BRAIN CONNECTIVITY
Volume 4, Number 9, 2014

© Mary Ann Liebert, Inc.

DOI: 10.1089/brain.2014.0258

Synchronous Multiscale Neuroimaging Environment
for Critically Sampled Physiological Analysis of Brain
Function: Hepta-Scan Concept

Tuija Hiltunen™ Teemu Myllyla? Xindi Wang?2 Jussi Kantola, Juha Nikkinen!
Yu-Feng Zang;* Pierre LeVan? and Vesa Kiviniemi'

Vesa Korhonen"”

Abstract

Functional connectivity of the resting-state networks of the brain is thought to be mediated by very-low-
frequency fluctuations (VLFFs <0.1 Hz) in neuronal activity. However, vasomotor waves and cardiorespiratory
pulsations influence indirect measures of brain function, such as the functional magnetic resonance imaging
blood-oxygen-level-dependent (BOLD) signal. How strongly physiological oscillations correlate with spontane-
ous BOLD signals is not known, partially due to differences in the data-sampling rates of different methods.
Recent ultrafast inverse imaging sequences, including magnetic resonance encephalography (MREG), enable
critical sampling of these signals. In this study, we describe a multimodal concept, referred to as Hepta-scan,
which incorporates synchronous MREG with scalp electroencephalography, near-infrared spectroscopy, nonin-
vasive blood pressure, and anesthesia monitoring. Our preliminary results support the idea that, in the absence of
aliased cardiorespiratory signals, VLFFs in the BOLD signal are affected by vasomotor and electrophysiological
sources. Further, MREG signals showed a high correlation coefficient between the ventromedial default mode
network (DMN,,,,r) and electrophysiological signals, especially in the VLF range. Also, oxy- and deoxyhemo-
globin and vasomotor waves were found to correlate with DMN,,,¢. Intriguingly, usage of shorter time windows
in these correlation measurements produced significantly ( p <0.05) higher positive and negative correlation co-
efficients, suggesting temporal nonstationary behavior between the measurements. Focus on the VLF range
strongly increased correlation strength.
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Introduction

ROFESSOR JiM HYDE originally suggested to Bharat

Biswal that “‘there should be something in the spontane-
ous, resting state blood oxygen level-dependent (BOLD) sig-
nal” in addition to mere activation responses. Along with
their coworkers, Biswal and Hyde later demonstrated that
spontaneously occurring functional connectivity does exist
in the form of very-low-frequency fluctuations (VLFFs) in
the BOLD signal. These fluctuations were thought to mediate
information between homologous brain regions across the
hemispheres (Biswal et al., 1995).

Functional connectivity magnetic resonance imaging
(fcMRI) has become an increasingly popular source of new
information on brain pathology (Greicius et al., 2008).
Despite the wide use of fcMRI, neurophysiological sources
of spontaneous brain activity fluctuations are still relatively
unknown. Low-frequency fluctuations are present in all pri-
mary sensory regions (Cordes et al., 1999). Independent
component analysis (ICA) can effectively delineate func-
tional units known as intrinsic or resting-state networks
(i/RSNs) that cover the brain (Beckmann et al., 2005; Calhoun
et al., 2001; Kiviniemi et al., 2009; Smith et al., 2009). Dual
regression of the fcMRI data enables the detection of RSN

'"Department of Diagnostic Radiology, Institute of Diagnostics, Medical Research Center of Oulu, Oulu, Finland.

Optoelectromcs and Measurement Techniques Laboratory, Department of Electrical Engineering, University of Oulu, Oulu, Finland.
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.

Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.

SDepartment of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany.

*These authors contributed equally to this work.

677



678

data from a single subject for accurate correlation analytics
(Abou Elseoud et al., 2014; Filippini et al., 2009).

Simultaneous electroencephalography (EEG)-fMRI stud-
ies have sparked widespread interest, because they allow
good temporal and spatial resolution. It has been shown that
the EEG signal correlates with the BOLD signal (for recent re-
views, c.f. Huster et al., 2012; Laufs, 2012). These correlations
have also been investigated in RSNs at wide range of frequen-
cies from baseline direct current (DC) to 50 Hz (Hiltunen et al.,
2014; Jann et al., 2010; Laufs et al., 2003; Mantini et al., 2007;
Sadaghiani et al., 2010). It is clear that the BOLD signal re-
flects electrophysiological activity at least to some extent.
However, the accuracy of correlation measurements is limited
by a marked difference in the sampling rates of the EEG and
conventional BOLD signal.

Near-infrared spectroscopy (NIRS) time-domain signals
also have a good temporal correlation with functional brain
networks (Mesquita et al., 2010; Sasai et al., 2012; Zhang
et al., 2010). It has been suggested that VLFFs, detected si-
multaneously by both NIRS and fMRI, arise from the prop-
agation of endogenous global blood flow and oxygenation
fluctuations through cerebral vasculature, rather than from
local variations in neuronal activation or localized cerebral
blood flow changes (Tong, 2012; Tong and Frederick,
2010). Most of these studies have been carried out by region-
of-interest-based or general linear model (GLM) analysis
of whole-brain BOLD data. In this study we compare NIRS,
as well as all the other physiological data, with ICA-based
dual-regressed data.

An early hypothesis concerning the origin of VLFFs in the
BOLD signal pointed out vasomotor waves as a contributing
factor. Vasomotor waves are slow, minute-scale general fluc-
tuations of blood vessel wall tone that modulate blood perfu-
sion pressure from microvasculature to global blood pressure
(BP). By measuring the speed of heart pulsation propagation in
the blood vessels, one is able to noninvasively monitor the va-
somotor waves of BP (Gesche et al., 2012; Gribbin et al., 1976;
Myllyld et al., 201 1a; Sorvoja, 2006). To the best of our knowl-
edge, a direct time-domain correlation between vasomotor
waves and VLFFs of BOLD signals has never been reported
previously. Kannurpatti and Biswal have demonstrated a
BP-drop-induced increase in VLF vasomotor (Mayer waves =
0.03-0.05Hz) (Miakawa et al., 1984) waves, which strongly
affected the lowest frequencies of the BOLD signal in an anes-
thetized rat (Kannurpatti et al., 2008). Due to an absence of
fMRI-compatible noninvasive BP (NIBP) measurement
equipment, direct correlations between BOLD signals and va-
somotor waves have not been conducted until now.

Nyquist theorem states that in order to avoid aliasing one
should sample the physiological signals critically, that is,
more than two times faster than the physiological signal.
Cardiorespiratory noise ranged between respiration=0.3 Hz
and heart rate =1 Hz (+harmonics) and unavoidably aliases
the classical BOLD signal sampled at 0.5 Hz. Aliasing makes
a definite separation of fluctuation sources a highly demand-
ing task from a single scan (Kiviniemi et al., 2005). Further,
changes in respiration and heart rate variability have been
shown to alter the BOLD signal (Birn et al., 2008; Chang
et al., 2013; Wise et al., 2004). Nonetheless, recent techno-
logical advances in ultrahigh temporal resolution fMRI,
such as inverse imaging (Lin et al., 2012), magnetic reso-
nance encephalography (MREG) (Asslidnder et al., 2013),
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and generalized inverse imaging (Boyacioglu and Barth,
2013a), enable critical sampling of brain data without spuri-
ous aliasing. In this article we utilize MREG with 10 Hz sam-
pling frequency, which allows critical sampling and thus also
separation of cardiorespiratory noise making correlations on
events occurring in the 0-5 Hz range more accurate.

Physiological signals affect and counteract on each other.
For example, heart rate is affected by normal breathing due
to coupling and interaction between the cardiac and respira-
tory systems (Indic et al., 2008). Neural events lock to heart-
beats before stimulus onset and predict the detection of a
faint visual grating in two multifunctional RSNs (Park
et al.,, 2014). Cardiac variability has also recently been
shown to have a connection with the RSN dynamics as
well (Chang et al., 2013). Synchronous multimodal measure-
ment is the only way to obtain precise assessment of the com-
plex dynamics and interactions between physiological
variables and brain activity.

In the present study, we investigated the feasibility of a
highly multimodal imaging environment—Hepta-scan—
that combines MREG, EEG, NIRS, and NIBP with other
basic physiological measurements (e.g., SpO,, respCO,,
and electrocardiogram [ECG]) provided by a standard anes-
thesia monitor (Myllyld, 2014). ICA with dual regression
was used to separate RSNs from the data. We measured
intermodality correlations between EEG, NIBP, NIRS, and
MREG in both full band (FB; 0-5Hz) and VLF (0.009-
0.08 Hz). In addition, we investigated differences in correla-
tions between full (10 min) and short (2 min) time windows
in order to assess the temporal stationary of intermodal
connectivity.

Materials and Methods
Subjects

Concurrent Hepta-scan (fMRI, NIRS, EEG, NIBP, and an-
esthesia monitor) resting-state studies were performed in 11
healthy volunteers (3 women, 27.2+7.5 years old). The
study protocol was approved by the ethics committee of
Oulu University Hospital. Written informed consent was
obtained from each subject individually prior to scanning,
in accordance with the Helsinki declaration. During the 10-min
MREG resting-state study, subjects were instructed to lie
quietly in the scanner with their eyes open fixating a cross
on the screen and thinking nothing particular.

Magnetic resonance imaging

Our MR system is Siemens 3T SKYRA with a 32-channel
head coil. We utilize MREG sequence obtained from Frei-
burg University via collaboration with Jiirgen Hennig
group (Lee et al., 2013; Zahneisen et al., 2012). MREG is
a three-dimensional (3D) spiral, single-shot sequence that
undersamples 3D k-space trajectory for faster imaging
(Asslédnder et al., 2013). It samples the brain at 10-Hz fre-
quency (TR =100 msec, TE=1.4 msec, and flip angle =25°)
and offers thus about 20-25Xfaster scanning than con-
ventional fMRI. Three-dimensional MPRAGE (TR =1900
msec, TE=2.49 msec, flip angle=9°, FOV =240, and slice
thickness=0.9) images were used to register the MREG
data into 4-mm MNI space. Respiratory belt and fingertip pe-
ripheral SpO, data were also being saved from the scanner.
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Near-infrared spectroscopy

NIRS measurement device for fMRI environment has been
developed since 2008 in cooperation between the Oulu Func-
tional Neuroimaging (OFNI) group (www.oulu.fi/ofni) and
the Optoelectronics and Measurement Techniques (OEM)
Laboratory at the University of Oulu. The MRI-compatible
NIRS device allows the continuous measurement of cerebral
blood flow of the brain cortex, particularly quantifying con-
centrations of deoxyhemoglobin (Hb) and oxyhemoglobin
(HbO), in synchrony with fMRI. The measurement method is
based on frequency domain technique utilizing high-power,
light-emitting diodes instead of lasers. The developed de-
vice allows us to change the combination of wavelengths
depending on the study case (Korhonen, 2014; Myllyl4, 2014,
Myllyld et al., 2011b, 2012, 2013). In the present study,
wavelengths of 660, 830, and 905 nm were used. Wavelengths
660 and 830nm were selected because they are located on
both sides of the isosbestic point of the absorption spectrum of
HbO and Hb, that is, at 800 nm, where the extinction coeffi-
cient of oxygenated and deoxygenated hemoglobin is the same
(Sorvoja et al., 2010). The wavelength 905 nm was chosen in
order to probe cytochrome aa3 activity; however, the cyto-
chrome activity was not further analyzed in this study. One
measuring channel using a source—detector distance of 3 cm
was placed to subject’s upper forehead to measure the ven-
tromedial default mode network (DMN,,.). The sampling
rate of NIRS data acquisition was 10 kHz.

Electroencephalography

EEG was recorded with 32-channel, MR-compatible
BrainAmp system (Brain Products, Gilching, Germany) using
Ag/AgCl electrodes placed according to the international
10-20 system. Also ECG was recorded. Electrode imped-
ances were <5kQ, sampling rate 5 kHz, and band pass
from DC to 250Hz. Signal quality was tested outside the
scanner room by recording 30 sec eyes open and eyes closed.
Skin potential was removed by stick abrasion technique to
allow DC-potential measurement (Vanhatalo et al., 2003).

Noninvasive BP measurement

Vasomotor waves of arterial BP were measured by an
NIBP device that was also developed by OEM laboratory
and the OFNI group. The completely MRI-compatible mea-
surement method is described more precisely in the follow-
ing reference (Myllyld et al., 2011a). Cardiovascular pulses
induce tiny movements of the skin, especially near the
arteries. In this measurement method, these skin movements
are sensed from skin surface continuously and simulta-
neously by two sensors, one placed over the aortic valve
on sternum and another carotid artery. Pulse transit time
(PTT) between the sensors is calculated, giving the transition
time between the starting time of each pressure pulse (open-
ing of the aortic valve) and the ensuing diameter change
of the carotid. Further, pulse wave velocity (PWV) is the
speed of a pressure pulse propagating along the arterial
wall and can be calculated from PTT once the distance be-
tween the sensors has been determined. Since PWV depends
on the pressure in the aorta (the higher the pressure, the
greater the velocity), diastolic pressure in the aorta can be de-
termined by PWV. Moreover, BP changes due to vasomotor
waves are reflected also as changes in PWV. Sampling fre-
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quency of the raw acceleration signals was 10 kHz. Highest
peaks were identified by searching for the maximum value of
each time interval between heartbeats. Next, delays between
the corresponding peaks of two accelerometers were calcu-
lated. The method, for finding heart peaks and validating
the acceleration response followed by determination of the
PTT and PWV values, was done with Matlab and is pre-
sented more precisely in the reference (Myllyld et al.,
2012). So far, comparisons between NIBP and invasive BP
(IBP) responses have been indicating a good correspondence

(Fig. 1).

Anesthesia monitor

SpO,, respCO,, ECG, and cuff-based NIBP were regis-
tered using 3T MRI-compatible anesthesia monitor (GE
Datex-Ohmeda™; Aestiva/5 MRI). The cuff-based NIBP
was used for calibrating the continuous NIBP before and
after scanning. Continuous measurement of SpO,, respCO,,
and ECG data was optically transferred to a monitoring com-
puter during the actual measurements via special server for
time trends. In a monitoring computer the Datex-Ohmeda
S/5 Collect software collects and saves the data with a sam-
pling rate of 300 Hz. In this study these data are used for ver-
ification purposes.

Timing

To enable accurate analysis between different signals,
they were synced with each other. The 3T SKYRA MR-
scanner optical timing pulse mediates millisecond-level trig-
ger for synchronization of data gathering for NIRS, NIBP,
and EEG. BrainAmp SyncBox was used to verify that MR
scanner and EEG amplifier are clocked by. Anesthesia mon-

itor signal timings are facilitated from the scanner artifact
reflected in the ECG leads.
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FIG. 1. Simultaneous measurement of BP by the devel-

oped NIBP method and by an anesthesia monitoring device
measuring IBP. Blue line represents noninvasive NIBP mea-
sured by our device, orange lines invasive BP, and purple
line its upper envelope. The sampling rate of NIBP measure-
ment was 1 kHz and that of the anesthesia monitoring device
was 300 Hz. IBP, invasive blood pressure; NIBP, noninva-
sive blood pressure.
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Analysis of MREG data

MREG data are being preprocessed with FSL pipeline.
One hundred eighty time points were removed from the be-
ginning for minimizing T1-relaxation effects. Head motion
was corrected with FSL 5.01 MCFLIRT software (Jenkinson
et al., 2002). The movement of the subjects was almost ex-
clusively due to respiration-related z-direction head move-
ment. The mean relative motion was 0.05+0.001 mm and
did not exceed 0.07 mm in any subject.

Brain extraction was carried after MCFLIRT with optimi-
zation of the deforming smooth surface model, as imple-
mented in FSL 5.01 BET software (Smith, 2002) using
threshold parameters f=0.3 and g =0; and for 3D MPRAGE
volumes, using parameters f=0.25 and g=0.22 with neck
and bias field correction option. Spatial smoothing was
done with fslmaths 5-mm FWHM Gaussian kernel. Three-
dimensional MPRAGE images were used to register the
MREG data into MNI space in 4-mm resolution prior to
group ICA as a standard procedure in MELODIC.

To separate RSNs we calculated group probabilistic ICA
(PICA) as implemented in MELODIC (Beckmann and
Smith, 2004) for MREG data. Group PICA was used to sep-
arate noise sources from RSN sources with previous criteria
(Kiviniemi et al., 2003, 2009). Model order was chosen to be
70 as an initial step. We detected 23 motion- and cerebrospinal-
fluid-pulsation-related independent components (ICs) and 47
were considered to be RSNs. In this proof-of-concept study,
we decided to select only the dominant DMN,,,,s compo-
nent beneath frontal NIRS sensors for further correlation
analyses.

The set of spatial maps from the group-average analysis
was used to generate subject-specific versions of the spatial
maps, and associated timeseries, using dual regression
(Beckmann et al., 2009; Filippini et al., 2009). We use all
the ICs in dual regression because the components are not to-
tally independent and have some overlapping variance. This
can be taken account by using all the components in dual re-
gression where the fsl_glm function ‘“‘multiple regression’
divides the overlapping variance to partial regression coeffi-
cients and uses these in calculation of subject-specific com-
ponents. The dual-regression-derived time signal was used
since the time domain signal can be analyzed as such without
any further need of corrections for auto-correlation effects
(Boyacioglu et al., 2013b). The set of subject-specific dual-
regressed timeseries, one per group-level DMN, .+ spatial
map, were used in our correlation analysis.

Analysis of NIRS data

The method for converting raw NIRS time courses into
time courses representing temporal changes of the Hb and
HbO concentration is based on modified Beer—Lambert
law, which is described earlier by Boas et al. (2001), Cope
(1991), and Strangman et al. (2003). Hb and HbO were deter-
mined by measuring the changes in optical density at two
wavelengths (660 and 830 nm) and using the known extinc-
tion coefficients. All these calculations were done in Matlab
(vR2012b; The Math Work, Natick, MA).

Analysis of EEG data

EEG recordings were processed using the same procedure
as in Hiltunen et al. (2014) with offline postprocessing using
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the Brain Vision Analyzer (Version 2.0; Brain Products).
The ballistocardiographic (BCG) and gradient artifacts due
to static and dynamic magnetic fields during MRI data acqui-
sition were corrected using the average artifact subtraction
method (Allen et al., 1998, 2000). At this point it was verified
that there were neither visually identifiable gradient nor BCG
artifacts left in the data. To get maximally temporally ICs
that are comparable to MREG RSN, the ICA was calculated
also to EEG data. This approach also reduces the volume-
conduction-caused problem of signal mixing in scalp poten-
tial recordings. ICA was done in Matlab with EEGLAB
(v9.0.0.2b) (Delorme and Makeig, 2004) using Infomax al-
gorithm (Bell and Sejnowski, 1995) with sub-Gaussian
source detection. Maximum number (32) of ICs was used
and the resulting components were downsampled to match
the MREG sampling frequency of 10 Hz by getting an aver-
age value of each of 100-msec periods.

Analysis of NIBP data

In general, the higher the pressure in the aorta is, the
greater is the PWV of blood flow. Because there is a relation-
ship between PWV and BP, PWV is a widely used index of
arterial distensibility. Having acquired PTT values, it is pos-
sible to calculate PWV, provided that the distance between
the sensors is known. However, also the diameter of the ves-
sel, thickness of the vessel wall, and the density of blood
have an effect on PWYV. To take this into account, we used
a mathematical expression for estimating BP from PWV, de-
scribed in the following references (Myllyld, 2014; Myllyld
et al., 2011a). During artifacts, for example, caused by ex-
pectoration, swallowing, and others, the BP is interpolated
between successful measurements.

Analysis of anesthesia monitor data

For anesthesia monitor data (SpO,, respCO,, and ECG),
fast Fourier transform (FFT) was done to get the power spec-
trums of signals. From power spectrums we determined each
individual’s respiration and cardiac frequency bands to avoid
those in our VLF analysis.

Intermodality correlations

All the data were first downsampled to 10Hz to corre-
spond with the sampling rate of MREG. Downsampled
time signals were detrended by fitting a line and removing
it. Zero-lag correlations between all different modality FB
signals were calculated with Pearson correlation coefficients
and absolute values were averaged between subjects. We
compared all combinations of correlation between MREG,
EEG ICs, NIRS (Hb and HbO), and NIBP signals. For
EEG we selected the highest correlation coefficient giving
IC from each subject and separately for FB and VLF. All
these analyses were done in Matlab.

Because BOLD signal is dominated by low-frequency
fluctuations, we wanted to observe also the very-low-
frequency (VLF) band (0.009-0.08 Hz). The reason why we
took the frequency band 0.009-0.08 Hz instead of maybe
more typically used 0.01-0.1 Hz band was that some of the
11 subjects had a very low respiratory rate (~0.1 Hz) as deter-
mined by anesthesia monitoring and we wanted to avoid
it in our VLF results. To get VLF time courses of all signals
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we FFT band pass filtered them in OriginPro (v9.1) and
calculated average correlations in the same way as in FB
measures.

To analyze time domain stability we calculated average
correlation coefficients separately using the full measure-
ment length of 10 min (i.e., 6000 time points) and by using
2-min (i.e., 1200 time points) sliding window with 50% over-
lap in both FB and VLF range. ICA studies with sliding win-
dows shows that relatively short time windows down to
1.8 min still enable RSN depiction (Kiviniemi et al., 2011;
Remes et al., 2013), even though full VLF cycles cannot
be measured based on Nyquist theorem. The sliding window
method produced nine equally long (2 min) time windows
that were compared separately and each subject’s highest
2-min absolute value was chosen to calculate average corre-
lations. The correlation between the order number of the
2-min time window versus number of maximal correlation
hits was calculated by linear fitting in Origin Pro (v9.1).
For statistical testing one-tailed paired #-tests were calculated
from intermodality average correlations in 10-min versus
2-min time windows and FB versus VLF.

Results

Technical line-up

The technical line-up of our Hepta-scan system is illus-
trated in Figure 2. With Hepta-scan we can simultaneously
measure with high sampling rate seven key physiological
variables (MREG, EEG, NIRS, NIBP, SpO,, respCO,, and

optic timing pulse
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ECG) known to affect brain hemodynamics. The 3T
SKYRA MR-scanner optical timing pulse mediates trigger
for synchronization of data gathering for NIRS, NIBP, and
EEG. EEG received also a secondary timing pulse from
the scanner via the Brain product SyncBox device. Anesthe-
sia monitor signal timing is facilitated from the scanner arti-
fact reflected in the ECG leads. Monitoring data of all
patients are optically transferred from the MR-rooms Fara-
day cage via wave tube near the scanner switch board. Meas-
ured example signals from one subject are presented in
Figure 3b.

Correlations to MREG DMN,mpr

Correlations were calculated between the selected MREG
IC component (DMN,,,5¢) time course and other modalities
(EEG IC, NIRS, and NIBP). MREG DMN,,,¢ z-statistic
map is represented in Figure 3a. Correlations were calculated
with two different time window lengths (10 min and 2 min)
and both with two different frequency bands (FB and
VLF). Examples of compared 10-min FB signals from one
subject are presented in Figure 3b and corresponding VLF
signals in Figure 3c. Figure 3d and e presents the enlarged
sections (2min) of the original signals indicated by the
black block in Figure 3b and c. Table in Figure 3 shows
one subject’s individual correlation coefficients between sig-
nals illustrated in Figure 3b—e.

Average correlations and corresponding standard devia-
tions (SDs) between selected EEG IC and DMN,,,¢ were

electric
| clock signal

Faraday cage

FIG. 2. Demonstration of the measurement setup. Electrode placements and used anesthesia monitor are presented on the left
side of the figure inside Faraday cage where subject is lying in the MR room. All signals are transferred optically outside the
room via wave tube. Color codes for the signals: EEG, blue; NIRS, red; NIBP, green; anesthesia monitor data, violet; timing
pulse, black dashed line. Additionally, respiration from belt and fingertip SpO, were measured by scanner itself. Scanner timing
pulse triggered EEG, NIRS, and NIBP. EEG was also synced with the scanner’s clock signal via SyncBox device. On the right
side the raw signals from each measurement device are shown. The starting point of the measurement can be clearly seen from
the beginning of scanning artifact in the EEG signal. EEG, electroencephalography; NIRS, near-infrared spectroscopy.
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FIG. 3. Example data from a single subject’s (a) z-statistic map of the selected MREG DMN, .+ group PICA component
registered to the example subject anatomical brain image (sagittal, axial, and coronal slices). (b) Ten-minute FB timeseries of
DMN, ¢ (black), selected EEG IC (blue), NIRS-Hb (red), and NIBP (green). (¢) VLF timeseries of signals presented in (b).
(d) and (e) are the enlarged sections (2 min) of the original signals indicated by the black block in (b) and (c¢). Table presents
correlation coefficient values between different modality signals represented in (b, €). DMN, ¢, ventromedial default mode
network; FB, full band; Hb, deoxyhemoglobin; IC, independent component; MREG, magnetic resonance encephalography;

PICA, probabilistic independent component analysis.

0.25 (0.06), NIRS-Hb and DMN, ¢ 0.14 (0.14), NIRS-HbO
and DMNy,pr 0.12 (0.11), and NIBP and DMNj,o¢ 0.11
(0.11) in 10-min measurement using the full frequency band
(Fig. 4). The same respective correlations and SDs were
0.30 (0.06), 0.24 (0.17), 0.18 (0.13), and 0.11 (0.08) in the
VLF band. All aforementioned 10-min correlations were sig-
nificantly (p <0.05) lower than highest 2-min ones. Mean cor-
relation and statistical results are presented in Table 1.

In Figure 4 we have presented absolute values for average
correlations between different modalities and DMN, ¢ sig-
nal. To further demonstrate the temporal variability of the
intermodality correlations, we also present highest positive
and lowest negative 2-min time window average correlations
in Figure 5. Table in Figure 5 shows the mean correlations:
highest positive correlations range from 0.35 to 0.09 while
lowest negative correlations range from —0.18 to —0.09 on
FB. On VLF the highest positive correlations range between
0.54 and 0.35 and the lowest negative correlations range
from —0.04 to —0.41. The only significant (p <0.05) differ-
ence between highest positive average correlation coeffi-
cients and absolute values of lowest negative correlation
coefficients were found in DMN, ¢ versus EEG IC correla-
tions (FB and VLF). There was no significant correlation be-

tween the order number of the 2-min time window versus
number of maximal correlation hits in either VLF data
(F=3.09836, p=0.12176) or FB (F=1.3527, p=0.28292).

EEG/NIRS/NIBP signal correlations

Average correlations were calculated between EEG ICs,
NIRS, and NIBP signals with two different time window
lengths (10 min and 2 min) and each with two different fre-
quency bands (FB and VLF). Average correlation coefficients
and their SDs are presented in Figure 6 and values in Table 1.
All average correlations were higher in VLF than in an FB and
also in 2-min time window than in whole measurement
(10min). In addition, all differences were statistically signifi-
cant except two cases (10min VLF vs. FB in between EEG-
NIBP and Hb-NIBP correlations). The highest correlations
were always between EEG IC and NIRS-Hb. Notably the cor-
relations between EEG and NIRS Hb exceed those between
EEG and MREG in 2-min time window.

Discussion

In this study we show that it is feasible to scan critically
sampled 3D human MREG BOLD signal with all major
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FIG. 4. Average correlations and their SD bars between
MREG DMN ¢ and EEG IC (blue), DMN, ¢ and NIRS-
Hb (red), DMNy ¢ and NIRS-HbO (orange), and DMN,p,, ¢
and NIBP (green) both on whole 10-min measurement (left)
and on highest 2-min time window (right) and both on FB
and on a VLF band. VLF bars are lighter on color. All
VLF correlations that are significantly higher than corre-
sponding FB correlations are marked with a star. All 2-min
correlations are significantly higher than corresponding
10-min ones. HbO, oxyhemoglobin; SD, standard deviation.
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physiological parameters in the Hepta-scan concept. ICA-
based dual-regression procedure enables very high statistical
power to the analysis and minimizes source variance overlap
of the critically sampled 10-Hz MREG data. We show now
that non-aliased VLF BOLD fluctuations are more linked
to DC-EEG signal source oscillations than other sources.
This study also shows for the first time that there is a corre-
lation between vasomotor BP waves and BOLD signal oscil-
lations of DMN,,¢. In addition we can correlate the NIRS
and measure both Hb and HbO oscillation contributions to
the BOLD signal in the default mode network. We discov-
ered a new form of temporal dynamics in the correlations be-
tween the multimodal data and offer new perspectives to the
understanding of the brain activity that cannot be understood
by measuring any of the multimodal data alone.

Hepta feasibility

At the present time, we have successfully combined most
relevant neurophysiological modalities to our Hepta-scan
setup. Hepta-scan allows noninvasive, simultaneous, and con-
tinuous measurement of such a wide range of most used mo-
dalities in brain studies, including MREG, EEG, NIRS, NIBP,
expCO,, SpO,, and ECG, and all in millisecond synchrony.
Importantly, responses gathered with the different methods
are not influenced by each other, but are totally independent.

TABLE 1. CORRELATION COEFFICIENTS BETWEEN DIFFERENT MODALITIES

Correlation coefficient (SD)

p Values

10 min 2 min 10 vs. 2 min FB vs. VLF 10/2 min

MREG-EEG
FB 0.25 (0.06) 0.35 (0.12) 2.07E—-02 1.18E—02/6.75E—03
VLF 0.31 (0.06) 0.54 (0.10) 3.80E—06

MREG-Hb
FB 0.14 (0.14) 0.31 (0.16) 2.70E—05 6.46E—02/7.79E—04
VLF 0.24 (0.17) 0.53 (0.15) 3.70E—06

MREG-HbO
FB 0.12 (0.11) 0.27 (0.15) 8.75E—04 9.25E—02/1.24E—04
VLF 0.18 (0.13) 0.59 (0.12) 4.20E—-06

MREG-NIBP
FB 0.11 (0.11) 0.21 (0.09) 1.80E—04 4.73E—01/1.89E—04
VLF 0.11 (0.08) 0.43 (0.11) 3.00E—07

EEG-Hb
FB 0.18 (0.12) 0.42 (0.19) 2.92E-05 4.63E—02/3.46E—04
VLF 0.26 (0.20) 0.69 (0.12) 9.00E—07

EEG-HbO
FB 0.14 (0.14) 0.34 (0.20) 4.35E-05 3.03E—02/6.18E—04
VLF 0.24 (0.20) 0.61 (0.10) 1.80E—-06

EEG-NIBP
FB 0.09 (0.08) 0.25 (0.11) 1.43E—-04 2.34E—01/6.66E—04
VLF 0.12 (0.10) 0.45 (0.09) 0.00E +00

NIBP-Hb
FB 0.10 (0.08) 0.25 (0.13) 1.80E—06 1.60E—01/3.45E—04
VLF 0.15 (0.12) 0.50 (0.11) 0.00E+00

NIBP-HbO
FB 0.11 (0.08) 0.21 (0.13) 7.26E—03 5.47E—03/1.46E—05
VLF 0.23 (0.11) 0.54 (0.11) 7.00E—07

Average correlation coefficient values between different signals and their SD. Also, t-test p values are presented in the rightmost columns.
EEG, electroencephalography; FB, full band; Hb, deoxyhemoglobin; HbO, oxyhemoglobin; MREG, magnetic resonance encephalogra-

phy; NIBP, noninvasive blood pressure; SD, standard deviation.
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FIG. 5. Average correla-
tions (both highest positive
and lowest negative) and their
SD bars between MREG
DMN,pr and EEG IC (blue),
DMN, ¢ and NIRS-Hb

(red), DMN, ¢ and NIRS-HbO
(orange), and DMN, ;¢ and
NIBP (green) on FB (left) and
on VLF (right). Table presents
average correlation coefficient
values (highest positive [+ ]
and lowest negative [—]) and
their SD. Significant difference
between highest positive and

Average correlation to MREG
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FB(SD) | VLF (SD)
EEG+ 0.35(0.12) 0.54 (0.10)
EEG- -0.09(0.13) -0.04 (0.11)
Hb+ | 0.26(0.16) 0.37 (0.29)
Hb-  -0.18(0.11) -0.27 (0.31)
HbO + 0.16(0.18) 0.39 (0.30)
HbO - -0.18 (0.14) -0.41 (0.21)
NIBP + 0.09 (0.15) 0.35 (0.14)
NIBP - -0.17 (0.10) -0.34 (0.14)

absolute value of lowest nega- ' FB
tive is marked with a star.

Multimodal measurements are increasingly being employed
in neuroimaging to utilize simultaneous measurements, espe-
cially in the brain studies, such as combined EEG and
fMRI (Huster et al., 2012; Laufs, 2012), NIRS and fMRI
(Cooper et al., 2012; Sasai et al., 2012; Tong and Frederick,
2010), or EEG, NIRS, and NIBP (Nikulin et al., 2014,
Pfurtscheller et al., 2012; Toronov et al., 2013). Compre-
hensive understanding of the brain and its functioning re-
quires a simultaneous exploration of the brain and other
physiological signal sources during brain activity. Combin-
ing simultaneous multimodal measurements from different
techniques allows a description of human brain activity
using a range of spatial and temporal precision and contrast
mechanisms that is not possible to achieve by any single
imaging modality (Ferrari and Quaresima, 2012). This
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FIG. 6. FB and VLF average correlations and their stan-
dard deviation bars between EEG IC and NIRS-Hb (black),
EEG IC and NIRS-HbO (blue), EEG IC and NIBP (green),
NIRS-Hb and NIBP (red), and NIRS-HbO and NIBP
(orange) both on whole 10-min measurement (left) and high-
est 2-min time window (right). VLF bars are lighter on color.
All VLF correlations that are significantly higher than corre-
sponding FB correlations are marked with a star. All 2-min
correlations are significantly higher than corresponding 10-
min ones.

T
VLF

Frequency band

data can further be used to analyze correlations, mecha-
nisms, and relationships of physiological signals and their
dynamics in relation to brain functions.

EEG versus MREG

Several studies have shown that BOLD signal reflects
electrophysiological activity (Huster et al., 2012; Laufs,
2012). Even though EEG has scale-free 1/f characteristics,
studies that correlate EEG to fMRI concentrate on higher fre-
quency bands and not on VLF band at all (He et al., 2010;
Palva et al., 2013). In this study we show also EEG ICs
VLF band correlation values with MREG DMN, ,,p¢. Maxi-
mal correlation coefficients of 0.3 between local field poten-
tials (LFPs) and BOLD signal indicate that only some 10% of
BOLD signal variance is explained by neuronal activity (Pan
et al., 2013; Scholvinck et al., 2010; Shmuel and Leopold,
2008). Recently correlation coefficient between VLF EEG
ICs and MREG DMN,,,,,s was reported to be 0.14 (Hiltunen
etal., 2014). In this study the average correlation coefficients
between EEG ICs and MREG DMN,,;,,r can reach on aver-
age 0.55 in VLF band for optimal 2-min time window.
Also, the average correlation over the 10-min FB was still
0.25, which is within the normal values obtained by other
groups with classical low-sampling-rate BOLD.

The correlation coefficients were considerably higher even
though we used temporal instead of spatial correlation values
in selection procedure. In other words we calculated correla-
tion coefficients between MREG and EEG IC timeseries and
not the voxel vise correlations between spatial maps as in
previous study (Hiltunen et al., 2014). This way we get tem-
poral information of correlations between EEG and MREG.
The previously reported relatively low correlations between
EEG ICs and BOLD could be due to the marked discrepancy
in sampling rates of both data. MREG sequence has higher
sampling rate that allows correlating these signals more ac-
curately and thereby results in higher correlation values.
This could indicate that DC-potential shifts might explain
BOLD signal more than earlier thought.

GLM analyses of ultrafast BOLD data use a noise term of
fifth-order autoregressive (AR) process to account for addi-
tional autocorrelations originating from the higher-tempo-
ral-resolution data. Importantly, we avoided the need for
autocorrelation corrections by using dual regression of
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MREG signal (Boyacioglu et al., 2013b). The autocorrela-
tion corrections in the fifth order reduce statistical power
of the signal and, partially due to this reason, our dual-regres-
sion-based results have higher correlation as well.

It has also been shown that BOLD signals are delayed rela-
tive to LFP changes and shifting BOLD signal significantly im-
proves correlation values (Pan et al., 2013; Scholvinck et al.,
2010; Shmuel and Leopold, 2008; Thompson et al., 2014).
In this study we did not use any time shifts and still reach av-
erage correlation value of 0.55 with VLF EEG IC in 2-min
time period. Shifting signals could improve the correlation val-
ues even more and this is something we will research in future.

NIRS versus MREG

There are only a few publications where fMRI and NIRS
time signals are compared together when they are measured
simultaneously from the brain in resting state (Cooper
et al., 2012; Greve et al., 2009; Sasai et al., 2012; Tong
and Frederick, 2010; Tong et al., 2011). Recently increasing
attention has been paid to applying functional NIRS to in-
vestigate resting-state functional connectivity (Duan et al.,
2012; White et al., 2009). To the best of our knowledge,
this study was the first one where ultrahigh-temporal-resolution
fMRI and NIRS signals are compared together.

The use of critical sampling is a very important factor re-
lated to fMRI data because now we were able to filter out all
the high frequencies (respiration and cardiac) faithfully in
VLF band without aliasing. Because of that this study sup-
ports the fact that VLFFs arise from physiological processes
rather than experimental acquisition-induced artifacts and
that it is not mainly the aliased signal from cardiac pulsation
and respiration (Tong, 2012). In addition, Tong and cowork-
ers (2013) are thus far the only ones who have used ICA in
their correlation analyses between peripheral NIRS and clas-
sical BOLD. They showed that DMN component signal was
not highly correlated with peripheral blood oxygenation fluc-
tuations. In contrast to this, our central vasomotor wave sig-
nals gave higher correlations reaching up to 0.6 average
coefficients in VLF 2-min time windows, suggesting a some-
what closer relationship to the DMNyp,,¢ signals.

Typically fMRI exploits the BOLD signal, which is
widely thought to correlate with Hb (Huppert et al., 2006;
Toronov et al., 2001). However, especially in resting state,
it is not so clear and BOLD increase (an Hb decrease) may
correspond to an increase in oxygenation, or a decrease in
blood volume (Hillman, 2007). That is why we have pre-
sented in this study both Hb and HbO average correlations
to MREG DMN, ., EEG IC, and NIBP. In our calculations
Hb signal correlated mainly better to MREG DMN,;, sig-
nal than HbO signal. However, an exception was the highest
2-min time window average correlation where HbO corre-
lated slightly better to DMN,,,,r than Hb.

NIBP versus MREG

This current study is the first that succeeds in coregistering
BP waves noninvasively in a human and compares the pressure
waves directly with BOLD signal oscillations. Since the dawn
of resting-state fMRI scanning, blood flow fluctuations (i.e.,
Mayer waves of BP) have been related to low-frequency fluc-
tuations of the measured BOLD signal (Biswal et al., 1995;
Kiviniemi et al., 2000). A classical work on the issue is the
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study by Kannurpatti and Biswal where they replicated the ear-
liest exanguination vasomotor studies by Hales from 1733
(Miakawa et al., 1984) by showing that withdrawal of blood
from an anesthetized rat increased low-frequency oscillations
of the BOLD signal markedly (Kannurpatti et al., 2008).

The correlations between vasomotor tone waves detected
by the NIBP and MREG signals are almost within the
same range in strength as the NIRS versus MREG correla-
tions, reaching in VLF 2-min time windows nearly 0.45 cor-
relation coefficient values on average. Moreover, using only
the VLF increases the strength of correlation markedly with
the MREG signal as well as in comparison with the EEG, Hb,
and HbO signals. Similarly the NIBP correlations have a
marked temporal variability as well. The reason for this var-
iability is not known and it requires further research on the
matter on a more precise way with correlation phase analyt-
ics. In general, the NIBP signal correlation strength is not
very high over extended periods of time. This could in prin-
ciple be anticipated from the general principle of cerebral
autoregulation, which states that the cerebral blood flow
stays relatively stable over perfusion pressure changes. How-
ever, this seems to be true to a certain degree and indeed the
vasomotor waves do not explain more than a few per cent of
the MREG, NIRS, and EEG signal variability.

The correlations could perhaps be increased with more ad-
vanced probe technology that is currently being developed.
Validation of NIBP measurement by accelerometers is still
in progress but, as could be seen from Figure 1, so far
comparisons between NIBP and IBP responses have been
indicating a good correspondence even with relatively fast-
respiration-induced BP variations. However, more measure-
ments are still needed to provide a numerical evaluation of
the NIBP method’s accuracy and correlation to IBP. More-
over, work is also in progress to enhance accuracy and reli-
ability in situations where one sensor temporarily fails to
produce a good signal. This may be the reason for the low
correlation coefficients in a whole measurement window.

Physiological signal correlations (without MREG)

The highest intermodal correlations, including MREG,
were found between Hb and EEG IC, that is, maximally on
average 0.69 in VLF range for 2-min time window. Also in
previous studies, simultaneous NIRS-EEG measurements
have shown correlations between alpha activity and both
Hb and HbO (Bari et al., 2011; Moosmann et al., 2003).
Bari and Calcagnile found EEG alpha power to correlate
with Hb with correlation value 0.23 and with HbO 0.20. In
both of the calculated time periods and both full and VLF
bands, the EEG IC correlation with Hb was higher than
with HbO as in previous study (Bari et al., 2011).

Also, NIBP and Hb/HbO correlated with each other. Hb
correlated slightly better than HbO with EEG and HbO a
bit better with NIBP. Nikulin and associates (2014) showed
recently that EEG correlates with NIRS and NIBP. In their
measurements, NIRS and NIBP coherence with EEG was ap-
proximately similar. In our measurements NIBP correlated
also to EEG but not as much as NIRS.

FB versus VLF

Correlations were higher in VLF band in all measurements
(except for NIBP 10-min FB), even though our sequence



686

allows higher frequency analysis as well. Our preliminary in-
vestigations on cardiorespiratory impulse effects in human
3D BOLD signal reveal strongly pulsatile nature of the ef-
fects both in 3D and time, which may be nearly impossible
to remove from undersampled data with interleaved classical
BOLD EPI scans. Our data have high temporal resolution in
every modality and it enables us to filter out properly all the
higher frequency cardiorespiratory signals. The removal of
cardiorespiratory signals in the VLF smoothies the signal
and increases the correlation significantly.

The reason why the VLF signals correlated significantly
better than FB signals between DMN,,,¢ and NIRS is that
in both modalities VLF oscillations ( < 0.1 Hz) are dominating
(Tong, 2012; Tong and Frederick, 2010). This same phenom-
enon can be seen also between DMN,,,¢ and both EEG and
NIBP. The VLFF similarity and increased intermodal correla-
tions suggest a common source for signal variability that may
be nonneuronal (Vanhatalo et al., 2004; Voipio et al., 2003).

Temporally dynamic correlation

There is increasing knowledge on the dynamic nature of
the correlations and our critically sampled Hepta-scan data
offer unique approaches to the issue. All of the Hepta-scan
multimodal signals have higher correlation coefficients
when calculated in shorter time windows. Although it
could in theory be due to lower statistical accuracy, the signal
sampled with 10 Hz still has 1200 time points from 2-min
MREG measurements. This corresponds to 40 min of TR
2-sec BOLD data. This implies that none of the physiological
signals are stable over time so all affect BOLD signal differ-
ently in different time points. The reason for this new discov-
ery is not known currently.

All modalities presented both positive and negative corre-
lations to MREG in 2-min analyses (compare Fig. 5). Taken
together, these varying correlation values average out and so
the 10-min analyses have lower correlation values. The rea-
son for this nonstationarity is not clear. Its emergence in our
data may be related to increased data-sampling rate; the FB
data have rich physiological noise reducing the correlation.
The VLF data on the other hand are now much better filtered
and do not have aliased signal that reduces correlation re-
sults. Critical sampling thus adds to the intermodal correla-
tion due to non-aliased noise sources.

Moreover, the temporal variability is present actually be-
tween all modalities (data not shown). Noncritically sampled
NIRS versus fMRI data from Tong and associates (2012)
show that LFFs (0.01-0.15Hz) are not static, but instead,
travel over the cortex and arrive at different brain voxels at
different times. Quasi-periodic activity patterns linked to
LFP spread over the brain cortices in time both in rats and
in human subjects in very low frequencies (Majeed et al.,
2011; Thompson et al., 2014). These quasi-periodic fluctua-
tions in the cortex may affect topical NIRS and EEG mea-
surements in the scalp dynamically. We are investigating
the effects of quasi-periodic pulsations and periodic cardio-
respiratory pulsations in the formation of EEG and NIRS sig-
nals. Moreover, heart rate variability can be linked to the
generation of these pulsations as well (Chang et al., 2013).

One reason could be local adaptive vasomotor control
phenomena suggested by Sirotin and Das (2009). The local-
ized vasomotor changes dominate on task/stimulus-state

KORHONEN ET AL.

transitions, which may well exist also in resting DMN.
Another reason might be metabolic oscillations that are
known to be functionally connected at least in some studies
(Obrig et al., 2000; Vern et al., 1997). The spatiotemporal
structure of metabolic oscillations remains to be shown in
human data until now. Another factor might be the combined
effects of electromagnetic alterations in the human brain cor-
tex due to DC shifts; the magnetic signal may be differen-
tially affected due to the strong DC-potential oscillations
on the cortex. The spin changes in the presence of DC-
changes in the 3T field may be overlooked. These effects
need to be analyzed in the future.

Limitations and future prospects

In the interest of space we only performed zero-lag analy-
ses. Partly related to this the use of absolute values may miss
phase differences between measured signals as well. In the
interest of the nonstationary activity, we will perform ad-
vanced nested phase and coherence analytics and maximize
intermodal correlation with individual phase shifting to opti-
mize the results. Also, novel neuronal avalanche analyses,
such as CAP by Liu and Duyn (2013), and sliding window
ICA analyses will be employed in the future (Hutchison
et al., 2013). In the future we will investigate the effects of
(quasi-)periodic MREG signal patterns that can now be mea-
sured with critical accuracy. We will also use shorter time
windows to get better idea of temporal behavior of different
signals.

In this study we chose the EEG IC that had the highest cor-
relation coefficient with MREG DMN,,,r and used it in all
other correlations as well. The selection of highest EEG IC
versus DMN,,,,c was used earlier as well (Hiltunen et al.,
2014). This has unavoidably influenced to correlation coeffi-
cients with other modalities and this is something we will
research more in future studies. Different EEC ICs were
shown to correlate with NIRS or NIBP more (data not shown).
Further, the spatial representation of the EEG ICs is not com-
pletely similar between subjects since we chose the tempo-
ral correlation as a selection criterion. Denser EEG lead
distribution would be required for accurate mapping of spatial
distribution of the EEG sources. Moreover, it seems that the
DMN,pt is also spatially nonstationary and thus its EEG
source localization would require adaptable source localizer
algorithms allowing spatial nonstationarity (Kiviniemi et al.,
2011).

To be realistic with our setup we decided to include all
subjects into this first publication regarding the multimodal
Hepta-scan. For that reason some intermodal correlations
were not optimal; NIRS data could be quite noisy in some in-
dividuals probably due to poor contact between the optodes
and the scalp. Also, the NIRS optodes could be suboptimally
placed compared to the group-PICA DMN,,,, map. Individual
ICA results seem to offer somewhat better results; differ-
ences in individual RSN profiles or on how many Hb/HbO-
modulating sources occur in the path of the NIRS photons
affect the results (Tong and Frederick, 2010). Issue of inter-
est for further analysis is the anticorrelating voxels within the
DMN; ., component.

NIBP may not always be as accurate as IBP measurement
but these cannot be taken without vital indications on the sub-
ject. More-advanced probe technology could increase the
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sensitivity to beat-to-beat BP variability of the cardiac pulses,
especially in patients with lots of fat tissue that suppresses the
propagation of pressure pulses. Moreover, poor attachment of
the acceleration sensor may result as an unclear signal re-
sponse. Therefore, improvements for the attachment method
of the sensor, especially in neck, still have to be done.

BOLD signal is influenced by metabolic, electrophysio-
logical, and vasomotor fluctuations (Kiviniemi, 2008).
Hepta-scan concept allows us to measure vasomotor and
electrophysiological fluctuations but a missing issue is the
lack of metabolism. Vern and coworkers (1997) and Obrig
and associates (2000) have shown that metabolic oscillations
exist in brain but their measurement is still demanding and
currently we have not been able to measure those. Via inter-
national collaboration we may be able to get more advanced
signal separation of metabolic substrates from the NIRS data.
Metabolic oscillations might explain some of the temporal
dynamics of intermodal correlations. The multimodal data
itself can be used to further de-noise the MREG signal. For
example, NIRS data are used for verification of BOLD signals
from the brain cortex and for removal of cardio-respiratory
signals from MREG data for more accurate analysis of neu-
rophysiological events.

Conclusions

Critically sampled multimodal brain imaging is feasible and
offers unpresented information on the contributions of physi-
ological signal sources on neuroimaging signals. The results
supported the hypothesis that low-frequency fluctuations re-
flect the simultaneous activity of several physiological fluctu-
ations. Optimized electrophysiological DC-EEG signal has
highest correlation to the measured MREG BOLD signal
from DMN .. Frontal HbO/Hb levels and central vasomotor
waves also correlate with default mode network. High sam-
pling rate of the data revealed strong temporal variability in
correlation between measurements. Focusing on VLF power
<0.1 Hz increases the correlation of most measurements sig-
nificantly, suggesting a common source of VLF variability.
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