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White Matter Damage Disorganizes Brain Functional
Networks in Amnestic Mild Cognitive Impairment
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Abstract

Although progressive functional brain network disruption has been one of the hallmarks of Alzheimer’s Dis-
ease, little is known about the origin of this functional impairment that underlies cognitive symptoms. We in-
vestigated how the loss of white matter (WM) integrity disrupts the organization of the functional networks at
different frequency bands. The analyses were performed in a sample of healthy elders and mild cognitive im-
pairment (MCI) subjects. Spontaneous brain magnetic activity (measured with magnetoencephalography) was
characterized with phase synchronization analysis, and graph theory was applied to the functional networks.
We identified WM areas (using diffusion weighted magnetic resonance imaging) that showed a statistical de-
pendence between the fractional anisotropy and the graph metrics. These regions are part of an episodic mem-
ory network and were also related to cognitive functions. Our data support the hypothesis that disruption of the
anatomical networks influences the organization at the functional level resulting in the prodromal dementia
syndrome of MCI.
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Introduction

Alzheimer’s disease (AD) is the pathological cause of
the most common dementia in the world, and as many

as 50% of people older than age 85 may be afflicted (Corrada
et al., 2010; Evans et al., 1989; Fitzpatrick et al., 2004). The
diagnostic hallmarks of AD are neurofibrillary tangles and
amyloid plaques that are easily identified in postmortem ex-
amination (Braak and Braak, 1991), and more recently with
in vivo brain imaging techniques (Frisoni et al., 2013). This
disease causes significant alterations in brain function, loss
of cortical gray matter, and results in premature death
(Brookmeyer et al., 2002; Ganguli et al., 2005).

However, in the mild stage of the dementia syndrome, and
even in the pre-dementia stage of mild cognitive impairment

(MCI), the exact relationships between brain structure, func-
tion, and clinical symptoms, are not well understood. For ex-
ample, there is a significant disruption of the connections
between neurons at synaptic level (Selkoe, 2002), which
resulted in the ‘‘disconnection syndrome’’ (Bajo et al.,
2010; Delbeuck et al., 2003; Geschwind, 1965; Geschwind
and Kaplan, 1962; Morrison et al., 1986) model of AD.
The defining characteristic is the loss of interregional con-
nectivity (and subsequent clinical symptomatology), but it
is still unknown how these changes affect brain function.

Impairment at the neural network level can be evaluated
by techniques of recording brain activity in real time
[using technologies like magnetoencephalography (MEG)
or by studying the brain anatomical network [using diffusion
tensor image (DTI)]. MEG has provided critical insights into
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the disruption of functional brain network architecture
(Buldú et al., 2011; Stam et al., 2009) across the spectrum
of cognition in aging ranging from a state of normal cogni-
tion, through subjective (but not objective) memory symp-
toms, to MCI to frank dementia (Bajo et al., 2010; Buldú
et al., 2011; Stam et al., 2006). Studies of the anatomical net-
works and connectivity with DTI have shown impairment of
the white matter (WM) in MCI (Medina et al., 2006;
O’Dwyer et al., 2011). However, little is known about the re-
lationship between these two components of brain network
organization (Teipel et al., 2009).

Here, we have attempted to answer a core question related
to the underlying disruptions of brain structure and function
that characterizes the prodromal dementia syndrome of MCI.
That is, what are the relationships among changes in the
structural integrity of the connections between brain regions,
the dynamic patterns of the brain activity measured with
MEG, and the clinical symptoms of MCI? We used the meth-
odologies of graph theory (Bullmore and Sporns, 2009) to
analyze the functional connectivity (FC) networks that we
obtained through our MEG scans. We then combined these
data with those derived from DTI, which allows measure-
ment of the integrity of the connective tracts between brain
regions. We were specifically interested in knowing the ex-
tent to which physical changes in the brain, manifested as
a disruption of the connecting fibers as revealed by DTI,
resulted in alterations in the FC networks as measured by
MEG, and to changes in cognitive function.

We addressed this question by studying 89 elderly indi-
viduals: 52 healthy elderly subjects, and 37 MCI patients
whose main feature was a significant loss of memory referred
to as amnestic mild cognitive impairment (aMCI) (Petersen,
2011). We studied the relationship between graph theory-
derived measures of FC, anatomical interconnectedness mea-
sured with DTI data, and neuropsychological test performance.
We found significant correlations between the integrity of WM
and functional integrity measured in the patients with MCI. Of
most importance, we found that those WM tracts that were
linked to the measures of FC corresponded to parts of an ana-
tomically defined network that supports episodic memory.
Thus, we have identified, for the first time, using multimodal
imaging techniques, a direct link between anatomical intercon-
nectedness as measured by magnetic resonance imaging
(MRI), and functional interconnectedness as measured by
MEG imaging. These results provide important confirmation
of the disconnection hypothesis of the structure–function ab-
normalities in AD, and suggest a possible mechanism that
may increase the risk of MCI in normal aging.

Materials and Methods

Sample selection

Eighty-nine individuals participated in this study: 52
elderly healthy controls (HC) and 37 MCI patients (demo-
graphical description is included in Table 1). The two groups
showed significant differences ( p < 0.01) in the age, educa-
tion scores, and MMSE evaluation after a paired t-test. No
significant differences were found for the gender distribu-
tions after a Chi-square test ( p = 0.11). None of the partic-
ipants had histories of major psychiatric disorders or
neurological diseases. There was no evidence of stroke
or tumor from the structural MRI scans.

The diagnosis of MCI was based on a neuropsychological
examination made at the Hospital Clı́nico de Madrid and the
‘‘UPDC del Ayuntamiento de Madrid.’’ Healthy people were
recruited from the ‘‘Seniors Center of the district of Chamar-
tı́n, Madrid.’’ MCI patients were classified at stage 3 of the
GDS and were diagnosed according to the Grundman et al.
(2004) criteria. All of the MCI patients had a Clinical
Dementia Rating (Berg, 1988) score of 0.5, and none were
taking cholinesterase inhibitors (e.g., donepezil) or other
cognitive enhancing medications (e.g., memantine) before
MRI and MEG scanning.

The research described in this report was reviewed by the
Ethics Committee of the Technical University of Madrid. All
of the participants signed a written informed consent before
participating in any research activities.

MEG acquisition and analysis

MEG data were acquired with a 306 channel Vectorview
system (Elekta-Neuromag) at the Center for Biomedical
Technology (Madrid, Spain). The system comprises 102
magnetometers and 204 planar gradiometers, located inside
a magnetically shielded room. Sampling frequency was
1 kHz and online filtering 0.1–330 Hz was applied. A head
position indicator (HPI) system and a three-dimensional dig-
itizer (FastrakPolhemus) were used to determine the position
of the head with respect to the sensor array. Four HPI coils
were attached to the subject (one on each mastoid, two on
the forehead), and their position with respect to the three fi-
ducials (nasion and left and right preauricular points) was de-
termined. We recorded vertical eye movements, using two
electrodes attached above and below the left eye, and a ref-
erence electrode on the left earlobe. Subjects were asked to
stay calm with their eyes closed for 3 min.

External noise was removed from the MEG data using the
temporal extension of signal-space separation (Taulu and
Kajola, 2005) in MaxFilter (version 2.2, Elekta-Neuromag)
using a 10s raw data buffer and subspace correlation limit
of 0.9. The data were subsequently adjusted for head move-
ment every 200 ms and transformed into a common space.

Data were then preprocessed with Fieldtrip (Oostenveld
et al., 2011). The continuous time series (resting state) were
split into contiguous 4 sec trials. Jump, muscle, and ocular ar-
tifacts were automatically detected and trials containing arti-
facts were removed. Subjects with fewer than 25 clean trials

Table 1. Demographic Variables Including Gender,

Age, MMSE Scores and Education Scores

Group

Gender:
% male

(p = 0.11)a
Age

(p < 0.01)b
MMSE

(p < 0.01)b
Education
(p < 0.01)b

HC (n = 52) 28 69.92 (4.45) 29.31 (0.86) 3.64 (1.21)
MCI (n = 37) 52 74.22 (6.48) 27.44 (2.45) 2.82 (1.34)

Education level is quantified as: 1. Illiterate; 2. Elementary school
studies; 3. Secondary school studies; 4. Technical or Mid-level stud-
ies; 5. Higher-education or University studies. Data is given as mean
(standard deviation).

aThe p-value was obtained by Pearson Chi-square.
bThe p-value was obtained by two-sample two-tailed t-test.
MMSE, mini-mental state examination; HC, healthy control;

MCI, mild cognitive impairment.
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were not considered for further analyses. Notch filters were
used to remove the frequency of the power line (50 Hz) and
its harmonics, and a bandpass filter of 1–150 Hz was applied.
The time series were then filtered into five frequency bands:
delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–
30 Hz), and gamma (30–60 Hz) with linear finite impulse re-
sponse filters of order 1000 and 1 sec padding.

We computed the FC between all 5151 unique pairs of the
102 magnetometers in all frequency bands using phase lock-
ing value (PLV), a measure of phase synchronization (Mor-
mann et al., 2000). Phase synchronization is not sensitive to
the amplitudes of the signals. The instantaneous phase of a
signal uj (t) is first computed using the Hilbert transform,
then 1 sec is removed from edges on each side. The instanta-
neous phase difference is then computed between pairs of
signals uj (t). The PLV was obtained as the mean phase vec-
tor, which is based on the circular variance of the phase dif-
ferences projected onto the unit circle:

PLV =
1

M
+
M

m = 1

ei(uj(tm)�uk(tm))

����

����

where M = 4000 is the number of samples in the time series
(4 sec sampled at 1000 Hz). PLV indices have values that
range from 0.0 to 1.0, where 0.0 indicates uncorrelated
phase differences and 1.0 corresponds to perfect phase syn-
chronization.

The computation of PLV between all pair of magnetome-
ters yields a measure of the PLV networks (PLVn), which
consists of all 102 nodes connected by their PLV. The net-
works were fully connected because PLV was never 0.
PLVn were averaged across trials leading to one PLVn for
each frequency band and subject. The PLVn were processed
with graph analysis using two metrics that have already been
shown to discriminate AD from healthy elderly people (Stam
et al., 2009): network clustering (C ) and the characteristic
path length (L) normalized over random networks

�
Ĉ, L̂

�

[see Rubinov and Sporns (2010) for a review].
The clustering of a node Cj reflects the probability of find-

ing connected triangles in the network with this node. It can

be calculated as Cj = +
k, m2N

wjkwkmwjm

+
k, m2N

wjkwjm
, where wjk represents the

weight (PLVs) between nodes j and k (Onnela et al.,
2005), and N is the set of nodes (102 magnetometers). The
network clustering is obtained by averaging C = 1

N
+

j2N
Cj.

The characteristic path length depends on the distance
between nodes. The distance between a pair of nodes is con-
sidered as the inverse of the weights between these two nodes
djk = 1/wjk. We define now a path as a sequence of links that
connect a pair of nodes. The shortest path between every
two nodes ljk is computed using Dijkstra’s (1959) algorithm.
The characteristic path length is the average of all shortest
paths between nodes in the network L = 1

N2 +
j, k2N

ljk (Watts
and Strogatz, 1998).

Graph metrics such as C and L are absolute measures of
the network segregation and integration properties respec-
tively. However, these measures are biased by the strength
of the connections and their interpretation is not straightfor-
ward. Because we are more interested in the topological
properties of these measures, that is, the network organiza-
tion, we needed to eliminate the contribution of the connec-
tion strength. For that we followed the method described by
Maslov and Sneppen (2002).

The original networks were ‘‘randomized’’ 100 times, by
permuting the weights of the connections. C and L were
recomputed for each random matrix and averaged across ma-
trices. Finally, we ‘‘normalized’’ the metrics by dividing the
original network parameters by the average of the same pa-
rameter from the random networks (Fig. 1). If

�
Ĉ, L̂

�
are

close to 1.0, this means that the measures of segregation
(C ) and integration (L) are similar to those of random net-
works. By contrast, if the normalized graph metrics differ
from 1.0, the network parameters (clustering and characteristic
path length) indicate that the system is deviating from a pure
random organization, but they do not shed light on what
kind of guiding rules are responsible for this deviation. In ad-
dition, we computed the network strength, S, a measure of the
global level of connectivity of the network. S is calculated as
the average of all node’s strengths S = 1

N
+

j2N
Sj, Sj being

the sum of all weights connected to node j Sj = +
k2N

wjk.

FIG. 1. From the neurophysiological signal to the network metric. (1) Synaptical currents produce magnetic fields that are
measured with a magnetoencephalography (MEG) scanner. (2) Phase synchronization [phase locking value (PLV)] between
pairs of MEG time series is computed, yielding a functional network per subject and frequency band. Random versions of the
networks are obtained by random reshuffling of the original links. (3) Graph theory analysis is applied to obtain the normal-
ized network shortest path and clustering. Color images available online at www.liebertpub.com/brain
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The graph metrics were compared between groups with mul-
tivariate ANOVA tests. Kolmogorov–Smirnov and Levene
tests were used to ensure normality of the data and equal var-
iances across groups. Three-way ANOVA analysis was per-
formed considering diagnosis, age, and gender as factors.
We tested the significance of any observed differences in
the diagnosis main effect using a false discovery rate (FDR)
(Genovese et al., 2002) of q < 0.1.

MRI acquisition and analysis

All images were collected using a General Electric 1.5T
magnetic resonance (MR) scanner, using a high-resolution an-
tenna and a homogenization PURE filter. Three-dimensional
T1-weighted anatomical brain MRI scans were acquired
with a Fast Spoiled Gradient Echo (FSPGR) sequence with
the following parameters: TR/TE/TI = 11.2/4.2/450 ms; flip
angle 12�; 1 mm slice thickness, a 256 · 256 matrix, and
FOV 25 cm. T2-weighted and FLAIR images were also ac-
quired to identify vascular lesions and WM abnormalities.

Diffusion weighted images (DWI) were acquired with a
single shot echo planar imaging sequence with the following
parameters: TE/TR 96.1/12,000 ms; NEX 3 for increasing
the signal to noise ratio; 2.4 mm slice thickness, 128 · 128
matrix, and 30.7 cm FOV yielding an isotropic voxel of
2.4 mm; 1 image with no diffusion sensitization (i.e., T2-
weighted b0 images); and 25 DWI (b = 900 sec/mm2).

DWI were pre-processed with FMRIB’s Diffusion Tool-
box (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslOverview/). Pre-
processing consisted of eddy-current correction, motion
correction, and the removal of non-brain tissue using the ro-
bust Brian Extraction Tool (Smith, 2002). Diffusion tensor
images (DTI) were created using the weighed least squares
fitting method. We derived images of fractional anisotropy
(FA) from the DTI, where higher values (i.e., anisotropic
movement) are considered a marker of healthy WM tracts
(Basser and Pierpaoli, 1996). We used a voxel-based analysis
(VBA) pipeline to find differences in FA between groups,
and later to find correlations between FA and graph metrics
from FC networks.

Voxel-based analyses

VBA of FA images was carried out with SPM8 software
(www.fil.ion.ucl.ac.uk/spm/software/spm8/). First, b0 im-
ages were manually aligned to the AC-AC line, and the
same alignment was applied to the FA images. Then, these
FA images were co-registered to a FA template from FSL
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA) using lin-
ear affine registration with normalized mutual information
as the fitness function (Collignon and Maes, 1995). The reg-
istered images were normalized to the FA template using a
non-linear registration algorithm (Ashburner, 2007) and
were then smoothed with a 3D Gaussian kernel [4 mm full
wide half maximum (FWHM)]. The resulting FA images
were averaged across subjects, obtaining one template for
each of the two groups HC and aMCI. All FA images were
normalized to their own template and smoothed with a 3D
Gaussian kernel (4 mm FWHM). Differences in FA between
groups were obtained by performing a general linear model,
with age and sex as covariates. We tested the significance of
any observed differences using a paired t-test with p < 0.001
with an extent threshold of 20 voxels.
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Multimodal MEG-FA regression analysis

Here, we use a VBA to discover dependencies between
graph metrics from FC networks and FA in aMCI subjects.
This methodological pipeline was previously employed in
a recent research (Fernández et al., 2011), identifying rela-
tionships between complexity in MEG signals and FA.
Here instead, we introduced into the VBA the graph metrics
as covariates to evaluate our initial hypothesis that the integ-
rity of the functional organization of the networks is related
to the structural integrity of the WM. We built 10 SPM8 de-
sign matrices (5 frequency bands · 2 graph metrics) and
obtained statistical parametric maps representing the depen-
dency of FA (measured at the voxel-level) with the graph
theory parameters. We used an FDR threshold of q < 0.01
with an extent threshold of 50 voxels.

Results

Graph absolute measures C and L showed differences be-
tween HC and aMCI groups. C was lower for the HC in beta
frequency band ( p < 0.05), while L was higher for the HC in
beta frequency band ( p < 0.01) (Table 2). However, these
parameters depend on the strength of the connections: as S
increases, C increases and L decreases (Table 2). Thus, nor-
malized graph metrics seems to be a better marker that over-
come these differences and just describe the network
topography. The results obtained with

�
Ĉ, L̂

�
indicate that

the normalized characteristic path length in aMCI is lower
than controls for beta frequency band ( p < 0.01) (Table 3).
No differences were observed for the normalized clustering.
Additionally, we observed that for both groups and for all
frequency bands there was no sign of small-world organiza-
tion (Watts and Strogatz, 1998).

We identified the anatomical basis of the brain network or-
ganization by analyzing the integrity of the WM tracts using
DTI. We found significant areas of unhealthy WM in the
aMCI patients relative to the controls including long fiber
bundles connecting to and from the frontal lobes, and more
localized damage affecting the integrity of the Papez Circuit,
which is critical for memory processing (Fig. 2 and Table 4).
There was damage to the anterior thalamic radiations in the
left hemisphere, which connects the anterior and medial tha-
lamic nuclei to the frontal lobes (Hua et al., 2008). There
were differences in the inferior fronto-occipital fasciculus
in both hemispheres, which project caudally from the frontal

lobes via the corona radiata to the temporal and occipital
lobes (Hua et al., 2008). The interhemispheric connections
of the forceps major (occipital lobes) were also abnormal
in aMCI patients (Fig. 2). Finally, we found damage in the
long inter-regional connections formed by the inferior and
superior longitudinal fasciculi, and more localized damage
to the cingulum of the hippocampus, which is a critical path-
way within the Papez Circuit (Shah et al., 2012).

We then examined the relationship in both groups (HC and
aMCI) between FA (at the voxel level) and all the normalized
graph indices in an exploratory analysis, to identify which
metrics were dependent on the integrity of the WM. We ana-
lyzed the associations between the Ĉ and L̂ measures in each
frequency with FA in a whole-brain SPM8 model; we in-
cluded age and sex as covariates (FDR q < 0.01).

We did not find significant associations between graph
metrics and FA for the HC group. For aMCI we found signif-
icant associations between the normalized measure of clus-
tering (C) and FA in the delta, theta, and alpha bands, but
no significant links between normalized characteristic path
length and FA (Fig. 3 and Table 5). We observed significant
correlations of the FA in the cingulum of the hippocampus in
both hemispheres for Ĉ in the delta, theta, and alpha bands.
Also, clusters of voxels in the forceps minor and the inferior
longitudinal fasciculus (ILF) in the left hemisphere corre-
lated with Ĉ. We found more frequency-limited correlations
between FA and Ĉ in delta and theta bands in the right ante-
rior thalamic radiation, and in the alpha band in the left hemi-
sphere. We studied the WM integrity in these clusters of
association identified for the aMCI group. Average FA was
computed across the clusters for both groups. We observed
that there was a significant FA decrease in most clusters
for the aMCI group compared with HC group (Table 5).

These WM regions were also related to the cognitive func-
tions of the aMCI patients. We correlated performance on
our neuropsychological tests with the average FA of the clus-
ters. We found that interregional and interhemispheric con-
nections were critical for the successful performance of
these tasks. Specifically, phonemic fluency (‘‘tell me as
many words as you can beginning with the letter F’’) corre-
lated with FA in the forceps minor (connecting the frontal
lobes), and that semantic fluency (i.e., ‘‘name as many ani-
mals as possible within one minute’’) was not only correlated
with FA in the forceps minor, but also the right anterior tha-
lamic radiation, the right inferior fronto-occipital fasciculus,

Table 3. Normalized Graph Metrics Comparison Between HC and aMCI Groups

Normalized clustering Normalized characteristic path length

Group Group
Frequency
band HC MCI p-Value HC MCI p-Value

Alpha 1.0023 (0.0019) 1.0021 (0.0014) 0.8254 1.1969 (0.0513) 1.1879 (0.0454) 0.1891
Beta 1.0040 (0.0017) 1.0040 (0.0015) 0.8912 1.4174 (0.0712) 1.3893 (0.0608) 0.0058a

Theta 1.0023 (0.0021) 1.0017 (0.0008) 0.3065 1.2641 (0.0287) 1.2484 (0.0398) 0.0749
Delta 1.0019 (0.0015) 1.0020 (0.0012) 0.3934 1.2679 (0.0354) 1.2567 (0.0520) 0.2615
Gamma 1.0083 (0.0050) 1.0072 (0.0021) 0.1903 1.6217 (0.0794) 1.6199 (0.0849) 0.6514

Data are given as mean (standard deviation). The p-values were obtained by multifactorial ANOVA, where age and gender were included
as factors.

aFDR correction for multiple comparisons (q < 0.1).
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and the right ILF—that is the long interregional connections
(Table 6). The ability of the aMCI patients to recall short
prose passages immediately after presentation was associ-
ated with FA in the right inferior fronto-occipital fasciculus,
right ILF, and the left cingulum of the hippocampus. Recall
of those same prose passages after a delay of 20 min was

linked to FA in the right inferior fronto-occipital fasciculus.
Finally, a measure of frontal system function (i.e., the Trail-
making Test) was correlated with FA in the right cingulum of
the hippocampus, the right anterior thalamic radiation, and
the forceps minor.

Discussion

First, and most important, we report here for the first time
the significant associations between the structural integrity of
WM as revealed by the DTI, and the functional integrity of
the neuronal networks in aMCI patients as revealed by
graph theory metrics. In the process of reaching these find-
ings, we also confirmed prior observations of the significant
alterations in the integrity of WM in aMCI patients relative
to healthy controls (Medina et al., 2006; O’Dwyer et al.,
2011), and that there are disruptions of FC of the neuronal
networks measured with MEG (Buldú et al., 2011; Stam
et al., 2009). It is worth mentioning that this study counts
with some limitations: (1) the groups did not match in age
nor education level. Although we included age and gender
as regressors in all statistical analyses, this could bias the re-
sults and hence more homogeneous samples are needed to
confirm the findings; (2) the differences in the graph analyses
were not statistically robust as they just overcome an FDR
correction of q < 0.1, however, due to the low number of
comparisons we consider this threshold to be enough; further
analyses with the networks will be needed to identify more
robust markers of the pathology in the topography of the
functional networks; (3) the lack of small-world organization
in the functional networks has also been observed (Stam
et al., 2009), and it could be a consequence of using fully
connected weighted un-thresholded networks.

The normalized graph metrics showed that the network or-
ganization was more random for the aMCI patients than for
the healthy controls in beta frequency band. The aMCI pa-
tients had less well organized FC, meaning that brain regions
were not communicating as effectively with each other as

FIG. 2. Fractional anisotropy (FA) voxel-based analysis between healthy control (HC) and amnestic mild cognitive impair-
ment (aMCI) groups. Regions that showed higher FA values in HC compared to aMCI (uncorrected p-value p < 0.001 and min-
imum cluster size of 20 voxels) have been highlighted in orange-yellow colors. The colors represent the t-value of the voxels.
Color images available online at www.liebertpub.com/brain

Table 4. MNI Coordinates of the VBA Results

Showing Differences in FA Between HC
and aMCI Groups (Uncorrected p-Value p < 0.001

and Minimum Cluster Size of 20 Voxels)

Region X Y Z

Cluster
size

(voxels) t

Anterior thalamic
radiation L

�6 �37 �19 1240 6.12

Cingulum (hippocampus) L �23 �30 �13 97 4.09
Cingulum (hippocampus) R 18 �44 2 475 4.84
Forceps major 15 �44 3 266 4.41
Inferior fronto-occipital

fasciculus L
�36 �52 8 119 4.07

Inferior fronto-occipital
fasciculus R

36 �22 �3 129 3.84

Inferior longitudinal
fasciculus L

�36 �53 9 95 4.05

Inferior longitudinal
fasciculus R

41 �4 �36 106 4.83

Superior longitudinal
fasciculus L

�52 �46 �12 90 4.28

Superior longitudinal
fasciculus R

39 �4 �35 27 4.80

The tracts were identified with the probabilistic atlas from Johns
Hopkins University (Hua et al., 2008). In the table are shown the
main tracts where the differences were identified. The table includes
the MNI coordinates of the voxel with highest significance, the clus-
ter size and the peak t-value.

MNI, Montreal Neurological Institute; VBA, voxel-based analy-
sis; FA, fractional anisotropy.
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they were in the cognitively healthy individuals. The more a
normalized graph metric differs from one, the further from
random the network organization is. In our results all normal-
ized graph metrics were higher than one, therefore positive
correlations between the metrics and FA means that this

measure of network integrity is related to the ‘‘health’’ of
the WM in that particular fiber tract.

The WM regions that were related to the functional archi-
tecture of the neuronal networks have a common property;
they are anatomical hubs with the role of connecting spatially

FIG. 3. (A–C) Dependency of the FA with the random normalized graph metrics in the aMCI group: (A) Normalized clus-
tering in delta band; (B) normalized clustering in theta band; (C) normalized clustering in alpha band. Montreal Neurological
Institute (MNI) T1 template of 1 mm isotropic voxel was chosen for representation. The highlighted voxels (red) showed
statistical significance corrected for multiple comparisons with false discovery rate (FDR) q < 0.01. (D–F) Depict the neuro-
psychological scores versus the average FA for the highlighted clusters in (A–C) respectively. Color images available online
at www.liebertpub.com/brain
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distant brain regions. The affected frequency bands, delta,
theta, and beta all show the loss of clustering organization,
which is one sign of a tendency to form a random network
among the MCI patients. The WM loss disrupts the normal
communication along the entire episodic memory functional
network (Lockhart et al., 2012). Although we did not find a
significant association between FA and the normalized graph
metrics for the HC group, healthy subjects showed a higher
average FA in the clusters identified for the aMCI group.
This led us to consider that the damage of those regions
might form the anatomical basis of cognitive and functional
decline.

In our work, a lower performance in episodic memory
tests was associated with a reduced network organization
during resting state in the MCI group. This is consistent
with the observations that the resting state network architec-
ture has been linked to episodic memory performance in

healthy control subjects (Buckner et al., 2008), in patients
with damage in the medial temporal lobe (MTL) (McCor-
mick et al., 2013), and in AD patients (Stam et al., 2009).
The tendency toward a random architecture of the network
that we found during ‘‘rest,’’ coupled with the loss of WM
integrity, could, at the very least affect memory processing
by disrupting encoding and recall stages. This is supported
by the observation that there is a correlation between disrup-
ted WM (i.e., lower FA) in the inferior fasciculus and the cin-
gulum of the hippocampus with both encoding and delayed
recall of prose passages. Thus, it appears that the MTL,
ILF, anterior thalamus, and the forceps minor are forming
a network necessary to encode, maintain, and recall informa-
tion from episodic memory.

Although damage to WM can sometimes be considered
secondary to gray matter loss, there is evidence of dam-
age to the WM in the absence of gray matter loss both in

Table 5. MNI Coordinates for the Tracts Showing Dependence Between FA
and the Normalized Graph Theory Metrics in the aMCI Group

Metrics/region X Y Z Cluster size t hFAiaMCI hFAiHC p-Value

Ĉ (2–4 Hz)
Anterior thalamic radiation R 5 �14 �21 9 6.42 0.19 (0.02) 0.19 (0.02) 0.495
Cingulum (hippocampus) L �34 �18 �21 60 6.52 0.14 (0.02) 0.16 (0.02) 0.005a

Cingulum (hippocampus) R 32 �18 �23 74 7.06 0.14 (0.02) 0.16 (0.02) 0.012a

Forceps minor 6 �13 �21 13 7.41 0.23 (0.02) 0.24 (0.02) 0.021a

Inferior longitudinal fasciculus L �35 �18 �21 48 7.05 0.14 (0.02) 0.16 (0.02) 0.001a

Ĉ (4–8 Hz)
Anterior thalamic radiation R 5 �13 �20 17 6.93 0.19 (0.02) 0.19 (0.02) 0.533
Cingulum (hippocampus) L �37 �18 �21 128 7.81 0.14 (0.02) 0.16 (0.02) 0.024a

Cingulum (hippocampus) R 30 �16 �22 194 7.89 0.15 (0.02) 0.16 (0.02) 0.006a

Forceps minor 7 �13 �21 16 8.11 0.23 (0.02) 0.24 (0.02) 0.034a

Inferior fronto-occipital fasciculus R 26 �76 �17 140 8.88 0.11 (0.01) 0.11 (0.01) 0.636
Inferior longitudinal fasciculus L �36 �18 �21 111 8.85 0.15 (0.02) 0.17 (0.02) 0.001a

Inferior longitudinal fasciculus R 25 �77 �17 53 8.23 0.11 (0.01) 0.11 (0.01) 0.268

Ĉ (8–12 Hz)
Anterior thalamic radiation L �16 26 1 26 6.46 0.10 (0.02) 0.12 (0.02) 0.129
Cingulum (hippocampus) L �36 �16 �23 191 6.95 0.15 (0.02) 0.16 (0.02) 0.028a

Cingulum (hippocampus) R 32 �18 �23 203 7.70 0.15 (0.03) 0.17 (0.02) 0.058
Forceps minor �15 26 2 131 6.99 0.10 (0.02) 0.12 (0.02) 0.123
Inferior fronto-occipital fasciculus R 33 �22 �15 20 7.15 0.13 (0.02) 0.14 (0.02) 0.029a

Inferior longitudinal fasciculus L �36 �17 �21 110 7.31 0.16 (0.02) 0.18 (0.02) 0.003a

Only the normalized clustering in delta, theta and alpha bands showed significant dependence (FDR q < 0.01) with the FA in the indicated
tracts. These tracts were identified with the probabilistic atlas from Johns Hopkins University (Hua et al., 2008). The table includes the MNI
coordinates of the voxel with highest significance, the cluster size (i.e., number of voxels) and the peak t-value. The last three columns con-
tain the average FA and standard deviations across subjects in the WM clusters, and the p-values after a multifactorial ANOVA, including
age and gender as factors.

aFDR correction for multiple comparisons (q < 0.1).
WM, white matter.

Table 6. Correlates of the Neuropsychological Scores with the Mean FA Values in Specific WM Tracts

Region Neuropsychological test Rho-Spearman

Anterior thalamic radiation R Semantic fluency, TMT b, TMT b-a 0.33; �0.36; �0.36
Cingulum (hippocampus) L Logical memory I, reverse digit span 0.31; 0.44
Cingulum (hippocampus) R TMT b-a, reverse digit span �0.40; 040
Inferior fronto-occipital fasciculus R Semantic fluency, logical memory I, logical memory II 0.37; 0.37; 0.31
Inferior longitudinal fasciculus R Semantic fluency, logical memory I 0.31, 0.34
Forceps minor Phonetic fluency, semantic fluency, TMT b-a 0.40; 0.35; �0.36

The mean FA values were obtained in the clusters of voxels that showed statistical dependence with the normalized graph theory metrics.
All correlations were statistically significant with p < 0.01.
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human and animal models (Desai et al., 2009; Selnes et al.,
2012). Perhaps most important, is the fact that at least
some of the WM damage is related to the vascular changes,
which are often represented as WM hyperintensities (Zhuang
et al., 2010).

Our findings are provocative because they lend support to
the idea that the clinical syndrome of AD is at least partially
represented as a disconnection syndrome, and that such dis-
connection can be observed in the prodromal phase between
normal cognition and clinical dementia (i.e., MCI). The joint
use of anatomical and neurophysiological data in this study
provides us with the opportunity to address this question in
a way that could not be done with either modality alone.
What is not clear from our data is the extent to which other
variables, including the presence of the APOE*4 risk gene
or the extent of beta-amyloid deposition, affect brain struc-
tural and functional health.

The data that we report here are fully consistent with prior
MEG studies [see Zamrini et al. (2011) for review]. AD pa-
tients have a general decrease in FC across all frequencies
(Stam, 2010), indicating less organized functional networks.
However, MCI patients are able to muster a possible com-
pensatory response by increasing inter-regional connectivity
to support their performance on memory tasks (Bajo et al.,
2010), and which may be one expression of brain or cogni-
tive reserve (Satz, 1993; Stern et al., 1992, 1994). The net-
work architecture in MCI patients has a loss of cluster
organization and a tendency toward a more random (i.e.,
less organized) network structure (Buldú et al., 2011), and
those patients who subsequently become demented have
higher synchronization values (Bajo et al., 2012a). This latter
point is important because it suggests that hypersynchroniza-
tion reflects a pathological state within the neuronal net-
works. By contrast, individuals with subjective memory
complaints (but no evidence of object memory loss) actually
underexpress a network that supports recognition memory
(Bajo et al., 2012b). Thus, there seems to be a dynamic
change in brain function over the spectrum of normal
aging through subjective memory complaints to MCI to de-
mentia. Our data suggest a consistency in the observations
regarding the neural networks in MCI patients, and add to
our understanding of the altered function by providing a
structural basis for the functional changes.

It is important to note the contributions of graph theory
(Bullmore and Sporns, 2009) to our understanding of brain
functional networks. In graph theory we conceptualize an un-
derlying network as consisting of a series of nodes or verti-
ces, and a set of links that connect the nodes. While the
nodes in our MEG analysis are grounded in physical space—
they represent the individual MEG sensors—the links be-
tween the nodes, or path lengths, are related to functional,
not physical proximity. Thus, the shortest path length param-
eter may connect spatially disparate points but which have a
high degree of interconnectedness with a relatively few num-
ber of intervening nodes. While these graph theory metrics
have been used in other electrophysiological studies (Bassett
et al., 2006; Stam et al., 2009), this is the first time that these
metrics have been shown to be related to brain structural in-
tegrity, and specifically the physical connections between
brain regions. Teipel et al. (2009) showed a correlation be-
tween WM structure in the thalamus, among other structures,
and the frontal coherence values at the alpha band with elec-

troencephalography. However, they did not report how the
damage of specific WM tracts disrupted the organization of
the whole brain network.

There is a growing body of evidence that suggests that
measures of the brain functional organization as revealed
by MEG show a progressive pattern of change as an individ-
ual moves from a state of normal cognition, through subjec-
tive memory complaints, to MCI, and finally to clinical
dementia. The extent of brain functional abnormality may
be related to the speed at which an individual may develop
dementia, or may be viewed as representing the extent of
neuronal network abnormality that is not completely cap-
tured by clinical examination. As the requirements of science
demand our ability to detect the earliest evidence of patho-
logical change in the brains of individuals destined to de-
velop the dementia of AD, the sensitivity of MEG to brain
functional changes prior to clinical change may be critical.

Conclusion

We have provided evidence that the impairment in specific
WM tracts is related to a shift of the functional networks to-
ward a random organization. How these changes fit into the
natural history of AD and dementia is yet to be determined.
However, these and related data go a long way toward vali-
dating the utility of the anatomical-FC (DTI/MEG) in our
studies of the natural history of AD.
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