in
the individual networks was 8 (range 5–13). When TD was
applied, an increase of 1% to 3% in the edge agreement
WS and BS was found (Fig. 3, bottom).

Hubs classification agreement. In Figure 6, the consis-
tency of hubs classification in the individual networks is pre-

sented. On average (over hubs), in 87.4 – 17.1% of the
subjects the hubs of the average network were classified as
hubs. In 73.4 – 16.2% of the subjects the connector hubs of
the average network were classified as connector hubs. The
classification of provincial hubs was less consistent. In
61.4 – 3.0% of the subjects the provincial hubs of the average
network (LPE, LPu, RPE) were classified as hubs, but only in
24.6 – 10.6% they were classified as provincial. The average
hubs agreement WS was of 87.0 – 7.5% over all hubs. In ad-
dition, only for 47.0 – 37.6% of the subjects the same hubs
were found also using Sw as a classification criterion, but

Table 3. Repeatability Coefficients of Global Metrics

Networks
Tc = 0.0005

Networks
averaged over Tc

Networks
Tc = 0.0005, TDmax = 12.23%

Networks
Tc = 0.0005, average over TD

Global
metrics ICC CV ICC CV ICC CV ICC CV

CC 0.93 0.95 0.93 0.82 0.80 0.79 0.82 0.95
L 0.89 1.04 0.91 0.97 0.86 0.57 0.82 0.68
Eff 0.89 0.94 0.91 0.88 0.92 0.33 0.89 0.42
Deg 0.90 2.90 0.90 2.89
SW 0.92 2.30 0.94 1.89 0.95 1.09 0.85 1.48
Ax 0.81 �16.33 0.79 �16.26 0.84 73.79 0.87 �45.92
Mod 0.91 1.44 0.88 1.95 0.66 2.22 0.63 2.46
LocEff 0.92 0.38 0.93 0.33 0.73 0.32 0.75 0.53
CCw 0.61 11.36 0.56 11.81 0.68 7.75 0.66 8.31
Lw 0.89 4.57 0.89 4.58 0.89 4.58 0.89 4.58
Effw 0.89 4.13 0.89 4.13 0.89 4.13 0.89 4.13
Sw 0.87 4.39 0.87 4.39 0.87 4.34 0.87 4.28
SWw 0.91 2.86 0.90 2.89 0.90 2.08 0.81 2.76
Axw 0.88 9.06 0.88 9.05 0.88 9.09 0.88 9.04
Modw 0.56 1.77 0.55 1.77 0.47 1.84 0.40 1.72
LocEffw 0.90 3.58 0.90 3.64 0.91 4.18 0.90 4.41
Average 0.86 4.25 0.85 4.27 0.82 7.81 0.80 6.11

Repeatability coefficients of global metrics with different thresholds Tc and TD.
Axw, weighted assortativity; CCw, weighted clustering coefficient; Effw, weighted efficiency; LocEffw, weighted local efficiency; Modw,

weighted modularity; SWw, weighted small-world property.

FIG. 4. Dependency of global net-
work metrics on the level of threshold
Tc. Left: ICC values of global metrics
against the threshold Tc for binary
(top) and weighted (bottom) metrics.
Right: CV values of metrics against the
threshold Tc for binary (top) and
weighted (bottom) metrics. CV, coef-
ficient of variation; ICC, intraclass
correlation coefficient.
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Table 4. Statistics of Local Network Metrics

Networks Tc = 0.0005 Networks Tc = 0.0005, TD = 12.23%

Value ICC CV Value ICC CV

NDist 2.1 – 0.2 0.76 – 0.14* 2.3 – 0.6* 2.3 – 0.3*** 0.73 – 0.14** 2.1 – 0.7**
Deg 23.0 – 11.3 0.82 – 0.12* 8.7 – 3.1* 18.7 – 9.5*** 0.79 – 0.11** 8.1 – 2.9**
CC 0.60 – 0.12 0.75 – 0.13* 5.2 – 1.1* 0.58 – 0.13*** 0.74 – 0.13 5.4 – 1.3
LocEff (5.2 – 0.4) · 10�3 0.75 – 0.14* 2.0 – 0.6* (5.0 – 0.4) · 10�3*** 0.73 – 0.13 2.1 – 0.6**
BC 174 – 402 0.67 – 0.20* 32.0 – 11.1* 200 – 462*** 0.66 – 0.19 33.2 – 125
NDistw 101.0 – 17.5 0.85 – 0.06 5.6 – 1.2 101.0 – 17.5 0.86 – 0.06 5.6 – 1.2
Sw 0.34 – 0.22 0.80 – 0.12 9.9 – 3.0 0.34 – 0.22*** 0.80 – 0.12 9.9 – 3.1
CCw (10.0 – 4.0) · 10�3 0.65 – 0.15 17.1 – 3.6 (14.0 – 6.0) · 10�3*** 0.70 – 0.14** 15.3 – 3.4**
Loc Effw (1.6 – 0.4) · 10�4 0.79 – 0.11 9.0 – 2.5* (1.3 – 0.5) · 10�4*** 0.78 – 0.12 9.9 – 2.9**
BCw 0.04 – 0.05 0.66 – 0.24 18.4 – 6.6 0.04 – 0.05 0.66 – 0.24 18.4 – 6.6

Local metrics values (mean – SD, averaged over subjects and nodes) and associated repeatability coefficients (mean – SD, averaged over
nodes) of networks with Tc = 0.0005 and, respectively, without TD or with TD = 12.23%.

*Repeatability coefficients that change significantly for different thresholds Tc (rANOVA, p < 0.05 corrected). For details on the values
see Table S3.

**Repeatability coefficients that change significantly in the comparison with/without TD (paired test, p < 0.05 corrected).
***Average local metrics (over subjects) that change significantly in the comparison with/without TD (paired test, p < 0.05 corrected).
BC, betweenness centrality; BCw, weighted betweenness centrality; CV, coefficient of variation; ICC, intraclass correlation coefficient;

NDist, average node distance; NDistw, weighted average node distance; rANOVA, repeated-measures ANOVA.

FIG. 5. Evaluation of the repeatability (ICC, CV) of local network metrics and their dependency on threshold TD (with/
without). Top (rows 1 and 2): Histograms of ICC and CV values of local unweighted metrics properties of networks with
Tc = 0.0005 (white bars) and networks with Tc = 0.0005 and TD = 12.23% (black bars). Bottom (rows 3 and 4): Histograms
of ICC and CV values of local weighted metrics properties of networks with Tc = 0.0005 (white bars) and networks with
Tc = 0.0005 and TD = 12.23% (black bars). TD, density threshold.
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the agreement was of 78.0 – 15.6% for the subcortical hubs.
Other hubs using Sw were found in the insular and in the nu-
cleus accumbens areas.

Analysis of global metrics. Statistics of the global proper-
ties of these networks are reported in Table 2.

Effects of threshold TD value for Tc = 0.0005. Differen-
ces with/without TD are significant for almost all metrics
(Table 2). In general, the repeatability coefficients did not
show a clear dependency on the threshold TD (Fig. 7, top),
but for some of the metrics ICC values varied considerably
for different TD (LocEff, modularity [Mod], weighted mod-
ularity [Modw], SW). For L, CC, Mod, Modw, and LocEff,
results showed a reduction in the ICC (between 17% and
37%) by applying TD. For the other metrics the variation
was always under 10%. Although CV values were small
for binary metrics, they were decreased by 20% to over

200% by applying TD (except for Mod). For weighted met-
rics the variation was smaller.

Effects of threshold TD for different Tc values. A two-
way rANOVA including the levels of Tc and the condition
with/without TD as repeated measures showed a significant
effect on ICC values for Tc ( p < 0.018) and for the interac-
tion ( p < 0.009; Fig. 7, bottom). However, in the post hoc an-
alyses the comparison of the condition with/without TD for
each threshold Tc was only near to significant. No significant
effect was found on CV values.

Analysis of local metrics. Summary statistics for local
metrics and their repeatability are given in Table 4 and his-
tograms are shown in Figure 5.

Effects of threshold TD with Tc = 0.0005. Applying TD
had a significant effect on all local metrics except NDistw

and BCw (Table 4). Except for CCw, for these metrics a

FIG. 6. Evaluation of consistency of
hubs classification in the individual
networks. For each hub of the average
network, the percentage of individual
networks in which this node is also a
hub is given. In addition, the percent-
age of subjects in which this hub is
connector/provincial is given as well
as the percentage of subjects in which
this node is a hub defined with high
strength (Hubs S).

FIG. 7. Evaluation of repeatability
dependency on the level of threshold
TD for global network metrics (CC, L,
Eff, SW, Ax, Mod, and LocEff binary
and weighted). Repeatability of the
metrics is quantified by ICC and CV
coefficients. ICC (A) and CV (B) val-
ues of binary global metrics against
threshold TD. ICC (C) and CV (D)
values of weighted global metrics
against threshold TD. (E) Box plot of
the ICC values of weighted and binary
global metrics classified by the value
of threshold Tc and the condition with/
without TD. Ax, assortativity; CC,
clustering coefficient; Eff, efficiency;
L, characteristic path length; LocEff,
local efficiency; Mod, modularity;
SW, small-world property.
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small reduction in ICC was found. Variations of CV are sig-
nificant for most of the metrics but depend also on the
changes of the metrics values.

Effects of ROI size. Correlations between values of local
metrics (averaged over subjects), ROI size, and repeatability
coefficients are reported in Table 5 (Fig. 8). Overall, results
showed that smaller ROIs were associated with poorer re-
peatability (higher CV, lower ICC). However, correlations
were significant only for CV values and some of the metrics
considered, while the correlations coefficients between ROI
size and ICC were small (Table 5). In order to investigate

if the effect of ROI size on the CV values was only because
of the relationship between the metrics values and CV (Fig.
8, top), a multiple linear regression including ROI size and
metrics values as regressors was used for the CV of NDist,
Deg, CC, LocEff, BC, Sw, CCw, and LocEffw. After correc-
tion, for most of the metrics, only the contribution of the met-
rics values was found to be significant. For Sw also the ROI
size had a significant contribution (ROI: p < 0.001), and for
LocEffw this effect was the only one significant (ROI:
p < 0.026, Val: p < 0.232). For CC, NDistw and BCw signifi-
cant linear relationships between the metric values and the
ICC values were also found. For NDistw (Fig. 8, bottom),

Table 5. Correlations with ROI Size

Value/ROI size Value/ICC Value/CV ROI size/ICC ROI size/CV

NDist �0.48* �0.21{ 0.32* �0.07 �0.26{

Deg 0.49* 0.17{ �0.53* 0.01 �0.41*
CC �0.53* �0.33* 0.46* 0.11 �0.38*
LocEff �0.53* �0.26{ 0.58* 0.08 �0.43*
BC 0.39* 0.20{ �0.43* 0.18{ �0.45*
NDistw �0.06 �0.42* 0.47* 0.09 �0.10
Sw 0.16{ 0.21{ �0.32* 0.05 �0.32*
CCw �0.56* �0.06 0.33* 0.06 �0.41*
LocEffw �0.46* 0.06 0.32* 0.18 �0.37*
BCw 0.19{ 0.28* 0.18{ 0.08 0.03

Correlations for local properties of networks with Tc = 0.0005 and TD = 12.23%. Correlations between local metrics values, ROI size, and
variability coefficients.

*Significant correlations ( p < 0.05 corrected).
{Significant correlations ( p < 0.05 uncorrected).
Note: significance was not affected by the exclusion of the two outliers with larger size.
ROI, region of interest.

FIG. 8. Evaluation of the relationship of two local metrics (CC, NDistw), their repeatability coefficients, and the size of
nodes (ROI size). Top row: the relationship between ROI size and CV values is linked to the dependency of CV on the metric
values. Scatter plots: (A) local CC against ROI size (r =�0.53 Pearson’s coef); (B) local CC against CV values (r = 0.46
Pearson’s coef); (C) ROI size against CV values of local CC (r =�0.38 Pearson’s coef). Bottom row: strong correlations
were found between local NDistw and its repeatability coefficients. Scatter plots: (D) local NDistw against ROI size
(r =�0.06 Pearson’s coef); (E) local NDistw against ICC values (r =�0.42 Pearson’s coef); (F) local NDistw against CV
values (r = 0.47 Pearson’s coef).
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two strong correlations indicate that higher values of NDistw

are associated with lower repeatability (ICC: r =�0.42, CV:
r = 0.47, Pearson’s coeff).

Analysis of connections repeatability. The relationship
between connection strength, ROI size, and distance was an-
alyzed in order to understand if there was any bias in the
weights. For this analysis, the distance functions and the con-
nection matrices were averaged over all subjects.

Relationship between weights, number of connections, and
ROI size. In Figure 9A, a plot of the weights of the connec-
tions between nodes ordered according to the size is shown.
There was no structure in the weights distribution, suggesting
that no bias was present. However, there were a higher num-
ber of connections among larger nodes. In particular, there
were 386 edges connecting the larger 50 ROIs, while only
171 edges between the 50 smaller ROIs.

Relationship between distance, connections weights, and
repeatability. A negative correlation was found between
connections weights and Euclidean distance of connected
nodes (r =�0.44), while Euclidean distance and CV values
of the weights were positively correlated (r = 0.33; Fig. 9B).
The first relation is known to be one of the drawbacks of prob-
abilistic tractography, as the connection probability is reduced
for longer connections (Jbabdi and Johansen-Berg, 2011).
Euclidean distance strongly correlated with the distance func-
tions of the network (Dist: r = 0.64, Distw: r = 0.75; Fig. 9C). In
Figure 9D, CV values of the edges weights with and without
threshold TD are shown. There was a slight shift toward lower
values in thresholded networks.

Discussion

Structural brain networks of 19 healthy subjects were con-
structed for 2 consecutive measurements and were analyzed
in the current study to assess three major questions: (1) the

effects of between measurements variations on the average
network of all subjects, (2) reproducibility of local network
metrics, and, finally, (3) the effects of a common density
threshold on the values and reproducibility of networks met-
rics. In addition, in the first part of the discussion our results
are presented in relation to previous works in order to high-
light replications.

Overview of the results: comparison
with previous literature

A large set of global and local metrics was computed for
the individual weighted and binary networks as well as for
the average network. Overall, the network topology charac-
teristics were in line with prior literature.

Consistently with previous studies, our network was
decomposed into a central core module and some additional
mostly symmetric hemispheric modules (Li et al., 2012;
Owen et al., 2013), dividing each hemisphere into anterior
and posterior and additionally dividing anterior nodes into
a superior and a medial inferior module. The mean RI for
the agreement of modules between the average network
and the individual networks was approximately of 0.9, show-
ing that these modules were quite consistent across subjects
(Fig. 3).

Hubs were found in the subcortical regions of the thala-
mus, putamen, caudate, and pallidum and in the frontal supe-
rior and parietal superior cortex as well as in the precuneus
and pericallosal areas (Fig. 1, left). The hubs regions are con-
sistent with previous studies (Li et al., 2012; Owen et al.,
2013; van den Heuvel and Sporns, 2011) in which subcorti-
cal nodes are considered. However, studies focusing on the
cortical network only also consistently report regions of
the insular and the cingulate cortex (van den Heuvel and
Sporns, 2013), which in our case were only classified as
hubs in some of the individual networks. In both cases,
hubs of the brain structural network have been found to be
highly connected, forming a rich-club that is crucially

FIG. 9. Analysis of the relationship
between weights and ROI size and of
the repeatability of specific connec-
tions. For these analyses, average ma-
trices over all subjects were used. (A)
Weights distribution for nodes ordered
according to increasing ROI size. The
color scale is associated to the con-
nection weights. (B) Scatter plot of the
Euclidean distance between connected
ROIs against CV values of the related
connections weights. (C) Scatter plot
of Euclidean distance versus Distw in-
dicating that physical distance and
network distance are strongly related.
(D) Histogram of average CV values
of weights in networks with or without
threshold TD.
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responsible for the global communication in the connectome
(van den Heuvel and Sporns, 2011, 2013; van den Heuvel
et al., 2012). Additionally, based on the network decomposi-
tion into modules, hubs can be classified into connector hubs,
which have a role in the integration of the different modules,
and provincial hubs, which are important for communication
within a module (van den Heuvel and Sporns, 2011, 2013). In
our analysis, more connector hubs were found than in van
den Heuvel and Sporns (2011). This difference may be be-
cause of the finer parcellation used in our study, but more
probably it is additionally related to the different decomposi-
tion with a large number of modules. Indeed, 8 modules in-
cluding a central module were found in our analysis, while 4
modules with no inter-hemispheric module were found by
van den Heuvel and Sporns (2011). The additional connector
hubs found in the anterior modules were important for con-
nections with the other frontal module of the same hemi-
sphere (thalamus, pallidum, putamen) and with the
symmetric module (caudate). Hubs of the average network
were classified as hubs in most of the individual networks
(approximately 90% on average; Fig. 6); however, this
agreement was lower for the classification of connector
and provincial hubs.

In the current study, repeatability of brain structural net-
works was tested over several levels: unthresholded connec-
tivity matrices, global networks metrics, and local level
(nodes and edges). Previous studies already considered var-
ious aspects of the first two levels, allowing for a comparison
of our results with previous literature, while only limited re-
sults were presented for local metrics (Table 1) (Bassett
et al., 2011; Buchanan et al., 2013; Cammoun et al., 2012;
Cheng et al., 2012; Dennis et al., 2012b; Hagmann et al.,
2008; Vaessen et al., 2010). A summary of previous results
on similarity of connectivity matrices and ICC of global met-
rics is given in Table 6, in which all studies on the repeatabil-
ity of global networks metrics to our knowledge were
included. More details on the methodology of the studies

are given in Table 1. Overall, our results indicated good to
excellent repeatability (ICC > 0.75 and CV < 5%) of global
measures and were more in line with the results of Owen
and associates (2013) as compared with previous studies.
Hence, our results confirm that global network metrics in
healthy subjects are sufficiently reliable to be used as clinical
biomarkers. This is one first step toward the use of these bio-
markers for diagnosis, prognosis, and further understanding
of specific neurological and psychiatric diseases, although
in diseased populations reliability should be tested specifi-
cally as both segmentation and tractography poses more
problems in damaged tissue (Budde et al., 2011; Fiez
et al., 2000; Nakamura and Fisher, 2009; Pagani et al.,
2005). The comparison of the different studies is difficult,
because of the variability in various methodological aspects;
nonetheless, it can highlight points that may be beneficial for
repeatability of the network metrics. The agreement with the
results of Owen and colleagues may be because of method-
ological similarities. In particular, in both studies DTI was
preferred to high-angular-resolution diffusion imaging
(HARDI) methods, allowing a short acquisition time for
DWI (5.22 min per DTI sequence). Also, the atlas-based par-
cellation was performed in native space (FreeSurfer) avoid-
ing errors because of coregistration of all subjects to a
common space, and probabilistic tractography (FSL) was
preferred. Probabilistic tractography adds an estimation of
the propagation of local uncertainty, thus enabling to better
explore possible complex fiber configurations and resulting
in more robust results (Descoteaux et al., 2009; Moldrich
et al., 2010; Tournier et al., 2011). Despite differences in
other methodological aspects, in the comparison of our re-
sults and the ones of Owen and colleagues (2013) against
previous studies using deterministic tractography and white
matter (WM) seeding (Bassett et al., 2011; Cheng et al.,
2012), repeatability of global network metrics seems to ben-
efit of the use of probabilistic tractography. In particular,
studies using deterministic tractography report similar values

Table 6. Comparison with the Previous Literature

Similarity ICC

Study WS BS Deg/Dens L CC SW Eff BC LocEff Ax S Mod

Vaessen and associates (2010) 0.63 0.64 0.48
Bassett and colleagues (2011)

DTI 0.93 0.82 0.65 0.53 0.45 0.37 0.28 0.42 0.40 0.93 0.21
DSI 0.97 0.95 0.25 0.45 0.2 0.32 0.32 0.21 0.31 0.72 0.09

Cheng and associates (2012)
W1 0.89 0.72 0.44 0.64 0.59 0.30 0.47
W2 0.84 0.66 0.28 0.54 0.55 0.64 0.67

Owen and associates (2013)
Binary 0.96 0.93 0.79 0.92 0.51 0.92 0.90 0.54
Weighted 0.96 0.92 0.67 0.83 0.50 0.84 0.56

Dennis and associates (2012) 0.59 0.58 0.52 0.59
Buchanan and colleagues (2013) 0.66 0.62 0.76 0.75

Analysis
Binary 0.98 0.93 0.90 0.86 0.80 0.95 0.92 0.73 0.84 0.66
Weighted 0.97 0.78 0.89 0.68 0.90 0.87 0.91 0.88 0.87 0.47

Summary of previous results on the repeatability of connectivity matrices and global metrics (ICC). Some of the values are averaged over
different modalities or estimated from figures. For our analysis, results reported are with Tc = 0.0005 and TD = 12.23% (except for Deg).
Additional information on the studies is reported in Table 1.
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for the CV, but lower ICC values (mostly under 0.65; see
Table 6). This result also holds when including all previous
studies using probabilistic tractography in the comparison.
For local strength, a direct comparison was presented in the
study of Buchanan and associates (2013), which confirms
this result. Nevertheless, in the same study the authors
show that WM seeding improves repeatability and has a
stronger impact than the tractography algorithm. The bene-
fit of WM seeding is, however, not supported by our com-
parison of previous literature. General advantages and
drawbacks of probabilistic tractography and associated
weighting schemes are discussed further in the Limitations
section. Finally, the same weighting scheme was used for
weighted metrics in our study and the one of Owen and col-
leagues. This scheme was shown to provide better local re-
peatability compared with similar weights additionally
corrected for the connection length (Buchanan et al.,
2013). All these methodological similarities may be benefi-
cial for repeatability and explain the differences from prior
works where only moderate to good repeatability was found
(Owen et al., 2013).

However, the two studies differ in the atlas used: Owen
and colleagues used ‘‘Desikan-Killiany’’ FreeSurfer atlas
(Desikan et al., 2006), while in our analysis the finer parcel-
lation of ‘‘Destrieux’’ FreeSurfer atlas was used (Fischl
et al., 2004). The choice of the atlas defining the nodes as
well as the node sizes has been previously shown to have
an effect on the network metrics values (Bassett et al.,
2011; Zalesky et al., 2010). In the comparison of repeatabil-
ity with different atlases and resolutions, Bassett and col-
leagues (2011) reported a significant effect of both with
higher repeatability for weighted global network metrics at
higher resolution scales. Hence, our finer parcellation may
also contribute to increased repeatability compared with pre-
vious works. However, Cammoun and associates (2012)
found lower similarity in connectivity networks with higher
resolutions, and also our results on the relationship of node
size and repeatability suggest that at the local level the ef-
fects of noise are more evident for smaller nodes (see the sec-
tion Repeatability of local properties).

Overall, the comparison of our analysis with previous lit-
erature highlights that, although quantification may be very
sensitive to methodological characteristics such as the ac-
quisition method, the parcellation atlas, and the resolution,
consistent results on the brain structural network topology
are found in the literature (i.e., hubs positions, modular
structure, small-world properties, etc.). This suggests that
network analyses are robust to a certain level of variations
in the methodological pipeline. However, replications of re-
sults in repeatability of networks metrics are very important
exactly because a large variability in methodological char-
acteristics exists (Table 1) and previous studies are not suf-
ficient to conclude on how results on repeatability can be
generalized for different methodological choices. In previ-
ous studies, overall less than 100 subjects were included
and differences exist in the acquisition method, the maxi-
mal b-value, the tractography algorithm, the parcellation
scheme, the weighting scheme, and the thresholds applied
(Table 1). All these characteristics can influence the quality
of the analysis and therefore replications of studies on re-
peatability covering all the methodological possibilities
are necessary.

The average network

Only edges that are consistent over a large number of the
networks (Tavg = 65–85%) are included in the average net-
work. Therefore, it should represent the core of the individ-
ual networks that is mostly consistent over the population.
Indeed, similarity between average and individual networks
is higher than BS. In our analysis the average network (with
Tc = 0.0005 and Tavg = 75%) had a density around 15%, and
considering the differences in number of nodes, its metrics
were in agreement with the results of Sporns and colleagues
(2007).

In order to evaluate the effects of variability between mea-
surements on the average network, two different networks
were constructed, each using one of the measurements of
each subject. For global metrics, results showed percent dif-
ferences on average of 2%. These variations were in the same
range of the CV values of individual networks. For some
local metrics, the Bland–Altman plots revealed a relationship
between the value of the metrics and the errors. In particular,
larger errors were associated to longer average node distance
(NDistw). This result suggests that longer connections were
more difficult to reconstruct.

In summary, the variability of the average network be-
cause of different measurements reflected in a straightfor-
ward way the results found for the individual networks.

Recently, de Reus and van den Heuvel (2013a) proposed a
method to estimate false positives and negatives in group
networks depending on threshold Tavg. They concluded that
with thresholds in the range of 30–90%, similar levels in
the elimination of false positives and negatives are obtained.
These results suggest that the variability of the average net-
work will be similar in this range, which is consistent with
our results (Supplementary Table S2). The thresholds se-
lected in our study are in the higher part of this range, reduc-
ing the number of false positives. This is a reasonable choice,
as de Reus and van den Heuvel (2013a) used deterministic
tractography and the number of false positive is probably
higher with probabilistic tractography (Moldrich et al.,
2010). Although the network metrics reported are mostly dif-
ferent, our results concerning the effect of Tavg on the net-
work metrics value also are in line with the results of de
Reus and van den Heuvel (2013a).

Repeatability of local properties

Local repeatability was analyzed at the nodes and the
edges level and overall larger variability was found as com-
pared with the global metrics. While for the ICC low values
(ICC < 0.5) were only a minority, CV values were on average
of over 10% over all local metrics and higher for weighted
metrics. CV values for edges weights were on average of ap-
proximately 30%. While the ICC is related to the sensitivity
of the metric to BS differences, the CV is an estimate of the
precision of the metric within subject. Therefore, metrics
with high ICC and also relatively high CV are sensitive to in-
dividual variability, but not very precise (Owen et al., 2013).
This analysis shows that although repeatability of global
metrics is from good to excellent, at the local level there
is substantially more variability. Global metrics are mostly
defined as the average over nodes of a local metric and
this suggests that the averaging corrects for the variability
that is present locally. Also, it is not surprising that local

216 ANDREOTTI ET AL.



repeatability is quite variable, as it is known that tractogra-
phy is more difficult in specific tracts configurations ( Jbabdi
and Johansen-Berg, 2011; Jones et al., 2013). Additionally,
on the neurobiological point of view, more variability is
expected at the local level. Indeed, healthy brain structural
networks are expected to be similarly organized, but with lo-
cally different patterns of connectivity specific to each indi-
vidual (Bassett et al., 2011; Cammoun et al., 2012; Cheng
et al., 2012). Overall, our results generalize to a larger set
of binary and weighted metrics the results presented in
prior works (Bassett et al., 2011; Buchanan et al., 2013;
Owen et al., 2013; Vaessen et al., 2010). This information
should be considered in (longitudinal) analyses at the local
level. In particular, poor to moderate repeatability was
found for BC, which was previously used also to classify
nodes and define hubs (Li et al., 2012). However, our results
on hubs consistency suggest that defining the hubs based on
high degree is a robust method and high consistency is
found within subjects (87.0 – 7.5%). Probably this is because
the degree distribution is long-tailed (see Supplementary Fig.
S1 or Owen et al., 2013), so that, despite variability, hubs
still have considerably higher degree than the other nodes.
Furthermore, in the present study efforts were put in under-
standing whether some regions were more prone to systematic
lower repeatability than others, but no strong local depen-
dency on the reliability level was found (unshown analysis).
However, considering the nodes with lower repeatability for
all metrics (Supplementary Table S4), some regions were
found to have lower repeatability (higher CV or lower ICC)
in both hemispheres and for more than one metric. With
these criteria, the less reliable regions were found in orbital
and temporal lateral regions, pre- and post-central regions,
as well as in the occipital superior and transversal region.

In the literature, two approaches are more commonly used
to define nodes. On one side, nodes can be defined using an-
atomical regions defined by an atlas. On the other side, some
authors use a larger number of regions of the same size, not
strictly related to an anatomical structure (Bassett et al.,
2011; de Reus and van den Heuvel, 2013b; Hagmann
et al., 2008; Owen et al., 2013; Zalesky et al., 2010). In the
present work, the first option was preferred and the relation-
ship between ROI size, local metrics, and node repeatability
coefficients was analyzed in order to understand the effect of
having different-sized nodes. The analysis showed strong re-
lationships between most of the metrics and the ROI size.
This effect is likely to depend on the relationship between
degree and ROI size. Clearly, a large region has more distinct
connections than a smaller region and the degree affects (by
definition) many of the scalar metrics considered. Moreover,
in the analysis of edges repeatability, no bias was found in-
dicating higher weights for connections linked to larger
nodes (Fig. 9A) (consistent with Cheng et al., 2012). These
results together suggest that the selected weighting scheme
allows correcting for bias in the edge weight magnitude,
but cannot correct for the fact that larger ROIs are more
likely to have a larger number of connections. This is a draw-
back of parcellations related to specific brain atlases, which
could be improved by subdividing larger regions in order
to have regions with similar size. On the other side, the anal-
ysis also showed that metrics of larger nodes were more pre-
cise (lower CV). Although this result is also related to the
relationship between metric value and ROI size, it suggests

that an excessive subparcellation will reduce reliability
(Buchanan et al., 2013; Zalesky et al., 2010). Additionally,
in line with this idea lower repeatability of local strength
(see the Supplementary Material in Bassett et al., 2011)
and lower similarity (Cammoun et al., 2012) were found at
higher resolutions.

Another interesting result at the local level was that
weighted average node distance was not related to the node
size, but it was related to both its repeatability coefficients.
In particular, nodes with higher average distance had poorer
repeatability, suggesting that longer connections are less re-
producible. This result is consistent with the repeatability
analysis of the average network and also with results on sin-
gle connections. Indeed, for single direct connections, a pos-
itive association was found between CV and the Euclidean
distance between the connected nodes (Fig. 9B). All these re-
sults suggest that longer tracts are less reproducible and are
consistent with the analysis of Owen and associates (2013).

Effects of a common density threshold on repeatability

Two different thresholds were applied on the individual
networks. First, a threshold was set on the minimal connec-
tivity index used to define edges. The connectivity index re-
lates to the probability that a connection exists; hence, the
threshold Tc exclude connections with low probability as
they are likely to be false positives. Additionally, a common
density threshold (TD) on all the individual networks was ap-
plied, because network metrics are affected by the number of
edges and nodes, and hence network metrics are better com-
parable for networks with the same density (Anderson et al.,
1999; Bassett et al., 2011; Stam et al., 2007; van Wijk et al.,
2010). However, it may be argued that applying TD real dif-
ferences across subjects may be eliminated and that differ-
ences in the density of brain networks of healthy subjects
(with the same number of nodes) are not large enough to sig-
nificantly affect the network organization properties
(Buchanan et al., 2013; Owen et al., 2013). The methodolog-
ical choice of applying or not applying a threshold on the
density was shown to have a significant effect on the values
of almost all the metrics considered. In our analysis, also the
effects on the repeatability coefficients of applying TD were
considered. At the global level, the variations in repeatability
coefficients were small, although the ICC coefficients were
overall slightly reduced when TD was applied. Similar re-
sults were found at the local level. As many networks metrics
depend on the degree, it is not surprising that fixing the den-
sity, the variability is reduced. The ICC depends on both the
WS and BS variability and a reduced ICC indicates that the
BS variability reduction is more important. In addition, with
threshold TD the edge agreement of the connectivity matri-
ces was significantly increased BS and WS (Fig. 3). This sug-
gests that applying TD, not only the number of edges is the
same for all subjects, but also the binary networks compared
are more similar; that is, the connections considered are
mostly the same for all subjects. Hence, our results suggest
that when TD is not applied, first, the values of network met-
rics change significantly, and second, differences in (binary)
metrics are slightly inflated by the differences in density and
this can have an effect on the ICC values. However, despite
the fact that the excluded connections had very small weights
and that similarity was increased (both WS and BS) by
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applying TD, our analysis is not sufficient to determine
whether the differences in the overall connectivity BS are be-
cause of noise or if they are real. Therefore, these differences
should be analyzed as a first step since they may be an impor-
tant result in itself. Further on, a robust approach could be to
consider both thresholded and unthresholded networks to
better evaluate the effects of differences in density on the
network topology. This approach was previously suggested
by van Wijk and colleagues (2010); in the same article, the
authors discuss different methods to compare network met-
rics. Also, differences in network metrics and in total con-
nectivity (density) should be interpreted in relationship to
the clinical question of interest. Finally, it was found that
weighted metrics are less affected by the application of dif-
ferent thresholds (TD and Tc) as low weights have lower in-
fluence. Therefore, although the choice of an unbiased
weighting scheme that represents true connectivity remains
an open issue in brain structural networks analysis (Iturria-
Medina et al., 2007; Jbabdi and Johansen-Berg, 2011;
Meskaldji et al., 2013), weighted measures may have the ad-
vantage of not requiring setting thresholds.

Limitations

In the present study, probabilistic tractography was pre-
ferred over deterministic tractography despite the higher
computational requirements of this method. Our analyses
were not sufficient to compare directly probabilistic and de-
terministic tractography algorithms and our preference was
based on previous literature (Buchanan et al., 2013; Desco-
teaux et al., 2009; Moldrich et al., 2010; Tournier et al.,
2011). Also, alternative solutions (Mangin et al., 2013)
such as global tractography were so far never used in the lit-
erature in the context of test–retest of network metrics;
hence, it was infeasible to evaluate these techniques. Proba-
bilistic tractography adds a component of uncertainty in the
tracking, which may be beneficial to reconstruct complex
fiber configurations, but also increases the number of false
positives (Moldrich et al., 2010). In addition, introducing
this uncertainty component offers a natural way of quantify-
ing the confidence in the existence of a specific tract. This
characteristic helps determining spurious connections, but
it may be misleading in the interpretation of the weights aris-
ing from tractography results ( Jbabdi and Johansen-Berg,
2011; Jones et al., 2013). Indeed, such weights will include
the effect of relevant characteristic of the WM fiber tract
such as the fiber density or the myelination as this influence
the diffusion properties. However, such effects are indirect
and difficult to characterize and weights will also be affected
by the measurement noise, fiber tract shape, and length.
Moreover, the tractography algorithm may introduce some
asymmetry in the connectivity indices, indicating that a con-
nection from A to B is more probable than a connection from
B to A. Asymmetry is not present in diffusion data and, in our
analysis, asymmetry arising from the tractography is pre-
vented by making the connectivity matrix symmetric (see
Methods: Data Processing).

Despite the difficulties in correctly interpreting the
weights, weighted metrics were assessed and analyzed as
they recently become more frequent in the literature [e.g.,
Buchanan and associates (2013), Ivkovic and colleagues
(2012), and van den Heuvel and Sporns (2011)]. However,

only one weighting scheme was considered in the analysis.
The selected weighting scheme is one of the most commonly
used in the literature (Cheng et al., 2012; Iturria-Medina
et al., 2007, 2011; Owen et al., 2013; van den Heuvel and
Sporns, 2011). Questions on how different weights influence
the networks topology and/or the repeatability coefficients
and questions on how weights could be improved to reflect
true connectivity are important and interesting issues in
this field, but were out of the scope of this article. In a similar
way, many methodological characteristics (acquisition
method, tractography algorithm, parcellation method, and
atlas) that could affect the network metrics were fixed in
our analysis. Differences in global metrics repeatability be-
cause of variations in most of these methodological charac-
teristics were previously investigated (Bassett et al., 2011;
Cheng et al., 2012; Vaessen et al., 2010), and therefore we
decided to select methodologies commonly used in the liter-
ature and to focus on other questions.

Finally, a limitation exists in the comparison of our results
to previous repeatability analyses because in our study DWI
measurements were consecutive, while in previous studies
measurements were taken on different days. This difference
is not greater than other methodological differences between
the studies but may possibly slightly decrease WS variabil-
ity. Indeed, as our subjects stay in the scanner for the two
measurements, coregistration will be similar for both data-
sets, limiting differences in this step of the procedure. In
our analysis, the WS similarity of connectivity matrices is
higher than BS similarity (Fig. 3, top). Although this result
is in line with previous studies, the gap between the two is
higher in our analysis (Table 6), which is in line with our hy-
pothesis of increased WS similarity. On the other side, this
methodological difference can provide insights in the contri-
bution of distinct positioning on the reliability of the recon-
structed networks.

Conclusion

The current study presents a test–retest analysis of struc-
tural brain networks and related global and local metrics.
In line with previous research, reproducibility of global met-
rics was good to excellent (ICC > 0.75 and CV < 5%), con-
firming that global metrics in healthy subjects are
sufficiently reliable to characterize the brain structural net-
work in the healthy population and be used as reference for
comparison with subjects affected by specific neurologic
and psychiatric diseases. However, for local metrics more
variability with locally poor reproducibility was found, and
longer tracts were less reproducible than shorter ones. More-
over, the variability in the average network reflects in a
straightforward way these results. By applying a threshold
on the density, not only is the number of edges the same
for all subjects, but also the binary networks compared are
more similar. In addition, results showed that such methodo-
logical characteristics may affect the network metrics and
their repeatability. Hence, the meaning and effect of each
threshold should be understood, and differences in global
connectivity as well as in the metrics should be interpreted
in relationship to the clinical question explored as well as
to the methodological pipeline applied. Despite the difficul-
ties in comparing previous literature, the summary analysis
of our results and previous studies on network metrics
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repeatability enabled to discuss the benefits and role of some
methodological characteristics. Overall, our findings add
useful information to future studies on brain networks that
include longitudinal analyses or group comparisons and cer-
tainly suggest points that should be tested more specifically
in the future.
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