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Abstract

Many behavioral and cognitive processes are grounded in widespread and dynamic communication between
brain regions. Thus, the quantification of functional connectivity with high temporal resolution is highly desir-
able for capturing in vivo brain function. However, many of the commonly used measures of functional connec-
tivity capture only linear signal dependence and are based entirely on relatively simple quantitative measures
such as mean and variance. In this study, the authors used a recently developed algorithm, the generalized mea-
sure of association (GMA), to quantify dynamic changes in cortical connectivity using steady-state visual evoked
potentials (ssVEPs) measured in the context of a conditioned behavioral avoidance task. GMA uses a nonpara-
metric estimator of statistical dependence based on ranks that are efficient and capable of providing temporal
precision roughly corresponding to the timing of cognitive acts (*100–200 msec). Participants viewed simple
gratings predicting the presence/absence of an aversive loud noise, co-occurring with peripheral cues indicating
whether the loud noise could be avoided by means of a key press (active) or not (passive). For active compared
with passive trials, heightened connectivity between visual and central areas was observed in time segments pre-
ceding and surrounding the avoidance cue. Viewing of the threat stimuli also led to greater initial connectivity
between occipital and central regions, followed by heightened local coupling among visual regions surrounding
the motor response. Local neural coupling within extended visual regions was sustained throughout major parts
of the viewing epoch. These findings are discussed in a framework of flexible synchronization between cortical
networks as a function of experience and active sensorimotor coupling.
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Introduction

There is a broad consensus in the cognitive neurosci-
ence literature that major aspects of behavior and cogni-

tion are based on communications among populations of
cortical neurons (Sporns, 2013). Dynamical interactions be-
tween cortical areas are well established in nonhuman mam-
malian models for fundamental cognitive domains, such as
perception, action planning, learning, and memory
(Schroeder, 2010; Womelsdorf et al., 2007). Currently,
there is widespread interest in the development and assess-
ment of in vivo measures of cortical communication that
can noninvasively capture these interactive dynamics at
high temporal fidelity (roughly, the scale of *100 msec).

In this study, the authors address this issue by applying a
novel, parameter-free measure of spatial dependency, the gen-

eralized measure of association (GMA). The rank-based GMA
has the advantage that it can be easily estimated from realiza-
tions of a given random variable, unlike statistical dependence
(Seth and Prı́ncipe, 2012). Furthermore, unlike conventional
approaches, such as correlation or spectral coherence (Pereda
et al., 2005), GMA can be reliably estimated when the number
of digital time samples is limited and it is also sensitive to de-
pendencies that affect quantitative signal properties other
than the mean and the variance, for example, higher-order sta-
tistics of the signal (Seth and Prı́ncipe, 2014). Since the electro-
encephalogram (EEG) can be modeled as a stochastic time
series, GMA was modified to tGMA, which includes a preop-
timization step to minimize the time correlation properties of
stochastic processes (Fadlallah et al., 2012a). Previous work
has established the reliability and discriminant power of
tGMA as applied to a simple task of distinguishing EEG
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connectivity profiles evoked by different classes of visual stim-
uli—faces versus sinusoidal gratings (Fadlallah et al., 2012b).
The goal of the present study was to study dynamic changes
in functional EEG connectivity during an active avoidance par-
adigm involving visual cues.

The conditioned avoidance paradigm is a classical labora-
tory method for examining neural processes involved in es-
cape and avoidance from harm (Anger, 1963; Sidman,
1953). In a typical conditioned avoidance experiment, partic-
ipants first learn to associate a specific cue with an aversive
outcome (e.g., an unpleasant blast of white noise). Subse-
quently, they are given the opportunity to perform an active
response that reliably eliminates the occurrence of the harm-
ful outcome. Pertinent to the present approach, experiments
with rodents have demonstrated that active avoidance learn-
ing is accompanied by changes in neural activity, where ini-
tially local activity in brainstem regions that mediate simple
defensive responses (e.g., freezing and defecation) over time
extends to a more broadly distributed network of regions that
enable active coping (LeDoux and Gorman, 2001). Success-
ful avoidance therefore demands flexible interactions be-
tween neural systems mediating threat detection with those
processing the avoidance cues and related motor plans.

Functional connectivity between cortical regions mani-
fests across a broad range of frequencies in the spontaneous
EEG ranging from the traditional delta (0.5–4 Hz) to the
gamma ( > 30 Hz) EEG band. Hence, there is often no a pri-
ori reason to restrict one’s analysis to a particular frequency
range of interest, which subsequently makes the analysis
very time-consuming and raises the risk of seriously inflating
the probability of committing Type I errors. In this study, the
authors capitalized on the desirable properties of steady-state
visual evoked potentials (ssVEPs) to elicit entrained popula-
tion responses that allow the authors to elucidate nonlinear
interactions occurring between different regions. Steady-
state EEG rhythms are evoked by a visual stimulus that is
rapidly and regularly modulated in luminance or contrast.
As a consequence, specific and large spatial scale modula-
tory responses are created within a very narrow frequency
band (identical to the frequency at which the stimulus was
modulated); as a result, the ssVEP response possesses excel-
lent signal-to-noise ratio characteristics compared with tradi-
tional event-related potential components (Nunez and
Srinivasan, 2005). The scalp-recorded ssVEP signal reflects
frequency-following neuronal responses with contributions
from cells in the primary visual cortex (V1) and extrastriate
regions (Pastor et al., 2003; Williams et al., 2004) in response
to the stimulus. Thus, using ssVEPs to estimate functional
connectivity patterns provides researchers with a fixed spec-
tral signature (the ssVEP driving frequency) and an empiri-
cally based neural generator location (visual cortex) that
can serve as an a priori seed—properties that have been in-
creasingly used in studies of large-scale brain function (Keil
et al., 2012; Zhang et al., 2013). In the present study, the au-
thors analyzed a published dataset of ssVEPs during active
avoidance in terms of time-varying connectivity, using the
GMA approach, with the goal of understanding and quantify-
ing the dynamics of the functional connectivity with high
temporal resolution.

In the previous study, the threat (CS + ) was compared
with the control (CS�) in terms of spectral amplitude mod-
ulation by averaging evoked changes over the entire trial, so

no temporal resolution could be quantified (Miskovic and
Keil, 2014). However, fluctuations in amplitude envelopes
of evoked responses evolve on a relatively slow timescale
compared to the speed of typical cognitive events. Likewise,
when functional MRI (fMRI) is utilized for the same purpose
(Britton et al., 2013), the intrinsic slow hemodynamic re-
sponse is unable to quantify changes in functional connectiv-
ity shorter than 1 sec, which is the estimated capillary
convolutional time (Lizier et al., 2011). In this study, how-
ever, the authors are interested in discriminating the expected
changes in functional connectivity by analyzing the rich tem-
poral evolution of EEG signals (Miskovic and Keil, 2014).
The following hypotheses were examined: First, heightened
connectivity among extended visual cortices was expected to
accompany presentation of CS + cues compared with CS�
cues, paralleling earlier research (Miskovic and Keil,
2014). The authors expected that this connectivity would
be most pronounced early in the viewing epoch, before ac-
tion selection and the initiation of the overt avoidance re-
sponse. Second, heightened connectivity between visual
and motor/perimotor regions was expected in the time win-
dows associated with preparation and execution of the avoid-
ance response. To the extent that threat processing involves
more widespread and more coherent processing than safety
cue processing, it was predicted that transient coupling
would be stronger when a motor response was motivated
by terminating a motivationally aversive outcome compared
with executing a motivationally neutral response in the con-
text of CS� viewing.

Materials and Methods

Participants

A total of 18 participants were recruited from a pool of un-
dergraduate students and they participated for course credit.
Of these 18 participants, three were excluded because of non-
compliance with the instructions (n = 3) and lack of signifi-
cant driving, tested by means of the circular T-square
statistic (Victor and Mast, 1991). The remaining sample
comprised 15 participants (8 females, 7 males, mean age =
18.47 years, standard deviation [SD] = 0.74 years).

Stimuli and procedure

All stimuli were generated using the Psychophysics Tool-
box (Brainard, 1997; Pelli, 1997) for MATLAB. They con-
sisted of gray and white Gabor gratings (Gaussian-windowed
with maximal contrast at center) shown on a black background
and subtending horizontal and vertical visual angles of 7�. The
CS + and CS� gratings had the same spatial frequency (1.4
cycles per degree) and differed from each other only in orien-
tation: 45� clockwise tilt (CS + ) or 45� anticlockwise tilt
(CS�). A loud white noise burst (1.2 sec duration, 92 dB
sound pressure level) was used as the unconditioned stimulus
(UCS) and was played through free-field speakers placed next
to the participant.

Each experimental session comprised collecting written
informed consent as well as initial screening to rule out pho-
tic epilepsy/seizures. Participants were then seated in a com-
fortable chair in a dimly lit room and the EEG sensor net was
applied. Participants were given instructions to fixate, avoid
eye movements and blinks, and to expect occasional loud
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noises. Stimuli were displayed on a 23-inch LED monitor
(Samsung S23A750D) with a 120 Hz refresh rate positioned
at a distance of 1 m.

In this experimental implementation, the avoidance para-
digm consisted of a compound stimulus array with distinct
perceptual elements. The CS + and CS� cues were simple
grating stimuli that differed only in their relative degree of
orientation offset. These cues were serially presented at the
center of fixation and were flanked by additional simple
shapes that signaled four distinct trial categories: The spe-
cific combination of the CS + and surrounding shapes sig-
naled either an active CS + trial (in which a simple button
press avoidance response cancelled the delivery of an aver-
sive outcome) or a passive one (in which participants were
helpless to prevent delivery of the aversive outcome). To cre-
ate a fully balanced design, participants also completed ac-
tive CS� trials (in which a button press was required in
the context of a low motivational, simple color discrimina-
tion task) and passive ones (in which no overt response
was required). An instructed differential conditioning design
was used, in which one grating stimulus (the CS + ) was
paired with the loud noise and one grating with a different
orientation (the CS�) was never paired. The avoidable ver-
sus unavoidable context was signaled by geometric shapes
flickered at 12 Hz (the action cue). The gratings were dis-
played on a black background and flickered at 15 Hz.

Instructing participants about instrumental contingencies
produces comparable levels of threat avoidance behaviors
as when those behaviors are learned through direct experi-
ence (Dymond et al., 2012). Moreover, written instruction

has been shown to accelerate acquisition of learned aversive
responses (Moratti and Keil, 2005; Moratti et al., 2006). Par-
ticipants first underwent an initial habituation phase during
which they were passively exposed to 10 presentations of
each grating. No UCS was presented during this phase and
no response was required. Participants then entered the con-
ditioning phase of the experiment during which the 10 CS +
trials were always paired with the UCS (i.e., 100% contin-
gency). The 10 CS� trials were never paired. The avoidance
phase followed the initial conditioning block and forms the
basis of the present report (Fig. 1[A, B]).

The geometric shapes flanked the centrally displayed con-
ditioned stimuli, resulting in a full factorial (2 by 2) design of
CS type and avoidance, with four conditions: CS + active
trials (appropriate motor response cancels UCS delivery),
CS + passive trials (no motor response is required and UCS
delivery is inevitable), CS� active trials (appropriate motor
response is required, but UCS is never delivered), and CS�
passive trials (no motor response is required and UCS is
never delivered). Stimulus presentation was pseudorandom-
ized such that no more than two identical trial types were
ever presented in succession. The intertrial interval varied
randomly between 4 and 5 sec. Differently shaped cues sig-
naled the trial type and flickered at a different fundamental
frequency from the conditioned stimuli. A salient color
change of the avoidance cues occurred halfway within
each trial (3 sec from stimulus onset and persisting for an
additional 2 sec). The color change signals the participant
to respond on the active trials. Participants responded by but-
ton press with the dominant hand on a standard computer

FIG. 1. (A) Experimental paradigm consists of four different conditions, which were presented to the subjects in a pseudo-
random order—Avoidance conditioning: CS + trials were always paired with the unconditioned stimulus (UCS). A loud white
noise burst was used as UCS. The CS� trials were never paired. The avoidable versus unavoidable context was signaled by
geometric shapes (for explanation see the Materials and Methods section above); (B) Relative to stimulus onset, epochs
were extracted from the raw electroencephalogram (EEG) that included 400 msec pre- and 6000 msec postonset for all condi-
tions; (C) The layout of an Electrical Geodesics HydroCel Geodesic Sensor Net, channel 75 over Oz highlighted in red, was
selected as the reference channel for the tGMA method. Color images available online at www.liebertpub.com/brain
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keyboard. For the response to successfully terminate UCS
delivery, the response had to be emitted during the 2-sec
time window, in which the cue’s color was green. For the ac-
tive CS� trials, participants were instructed to respond to
the color change as well, but they knew that regardless of
their response, the loud sound would never be presented.
The use of the frequency tagging technique allowed the au-
thors to examine additional questions of interest, related to
competition for neuronal resources within the visual cortex,
between the conditioned stimuli and the peripheral re-
sponse-type (active vs. passive) cues. Peripheral cues were
located *1.7� of visual angle away from the outer border
of the central grating stimuli and subtended visual angles
of 1.5�. Following completion of the avoidance phase, par-
ticipants were asked to provide a subjective estimate of the
amount of distress that they experienced when encountering
each of the possible CS-type and peripheral cue combina-
tions, using a computer mouse and visual analogue scale
on a screen. A brief extinction phase followed the ratings,
which involved eight unreinforced presentations of the
CS + grating. This phase was included to ensure extinction
by the end of the session, but data are not included due to the
low trial count.

Electroencephalogram data recording

EEG recording and preprocessing. EEG was continu-
ously recorded from 129 sensors using an Electrical Geode-
sics� HydroCel Geodesic Sensor Net (Fig. 1A) digitized at
a rate of 250 Hz, using the vertex sensor (Cz) as the record-
ing reference, with the online bandpass filter set at 50 Hz
(low-pass). Sensor impedances were kept below 60 kO.
Offline EEG analyses were implemented using MATLAB
environment R2012a (ver. 7.14) and the ElectroMagneto-
Encephalography (EMEGS) toolbox for MATLAB (Peyk
et al., 2011). Relative to stimulus onset, epochs were
extracted from the raw EEG that included 400 msec pre-
and 6000 msec postonset for all conditions. As described
by Junghöfer and colleagues (2000), statistical parameters
were used to calculate distributions across trials and chan-
nels and interpolate artifact-contaminated channels. When
more than 18 channels needed interpolation or the spatial
location of the bad channels in a given trial did not allow ac-
curate representation of the topography (measured as the
standardized difference from a goal function, see Junghöfer
et al., 2000), that trial was rejected. Rejection criteria in-
cluded the maximum of the amplitude, SD, and first tempo-
ral derivate in a given trial-channel pair. The original
recording reference (Cz) was first used to detect recording
artifacts, and then the data were average referenced to detect
global artifacts. For further processing, each EEG channel
was band-passed with a 12 Hz center frequency (60 dB/
octave, 10th order Butterworth) and a 15 Hz center frequency
(60 dB/octave, 10th order Butterworth), and the data seg-
mented in 1-sec segments with 80% overlap. The analysis
was carried out on EEG segments of 1-sec length extracted
from single trials. Finally, the tGMA values were averaged
over trials for each subject.

In the previous work, it was shown that the tGMA method
is most accurate when the quality factor of the filter is limited
to the range of Q = f0=(fmax� fmin), Q 2 [0:6, 1:5], which is
equivalent to bandwidths between 11 and 29 Hz at 250 Hz

sampling frequency. Due to the experimental paradigm that
includes two close central frequencies of 12 and 15 Hz, the
authors chose a tradeoff bandwidth of 4 Hz for the filter
bandwidth, which maximizes the quality factor in an appro-
priate range.

Performing functional connectivity analyses on the basis
of raw electrode signals can lead to spurious correlations
due to the common source problem (Schoffelen and Gross,
2009). The authors addressed this issue by applying the Lap-
lacian transform (i.e., the scalp current source density
[CSD], Junghöfer et al., 1997). To avoid spurious connectiv-
ity indices reflective of volume conduction and related is-
sues, the original EEG surface potentials were transformed
to a CSD representation (Srinivasan et al., 2007). This
step minimizes (but does not fully resolve) issues related
to volume conduction, reference dependency, as well as spa-
tial nonspecificity of scalp voltages. The CSD has a unique
mathematical solution that does not depend on any a priori
assumptions or constraints ( Junghöfer et al., 1997). Specif-
ically, the CSD approach described by Junghöfer and col-
leagues (1997) was used, which is based on spherical
spline interpolation and well suited for dense array EEG
montages.

Generalized measure of association

Association between two random variables, U and V,
measures by how much large values of U are associated
with large values of V, which can be measured by Pearson
correlation (Pearson, 1931). GMA is a generalization of the
concept of association where the amplitude values of the re-
alizations are substituted by ordered distance. By definition,
GMA is the area under the cumulative density function of the
spread of ranks of two random variables. In fact, when the
random variables are coupled in the high-order moments,
methods such as correlation that only capture second-order
interactions cannot extract all information in the data. The
theory of GMA is fully explained (Seth and Prı́ncipe,
2012) and applied to time series (Fadlallah et al., 2012a).
In this study, the authors will be providing a very brief expla-
nation.

Consider two random variables ui and vj(i, j = 1, . . . , N),
which contain numerical values in the joint space U · V.
The goal is to quantify the association between these two
random variables by a real number d. If ui and vj are linearly
dependent, the function g(u, v) will result in a value close to
one. A minimum value of 0.5 represents independence be-
tween ui and vj. The algorithm iterates over all data points
in the set and for each data point ui, it searches for the closest
uj* to ui having the minimum Euclidean distance du in U.
Then, the spread of rank is calculated for all j� 2 J of vj*,
which is bounded to ri,min < r £ ri,maxi. The spread of ranks
is then calculated based on P(R = r) = #{i:ri = r}/n, which
leads to a valid probability density function. The area
under the cumulative distribution function of the rank vari-
able fr1, . . . , rng is defined as the GMA value, which can
be interpreted as skewness of the distribution. Notice that
there is no free parameter in this calculation. Moreover, the
ranks are computed independently for U and V, which is
very useful if the random variables have different probability
measures (i.e., different signal modalities). The algorithm
can be summarized as below:
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For time-series data, GMA requires an additional prepro-
cessing step to handle the naturally occurring temporal depen-
dencies of random variables in a stochastic process (Fadlallah
et al., 2012a). This modification is called tGMA and keeps all
the advantages of GMA, but requires proper design of filters
and adds one free parameter to GMA. As explained above,
a filtering operation is also required for this experimental
setup because the authors are using steady-state visual evoked
responses (ssVEPs). Each data segment is mapped to an m-
dimensional space based on the Takens embedding theo-
rem (Takens, 1981), and then a delayed vector for the ith
sample of kth channel Xk,i is constructed as follows:
Xk, i = (xk, i, xk, iþ L, xk, iþ 2 · L, . . . , xk, iþ (m� 1) · L) where m is
the embedding dimension and L is the lag value between con-
secutive samples in the EEG signal. The optimal embedding
dimension is calculated using a geometrical construction
when the number of nearest false neighbors reaches zero
(Kennel et al., 1992). Fraser and Swinney (1986) proposed
the minimum of the mutual information to estimate L, the
lag value, but for simplicity, the authors utilized the minimum
of the autocorrelation of the signal as suggested by Fadlallah
and colleagues (2012a). Some empirical relationships have
been proposed between the dimension of embedding, the
lag value, and sampling frequency (Montez et al., 2006;
Smith, 1999), but the optimal lag is still data dependent. If
the lag is too small, the tGMA value will be artificially
high, while if it is too large, the tGMA value will have a
large variance. For these data, the authors observed that the
lag value, when properly selected (L = 7@12 Hz, L = 5@
15 Hz), is approximately constant for different recorded
sites. Nevertheless, the authors consider that this is a free pa-
rameter that needs to be tuned to provide adequate sensitivity
and selectivity for the dependency tests.

In this study, the authors applied tGMA on the filtered and
segmented data to resolve the dynamic association that re-
lates pairs of EEG channels. A sequence of tGMA values
was calculated for each segment and each experimental con-
dition. The authors filtered the ssVEPs by a set of 12 and

15 Hz bandpass filters and both tGMA values were computed
for all four conditions (active CS + , active CS�, passive
CS + , and passive CS�), but only a subset of these tGMAs
was utilized in the validation. When the comparisons involve
active versus passive, the authors employed 12 Hz filtered
tGMA values; for the CS� versus CS + , the authors
employed 15 Hz filtered tGMA values. Analyses of variances
(ANOVAs) were conducted for each sensor and time point,
with a repeated measures model of threat (safe, threat) and
response (active, passive), separately for each stimulus as
shown in the results. Because the present research focused
on connectivity between visual cortex and other regions,
tGMA was calculated relative to the mid-occipital recording
site (channel 75 in Fig. 1[C] corresponding to site Oz in the
international 10–20 system). This approach also takes into
account that the ssVEP is primarily generated in lower-tier
visual cortical areas with a typical maximum at sensor loca-
tions over the occipital pole. This constrains the space of
potential connectivity values and thus the number of statisti-
cal comparisons needed to test the hypotheses. The first and
last 0.4 sec were eliminated to minimize the effects of on and
offset artifacts induced by the bandpass filter. Each window
used for analysis has a duration of 1 sec, sliding by 0.2 sec
(50 sample points) forward to generate a time series of
tGMA values. Therefore, the minimum time resolution is
200 msec.

Statistical analysis

To capture the temporal as well as spatial changes of con-
nectivity, a sequence of statistical procedure was pursued for
each specific hypothesis. Since the hypotheses relate to the es-
timated spatial distribution of dependencies between CSDs at
different regions of the cortical surface, the general approach
consists of mapping statistical parameters to an approximated
volume of the cortical surface. To quantify differences in the
tGMA values between experimental conditions for each sensor
location and time point, the authors applied the Signed-rank

Algorithm I: Generalized Measure of Association

Input: Two random variables ui and vj(i, j = , . . . , N), which contain numerical values in the joint space U · V.

Goal: To quantize the association between these two random variables by a real number d, which is bounded between
0.5 and 1.

Proposed algorithm: Iterate n times to cover all data points:

For each data point ui, the algorithm searches for the closest uj* to ui having the minimum Euclidean distance du in U.

fuj� : j� 2 Jg, J = fj� : j� = arg min du(ui, uj)g

Then, the spread of ranks between minimum ri,min and maximum ri,max rank values is calculated for all j� 2 J of vj*.

For all rank values ri,min < r £ ri,max assign:

PðR ¼ rÞ)PðR ¼ rÞ þ 1=jJj=ðri;max� ri;minÞ=n

The area under cumulative distribution function (CDF) of the rank variable fr1, . . . , rng normalized by (n –1) is considered
as GMA value:

GMA =
1

n� 1
+n� 1

r = 1
(n� r)P(R = r)

296 KHODAM HAZRATI ET AL.



Wilcoxon test (also known as Mann–Whitney U test; Wil-
coxon, 1945). Nonparametric Signed-rank tests were used
because the tGMA values were not normally distributed. Non-
parametric tests may also be considered more appropriate
given the moderate size of the present sample.

Using this approach, the authors first evaluate the time-
varying statistical difference of the tGMA maps for all active
trials compared with all passive trials, across threat and safe
conditions, for tGMAs calculated at the tagging frequency of
the response cue, that is, at 12 Hz. Second, the authors com-
pare tGMA maps for the threat versus the safety conditions,
focusing on the tagging frequency of the threat and safety
cues, that is, 15 Hz. Testing the hypothesis that any connec-
tivity difference between threat and safe should be stronger
for active than for passive trials, the authors also tested for
an interaction effect between the two manipulations. To
this end, 2 (passive vs. active) by 2 (threat vs. safe) ANOVAs
were conducted at each sensor and F-values false discovery
rate (FDR) controlled as described for the signed-rank tests
described below.

To assess the statistical significance of these compari-
sons at a given scalp location and time, the authors cor-
rected for multiple comparisons using the FDR approach
(Benjamini and Hochberg, 1995). Using the FDR algo-
rithm, a new critical p-value was determined for each con-
nectivity map, and the corrected threshold was set to be
equivalent to an uncorrected alpha of 0.05. For illustra-
tion, p-value distributions after applying the FDR-corrected

threshold are plotted as topographical maps, drawn on a
plane, or on a head volume.

In addition to statistical parametric mapping, time courses of
tGMA values were evaluated for averages across two scalp re-
gions of interest: (1) tGMA between Oz and a central cluster of
electrodes (FCz and its 15 nearest neighbors) was used to mea-
sure occipito-anterior connectivity, including connectivity with
perimotor regions (Keil et al., 2009); (2) tGMA between site
Oz/Poz and its own 17 nearest neighbors was used to quantify
local visual connectivity (see Fig. 2A for an illustration of sen-
sor groups). Paralleling time-varying tGMA maps, these aver-
ages were submitted to signed-rank tests for each time point
and FDR controlled, then plotted as a time series, with the
starting time of each moving analysis window (see Fig. 2B)
serving as the time stamp provided in the figures. The central
sensors were selected based on their topographical location for
connectivity analysis. The choice of this broad sensor cluster
was guided by the previous article on the same task, on
fMRI studies showing SMA and perimotor engagement in ac-
tive avoidance (Lizier et al., 2011). However, it was also data
driven, based on examining the raw tGMA plots over time that
showed coupling between visual and central sensor locations
throughout time and for all conditions.

Results

Figure 2 illustrates the statistical dependence between
channels estimated with tGMA for the average over all

FIG. 2. (A) An illustration of sensor groups. tGMA between site Oz/Poz and its own 17 nearest neighbors was used to quantify
local visual connectivity; (B) Illustration of the time-varying tGMA projection at 12 Hz in the course of time for passive (top) and
active (bottom) conditions averaged across participants (for both threat and safety conditions). The reference point for tGMA is Oz.
A temporally stable maximum dependency around this reference site is clearly visible and is expected based on the low spatial
specificity of EEG. The difference between two conditions is localized over central/perimotor and occipital regions, showing
lower values than the values surrounding Oz where the visually driven oscillatory dependency is strongest. Note the mid-occipital
maximum of tGMA throughout is consistent with driving the system externally with an oscillatory stimulus. In addition, note the
coupling between visual and central (vertex) areas, which, although weaker, is persistent across time and shows greater values in
the active compared with the passive condition. Color images available online at www.liebertpub.com/brain
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participants and all experimental trials (active vs. passive).
At the tagging frequency of the action cue (12 Hz), the values
reflect how the cue type (active vs. passive) affects the func-
tional connectivity strength of other scalp regions with the
extended visual cortex. As expected, the authors see depen-
dence over the visual areas in both conditions since the brain
is visually excited in both tasks. Notice that in this article the
authors do not perform across flickering frequency tests.

Active versus passive conditions (peripheral cue at 12 Hz)

Group analyses began with a comparison of active and
passive conditions for the 12 Hz tagging frequency, that is,
the response to the action cues (referenced to Oz). Figure 3
shows the time course of tGMA values representing long-
range connectivity between occipital and central (perimotor)
sensors (top panel) as well as local connectivity between the
occipital sensor location and its neighbors (bottom panel).
Time courses for active and passive conditions as well as
the p-values of signed-rank tests are shown, comparing
both conditions. Results suggest greater occipito-central cou-
pling for active compared with passive conditions starting
around 1000 msec before the color change of the avoidance
cue, with p-values falling below the FDR-corrected threshold
of 0.012. Heightened coupling in active trials was sustained
during the response window, but did not persist in windows
later than 500 msec after the color change of the action cue,
which prompted a motor response in the active trials.

Figure 4 shows that these changes were widespread on the
scalp, involving a range of central and frontal recording sites.
Local occipital connectivity (Fig. 3, bottom panel) by con-
trast showed different temporal dynamics with a build-up
of heightened connectivity for the active conditions, reach-
ing a significance of 1000 msec after stimulus onset, and sus-
tained until the color change (motor cue), during which the
occipital tGMA difference failed to reach FDR-corrected
significance threshold. After the motor cue, heightened
occipital coupling was sustained for 1000 msec, but disap-
peared toward the end of the viewing epoch. Topographical
mapping indicated (Fig. 4) that particularly the time window
preceding the motor cue was characterized by widespread
connectivity within and across visual cortices, consistent
with cortical communication between areas in extended vi-
sual cortex and cortical regions mediating response selection
and motor preparation.

Threat versus safe conditions (central grating
stimulus at 15 Hz)

Time courses of grand averages of tGMA values and
p-values for threat versus safe conditions are shown in Fig-
ures 5 and 6 for the tagging frequency of 15 Hz, which

FIG. 3. Grand average tGMA and p-value for all active trials
versus all passive trials (both threat and safety conditions) at
12 Hz plotted separately for central sensors and occipital sen-
sors. Time course of tGMA values representing long-range
connectivity between occipital and central (perimotor) sensors.

FIG. 4. Topographical mapping of p-values (active vs. passive) in precue, pericue, and postcue intervals plotted for 5 consecutive
seconds in trials. The 12 Hz action cue evoked functional connectivity. Color images available online at www.liebertpub.com/brain
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corresponds to the response to the central grating stimuli.
Time courses for threat and safe conditions as well as the
p-values of signed-rank tests comparing both conditions sug-
gest greater long-range coupling between occipital and cen-
tral sites for threat compared with safe conditions starting
around 1000 msec after onset of the conditioned stimuli
(the gratings), with p-values falling below the FDR-corrected
threshold of 0.009, sustained only for the early period of the
viewing epoch. In terms of local posterior connectivity, a

similar pattern emerged as for the active-passive comparison,
with threat cues associated with greater connectivity before
and after, but not during the color change, prompting the
motor response in active trials. Topographical mapping of
the tGMA differences for individual sensors corroborated
the sensor group analyses and showed robust early occi-
pito-frontal connectivity as well as sustained bilateral poste-
rior connectivity, which was greater for threat than safe
conditions.

Interaction between threat/safe
and active/passive conditions

Interaction effects were quantified with ANOVAs on log-
transformed (and as a control for nontransformed) tGMA
data for each time point, sensor location, and two frequencies
of interest. Repeated measures ANOVAs with 2 by 2 within-
subjects factors of passive/active and threat/safe were
applied to test for interaction at each sensor. Two types of in-
teraction effects were tested: the effects between the condi-
tions in the ANOVA models, and the interactions between
the tagging frequencies per se. After FDR correction, none
of the F-values showed significant interaction effects.

While a systematic comparison of tGMA with other algo-
rithms is outside the scope of this article, the authors have
previously done comparisons for discrimination of face ver-
sus Gabor patch images using ssVEPs. In short, tGMA is
more sensitive than correlation, mutual information (Fadlal-
lah et al., 2012b), and phase locking (Wan et al., 2013) and
appears to possess greater discriminant validity. Results in
these data set to be published confirm the previous findings
and show that phase synchrony and mutual information are
able to reveal regions with an acceptable level of discrimina-
bility among conditions, but this comes at the expense of
sacrificing time resolution. Correlation was unable to distin-
guish between conditions.

Discussion

Empirical and computational work suggests that the dy-
namic formation of widespread neuronal assemblies into
large-scale functional networks has a key role in cognition

FIG. 5. Time courses of grand averages of tGMA values and
p-values for threat and safe conditions separately plotted for
central sensors (top panel) and occipital sensors (bottom panel).

FIG. 6. Topographical mapping of p-values (threat vs. safe) in precue, pericue, and postcue intervals plotted for 5 consec-
utive seconds in trials and the tagging frequency of 15 Hz, which corresponds to the response to the central grating stimuli.
Color images available online at www.liebertpub.com/brain
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and behavior (Sporns, 2013). In this study, the authors quan-
tified the spatio-temporal dynamics of large-scale neural
population activity during active, sensorimotor coupled
harm avoidance. Specifically, these findings revealed that a
novel index of time-varying dependency (tGMA) exhibited
sufficient sensitivity to reveal rapid fluctuations in the estab-
lishment of visual-motor functional connectivity. Moreover,
by employing an electrophysiological technique with high-
frequency specificity in combination with an experimental
design that explicitly requires sensorimotor information
transfer, the authors aimed to minimize the contribution of
confounding factors such as signal noise and volume conduc-
tion. At the current point of research, source localization was
not considered appropriate in the validation of the new
tGMA algorithm as it would add an additional processing
step with an independent set of mathematical assumptions.
As a compromise, the authors settled for CSD maps, which
have the benefit of being relatively assumption free.

These findings suggest that the tGMA algorithm is suffi-
ciently sensitive to detect relatively rapid (on the order of
*200 msec) changes in the establishment of functional
links between distinct cortical regions. Action selection in
the context of the avoidance of an aversive outcome may
be presumed to evoke neurocomputational processes that re-
quire cross-regional information transfer between sensory
and motor regions, which are necessary to avoid the aversive
outcome. The observed fluctuations in the strength of func-
tional connectivity were in the hypothesized direction: Con-
nectivity between visual and perimotor/frontal regions was
greater selectively for the active compared with the passive
visual stimuli, specifically during those time segments that
were most proximal to the onset of the motor cue. The in-
creased coupling of central and visual regions upon presen-
tation of an action cue is in line with a body of work using
psychophysiological (Brunia, 1993) as well as functional im-
aging studies (Hanson et al., 2007; Lizier et al., 2011). Pre-
vious studies of conditioned fear avoidance in humans
(Delgado et al., 2009) and nonhuman animals have demon-
strated that a network of brain regions is recruited during ac-
tive coping situations (LeDoux and Gorman, 2001). To the
extent that participants responded with the right hand, the
left hemispheric bias of visual to left vertex coupling is
also plausible. Furthermore, local connectivity within visual
regions was heightened for threat versus safety cues. This
finding is consistent with predictions from the animal
model (Amaral et al., 2003) as well as conceptual (Pessoa
and Adolphs, 2010) and empirical work (Miskovic and
Keil, 2012) on threat perception. Previous studies that have
explicitly quantified cortical motor excitability in the context
of emotional perception have demonstrated that viewing
cues with emotional relevance leads to decreased thresholds
for motor evoked potentials (Coombes et al., 2009; Hajcak
et al., 2007). The findings in this study extend this work by
capturing the dynamic functional connectivity between per-
ceptual and motor regions that is necessary to mediate adap-
tive behavioral responses in the context of simple cues with
acquired emotional relevance.

To the extent that the peripheral cues (the motor cues) in
the present task carry information that is partly redundant
with the central threat cue, the question may arise if the cen-
tral cues are processed differentially. The previous study
with this dataset examined behavioral and spectral power

data during the present task: Both indices suggested that
the stimuli were processed in a compound manner, consistent
with previous similar work. Specifically, the spectral power
at the 12 Hz frequency tag of the peripheral cues did not ev-
idence significant discrimination between the threat versus
safe trials ( p > 0.36)—rather, all spectral power effects at
12 Hz were dominated by the main effect of active/passive
motor components (i.e., the motor trials lead to enhanced
amplitude of 12 Hz responses compared with the passive
trials). The effects of threat/safety exhibited frequency spec-
ificity to the tag of the central grating, suggesting that partic-
ipants were indeed processing these trials as compound
mixtures rather than focusing on isolated elements, poten-
tially due to the specific task instructions that they were
given to this effect.

The minimum discriminant segment length obtained was
*200 msec in duration. Importantly, this temporal scale
compares quite favorably with estimates of fMRI functional
connectivity, where the peak of a BOLD response occurs
after up to 2 sec. In general, therefore, EEG (and MEG)
methods have the capacity to reveal the formation (and pre-
sumably, the dissolution) of functional brain networks in
cognitive real time. Varela (1999) has postulated the exis-
tence of different temporal orders/scales of neurocomputa-
tion: the 1/10 scale (tens of milliseconds) corresponds to
the most basic sensorimotor neural events, the 1 scale (hun-
dreds of milliseconds) corresponds to the cognitive realm re-
quiring large-scale neural integration, and the 10 scale
involves temporally extended memory schemas. The
tGMA technique as applied to measures of scalp EEG there-
fore appears to have the requisite sensitivity to index the
level of cortical processing that is most germane to the cog-
nitive and affective neurosciences. In addition, the tGMA
approach, since it is rank based and independent of the
time-series scale, may be uniquely suited for exploring the
integration of different imaging and measurement modalities
(each with its own spatiotemporal resolution). Current efforts
in the laboratories explore the use of this property in integrat-
ing EEG and hemodynamic imaging data. Such integration is
of interest because tGMA is capable of using the oscillatory
signature of scalp EEG and thus reflects neural dynamics in
ways that are not feasible with hemodynamic measures.

Although the properties of the ssVEP are desirable for val-
idation studies (Vialatte et al., 2010), EEG functional con-
nectivity estimates are often pursued in paradigms that
involve ongoing or spontaneous brain activity during longer
periods of measurement (Ben-Simon et al., 2008). The appli-
cation of the tGMA algorithm to these problems will be sys-
tematically examined in future studies. Furthermore, given
that the spectrum of available functional connectivity estima-
tes is considerable, a comprehensive comparison of connec-
tivity algorithms is still needed, ideally using a wide range of
experimental paradigms as well as data with known connec-
tivity profiles, such as synthetic data, which would serve as
the ground truth.

The tGMA algorithm still has a free parameter that poten-
tially affects the results and so it has to be selected carefully
for the goals of the experiment. The authors found that there
is a broad range of delays that provide very similar tGMA
values. However, in this study, the authors only considered
data from the same flickering frequency. When the experi-
ment requires different flickering frequencies, the same
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value of the delay should not be employed because the time
correlation of the filtered ssVEP changes with the frequency,
but can be partially compensated by the delay. In conclusion,
tGMA is applicable to empirical data collected in the human
electrophysiology laboratory and sensitive to experimental
manipulations. The validity and spatial accuracy of scalp-
based connectivity indices will remain a question of substan-
tial interest given that EEG measurements at high channel
counts are increasingly available, inexpensive, and highly
compatible with clinical and translational research settings.
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