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Abstract

Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly
motivated by evidence that patients with complex disorders, such as Alzheimer’s disease, may have altered func-
tional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes
statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major
interest in group-level functional network analysis; however, there is a relative lack of studies on statistical in-
ference, such as significance testing for group comparisons. In particular, it is still debatable which statistic
should be used to measure pairwise associations as the connectivity weights. Many functional connectivity stud-
ies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article
investigates the performance of using either correlations or partial correlations for testing group differences in
brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statis-
tical power to detect group differences. Our results suggest that, in general, testing group differences in networks
deviates from estimating networks. For example, high regularization in both covariance matrices and precision
matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-val-
idation or even at the true sparsity level) on the precision matrices with small estimation errors may have low
power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give
very different testing results, depending on which of the covariance matrices and the precision matrices are
sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption,
then using correlations often yields much higher powered and more stable testing results than using partial cor-
relations; the conclusion is reversed if the covariance matrices, not the precision matrices, are sparse. These re-
sults may have useful implications to future studies on testing functional connectivity differences.
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Introduction

Resting-state functional magnetic resonance imag-
ing (rs-fMRI) has become a popular methodology

for studying brain functional networks (Biswal, 2012). It
holds promise for understanding brain functions and reveal-
ing disrupted brain connectivity underlying complex disor-
ders, such as Alzheimer’s disease (Huang et al., 2010; Wee
et al., 2013). Recently, there has been great interest in
group-level network analysis with the focus on estimation
(Smith et al., 2012); however, in contrast to more established
fMRI data analysis (Zhu et al., 2014), there is a relative lack
of studies on drawing statistical inference, particularly for
group comparisons in brain networks (Varoquaux and Crad-

dock, 2013). For example, based on a study comparing func-
tional networks between patients with Alzheimer’s disease
and a control group, even though estimated networks for
the two groups may suggest some altered subnetworks, are
the identified differences genuine? A rigorous statistical
test can address this question before one possibly over-inter-
prets the results based on the two point estimates. This is par-
ticularly important given often small sample sizes and high
noise levels in rs-fMRI data.

A network is defined in graph theory as a set of nodes (or
vertices) and the edges with weights between them. In the
case of brain functional connectivity, nodes are spatial re-
gions of interest (ROIs), for example, as obtained from
brain atlases or from functional localizer tasks (Smith et al.,
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2011). A weight (either binary or continuous) is assigned to
each edge to measure the association between the two
nodes, for example, based on their BOLD time-course sig-
nals. Group comparison aims at testing whether the edge
weights are different or not across groups. However, there
is still a debate on what a continuous measure of pairwise as-
sociation (or an edge-weight) should be used to characterize
functional connectivity, which has important implications
to not only estimation but also testing (Varoquaux and Crad-
dock, 2013).

Many functional connectivity studies have used Pearson’s
(full or marginal) correlation between two nodes’ BOLD
time-course signals (Azari et al., 1992; Horwitz et al.,
1987; Kim et al., 2014; Stam et al., 2007; Supekar et al.,
2008), which is easy to calculate based on a sample covari-
ance matrix. However, a drawback of using correlations is
that it may not be able to distinguish whether the functional
connection between two nodes is direct or not. Namely, a
correlation captures the marginal association between two
nodes, which may be caused by a third node. This distinction
between marginal correlation and true, direct functional con-
nection is very important if one aims at estimating the struc-
ture of a network (Huang et al., 2010). It is also relevant to
testing because the numbers and magnitudes of nonzero as-
sociations may change with the specific measure being
used, possibly influencing the final testing result. To over-
come this limitation, a number of studies adopted partial cor-
relations (Marrelec et al., 2006; Salvador et al., 2005). The
partial correlation quantifies the association between two
brain regions, conditioning on the other regions, where a
zero partial correlation represents the absence of an edge in
the estimated network, indicating conditional independence
under the Gaussian assumption. Smith and colleagues
(2011) concluded that network estimation using partial cor-
relations outperformed that using correlations (when a suit-
able regularization was applied). A precision matrix, also
called inverse covariance matrix, is useful for estimating par-
tial correlations (Marrelec et al., 2006). Even with a small
sample size (and/or high-dimensional data), we can estimate
a precision matrix by applying regularization as imple-
mented in the graphical lasso method (Banerjee et al.,
2008; Friedman et al., 2008). In other words, the graphical
lasso allows identifying not only the network structure
(i.e., the zero and nonzero entries in the precision matrix)
but also the edge weights for a large number of brain regions
with even a small sample size.

However, even with some benefits from using partial cor-
relations for network estimation, it is unknown whether using
partial correlations as edge weights gives necessarily higher
statistical power than using correlations to test group differ-
ences in brain connectivity. A key issue is that ‘‘partial cor-
relations are intrinsically harder to estimate’’ (Varoquaux
and Craddock, 2013). For example, with a small sample
size, some regularization is necessary for estimating a preci-
sion matrix, but not for a covariance matrix, while suitable
regularization is not trivial in practice. In addition, the
power to test group differences may depend on some other
factors, such as the sparsity levels of the networks to be
tested. These issues have not been adequately addressed ear-
lier; it is the goal of this article to investigate these issues.

We considered both correlations and partial correlations as
edge weights at various sparsity levels of the estimated brain

functional networks to test for differences between fetal alco-
hol spectrum disorder (FASD) patients and controls. Woz-
niak and colleagues (2013) used correlations to reveal
significantly altered network connectivities in children with
FASD based on the network measures of characteristic
path and global efficiency. Kim and colleagues (2014) com-
pared several statistical tests and concluded that two tests,
network-based statistic (NBS) (Zalesky et al., 2012) and an
adaptive sum of powered score (aSPU) test (Pan et al.,
2014), were complementary to each other with at least one
often showing great power in testing group differences in
brain connectivity. NBS is a useful test developed in the neu-
roimaging community for detecting altered subnetworks
while attaching a statistical significance. It takes advantage
of the earlier assumption that altered edges would form con-
nected subnetworks, and hence is believed to offer high
power when the assumption holds. On the other hand, the
aSPU test, built on a class of so-called sum of powered
score (SPU) tests, does not impose such an assumption,
and was found to be complementary to NBS with higher
power under some situations when the goal is to assess over-
all network differences. Also, comparing some global net-
work measures between two groups is a popular way to
demonstrate brain connectivity differences (Wozniak et al.,
2013). We adopted the aSPU and SPU tests, NBS, and sev-
eral global network measures to compare brain connectivity
between two groups. Our goal is not to directly compare
these tests, but to investigate how they perform with the
use of correlations and partial correlations to describe brain
networks.

We used both the real FASD data and simulated data mim-
icking the FASD data. Our numerical study confirmed that
suitable regularization on estimating covariance and preci-
sion matrices would have implications to the power of a
test being applied to the estimated correlations or partial cor-
relations. However, it was generally difficult to choose suit-
able regularization, especially for testing. For example,
although cross-validation (CV) performed well in selecting
suitable regularization parameters for network estimation,
leading to nearly minimal estimation errors, a test using
such estimated networks might be low powered. Most impor-
tantly, our study showed that the relative power of testing
with either correlations or partial correlations depended on
the sparsity levels of the true covariance and precision matri-
ces. For example, if the true precision matrices for the two
groups were sparse, using correlations as edge weights
often gave higher power than using partial correlations in
testing group differences. Note that a sparse precision matrix
often induces a corresponding nonsparse covariance matrix;
given that a precision matrix, but not a covariance matrix,
can distinguish between direct and indirect connections in
a network, assuming sparse precision matrices seems to be
reasonable. On the other hand, the conclusion was the oppo-
site if the true covariance matrices were indeed sparse. These
results may have useful implications to future studies com-
paring functional connectivity.

This article is organized as follows. After introducing data
and notation for brain connectivity, we review estimation
methods for covariance and precision matrices for brain con-
nectivity, followed by statistical methods for testing group
differences in brain functional connectivity. In Application
to the FASD Data section, we apply the described methods
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to the FASD data using either correlations or partial correla-
tions with varying sparsity levels, to examine how the test re-
sults change for functional connectivity differences between
a group of FASD patients and a control group. In Simulations
section, we use simulated data mimicking the FASD data to
investigate the effects of edge weights, true or estimated net-
work sparsity levels, and other factors on testing results. We
summarize the main conclusions and some related future
work in Results section.

Materials and Methods

Data and notation

To test for between-group differences in brain connectiv-
ity, we consider a two-group scenario with a binary response/
disease indicator and with possible covariates. For the dis-
ease status of subject i = 1, . . . , n, we denote Yi = 0 for con-
trols, Yi = 1 for cases. We denote Zi = (Zi1, . . . , Zil)¢ as the
covariates for subject i.

To compare brain functional connectivity between two
groups, one must first estimate a connectivity (adjacency) ma-
trix (or a network) for each subject. The connectivity matrix
corresponds to a graph model (Bullmore and Sporns, 2009).
Suppose we have N distinct brain ROIs that define the nodes
of the networks or graphs, and suppose at each node brain ac-
tivity is measured as fMRI BOLD time series at M time points.
In a Gaussian graphical model, the BOLD signals from N
regions across time points t, Rt = (Rt1, . . . , RtN)¢ for t = 1, . . . M,
are independent and identically distributed as a multivariate
Gaussian N(l, S), where l 2 RN and SN · N is a positive def-
inite covariance matrix. As a continuous measure of a pairwise
association between two nodes, both (full) correlation and par-
tial correlation are widely used. This measure is stored in a
symmetric N · N connectivity matrix, where N is the total
number of nodes. Each row/column of the connectivity matrix
corresponds to a distinct node, such that position ( p, q)
uniquely stores the measured association between the pth
and qth nodes’ time series (i.e., Rtp and Rtq for t = 1, . . . , M).

The (full) correlation would measure the marginal associ-
ation of the signals in two ROIs, which can be easily esti-
mated from a sample covariance matrix,

S = (spq) =
1

M� 1
+
M

t = 1

(Rt � �R)(Rt� �R)¢,

an unbiased estimator of S, where �R = +M

t = 1
Rt=M. For

t = 1, . . . , M, the full correlation between nodes p and q,
Corr(Rtp, Rtq) is estimated as rpq = spq=

ffiffiffiffiffiffiffiffiffiffiffi
sppsqq
p

:
The partial correlations are obtained from the precision

(i.e., inverse covariance) matrix Ypq = (ypq) =S. If we de-
note the partial correlation between nodes p and q by qpq,
it is defined as qpq = � hpq=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hpphqq

p
: A partial correla-

tion refers to the normalized correlation between two time
series, conditioned on other time series from all other network
nodes (Smith et al., 2011); qpq = Corr(Rtp, RtqjR–(p,q)) where
R (p, q) = fRtr : 1 � r 6¼ p, q � Ng. Therefore, qpq being non-
zero is equivalent to Rtp and Rtq being conditionally dependent
given all other variables R (p, q). Hence, partial correlations dis-
tinguish direct and indirect connections between two nodes,
and for this reason, they are preferred compared with full cor-
relations in the literature for network estimation (Huang et al.,
2010; Marrelec et al., 2006; Smith et al., 2011). However,
several problems can arise in estimating Y. First, in a high-

dimensional setting where the number of variables N is larger
than the number of observations M, the sample covariance ma-
trix S is singular and so cannot be inverted to yield an estimate
of Y. If N&M, then even if S is not singular, bY = S� 1 could
be unstable with high variability. Hence, regularization is im-
posed to yield a better estimate bY.

With either full correlations or partial correlations, once a
symmetric N · N connectivity matrix is estimated for each
subject, there are k = N · (N�1)/2 unique pairwise associa-
tions in it, since each node is potentially connected with
every other node. Accordingly, each subject has k association
measures for brain connectivity. Often the association mea-
sures (i.e., full correlations or partial correlations) are nor-
malized by applying Fisher’s z-transformation and we
denote the k continuous association measures of subject i’s
brain connectivity as Xi = (Xi1, . . . , Xik)¢.

In matrix notation, we denote Yn · l as a vector for disease
indicators, Xn · k as a matrix of pairwise associations between
nodes (with each element as a z-transformed correlation or
partial correlation), and Zn · l as a covariate matrix.

Estimating covariance and precision matrices
via graphical lasso

Often one is interested in identifying pairs of ROIs that are
unconnected in a network, which are conditionally indepen-
dent; these correspond to zero entries in Y with zero partial
correlations between nodes. As discussed earlier, partial cor-
relations can be estimated from the precision matrix, and a
natural way to estimate the precision matrix Y is to invert S.
However, taking the inverse of S will, in general, yield a bY
with no elements that are exactly equal to zero. More impor-
tantly, in high-dimensional and small sample size settings, due
to the singularity problem, it is challenging to estimate Y di-
rectly. More generally, some regularization can be imposed to
obtain better estimates for a precision matrix.

Banerjee and colleagues (2008) and Friedman and col-
leagues (2008) proposed a regularized estimator for a preci-
sion matrix Y. The resulting estimate bY can be sparse or
nonsparse, depending on the extent of regularization im-
posed. Specifically, for subject i, its estimate of precision
matrix is obtained by maximizing the subject-specific penal-
ized log likelihood,

Lp, i(Yi;k) = Li(Yi)�P(Yi;k) = log det (Yi)

� tr(SiYi)� kikYik1

over the semi-positive definite Yi, where tr denotes the trace,
Si is the sample covariance based on the subject i’s BOLD
time series, kYik1 = +

p 6¼q
jhi, pqj is the L1 norm for nondiago-

nal elements, and ki ‡ 0 is a regularization parameter to be
determined. Note that bYi = bYi(ki) is a function of ki, and
for simplicity we may suppress this dependency in notation.
Consequently, imposing a high penalty (with a large ki) tends
to increase the sparsity level of the estimated precision ma-
trix. The optimal bYi could be estimated from bki selected
by a model selection criterion, often by maximizing a predic-
tive loglikelihood based on CV. Thus, we obtain

bYi = bYi(bki) = arg maxYi
Lp, i(Yi;bki)

in which we also obtain a regularized estimate for the covari-
ance matrix Ŝi = bY� 1

i . These bYi and Ŝi (with the same value
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of ki) are used to estimate the partial correlations and
full correlations, respectively, to which we apply Fisher’s
z-transformation to generate brain connectivity data
Xi = (Xi1, . . . , Xik)¢ to be tested.

In our study, to test group differences in brain connectivity,
we tried several ways to choose the regularization parameter
ki. First, we tried to choose ki for each subject i separately.
Second, we chose ki at the group-level; that is, we chose a

common k̂(j) for all subjects in a group j. Since we assume a
common covariance matrix within each group, the second
way is more efficient; furthermore, the first way also gave re-
sults similar to the second way. Hence, we only describe the
second way here. Denote the two groups as G(j), j = 1, 2.

Ten-fold CV was performed to estimate the optimal k̂(j) that
maximizes the sum of group members’ predictive log likeli-
hood. Briefly, we split data into 10 almost equally sized sub-
sets: 9 subsets form training data, while the other subset forms
validation data. Given a candidate k(j), the following two steps
were performed repeatedly 10 times for each possible train-
ing-validation data partition for each group: Step 1. Apply
the graphical lasso to the training data, obtaining a group

level, bY(j) = bY(j)(k(j)). Step 2. Based on bY(j) for j = 1 and 2,
evaluate the predictive log likelihood for the validation data.
At the end, we sum over the predictive log likelihoods across
the 10 partitions to obtain total predictive log likelihood.

Using a grid search, we found k̂(j), which maximizes the
total predictive log likelihood. Then, we apply the graphical
lasso to all the data for each subject i 2 G(j) separately to ob-

tain bYi = bYi(k̂(j)). The subject-level covariance matrix esti-

mate bSi = bY� 1
i is also obtained. Note that the selected

group-level regularization parameters k̂(1) and k̂(2) may be dif-
ferent, but in practice, they were very close as shown in our
later example.

The graphical lasso can be also used to estimate brain con-
nectivity with varying sparsity levels, which not only avoids
the difficult issue of choosing a suitable k̂(j) for each group
but also offers an opportunity to investigate how testing re-
sults change with the varying network estimates. By using
various values of the regularization parameter, we can esti-
mate a precision matrix at a pre-defined sparsity level. To
compare between-group differences in brain connectivity, a
number of studies (Huang et al., 2010; Stam et al., 2007;
Supekar et al., 2008) adopted a strategy to control the spar-
sity levels of the brain networks to be the same for all the
groups, avoiding possible artifacts of any differences coming
from topological or structural differences among the estimated
networks. Suppose c is the target sparsity level, defined as con-
nection density or the proportion of the nonzero elements in a
precision matrix. In our study, we tried to find the group-level
value ki = kc

(j)i 2 G(j) so that each subject’s precision matrix
has a connection density around c. Denote bYc

i = bYi(k
c
(j)) for

each i 2 G(j). Accordingly, we obtain bSc
i as the inverse ofbYc

i ; note that, in this way, the connection density c is for the
precision matrix estimate, not for the covariance matrix esti-
mate. As stated earlier, for any fixed c, we obtain marginal cor-
relations and partial correlations for each subject, from which
we test for group differences. At a lower estimated connection
density, we test between-group differences with fewer but stron-
ger individual brain connections, which, however, may ignore
many weak connections and thus lead to loss of power. On

the other hand, at higher estimated connection densities, many
weak, including spurious, connections are introduced and thus
may also yield low-powered testing. We also applied the
same ki =k for all subjects in both groups, and obtained similar
results, as to be shown.

Testing group differences in brain functional connectivity

We have discussed how to estimate subject-specific networks
based on their covariance or precision matrices, from which sub-
ject-specific brain connectivity data Xi = (Xi1, . . . , Xik)¢ can be
constructed using full correlations or partial correlations.
Next, we review several representative statistical tests for
group differences in brain connectivity.

SPU and aSPU. The SPU test is a global test originally
proposed for the association analysis of genomic data (Pan
et al., 2014), but Kim and colleagues (2014) showed that it
maintains great power for brain connectivity data. The
SPU tests are a family of association tests such that at least
one of them is powerful for a given situation. Each SPU
test is based on the score vector from a general regression
model. Consider a logistic regression model where k func-
tional connections and l covariates are predictors:

Logit[Pr(Yi = 1)] = b0þ +
k

j = 1

Xijbjþ +
l

m = 1

zim dm (1)

The null hypothesis to be tested is H0 : b = (b1, . . . bk)¢ = 0,
that is, no group differences in functional brain connectivity.
Under the null hypothesis H0, the full model (1) is reduced to

Logit[Pr(Yi = 1)] = b0þ +
l

m = 1

Zim dm (2)

Denote the score vector for b = (b1, . . . , bk)¢ as
U = (U1, . . . , Uk)¢. Suppose b̂0 and d̂m¢s are maximum likeli-
hood estimates under the null model (2) and bYi = 1=[1þ
exp (� b̂0�Sl

m = 1zimd̂m)]. Denote a residual resi = Yi� Ŷi for
i = 1, . . . , n. Then, the SPU test is based on the score,

Uj = +
n

i = 1

(Yi� bYi) � Xij = +
n

i = 1

resi � Xij

Note that, unless Xij = 0 for all subjects i, the weights of the
edge j across the subjects i contribute to the score vector.
Given c ‡ 1, the test statistic of the SPU(c) test is

TSPU(c) = +
k

j = 1

fj � Uj = +
k

j = 1

U
c
j

where fj = U
c� 1
j can be regarded as a weight for the jth com-

ponent of U. With various values of integer c ‡ 1, one or more
of the SPU(c) tests may maintain high power across a wide
range of unknown truth. As c increases, the SPU(c) test
puts more weights on the larger components of U. Eventually,
as c/N , it only takes the maximum component of the score
vector and the test statistic is defined as TSPU(1) = maxk

j = 1 jUjj,
which mimics mass-univariate testing.

To draw statistical inference, Pan and colleagues (2014)
proposed using permutations: First, we fit the null model to
obtain bY = fbY1, . . . , bYng, and obtain residuals resi = Yi� bYi;
we permute the original set of residuals res = fres1,
� � � , resng to create a new set of residual res(b), based on
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which we calculate the score vector U(b) and the null statistic
T (b)

SPU = TSPU(U(b)); with b = 1, . . . , B permutations, we com-
pute the p-value as SB

b = 1[I(jT (b)
SPU jqjTSPU j)þ 1]=(Bþ 1).

The power of the SPU(c) test depends on the choice of c.
Pan and colleagues (2014) proposed an aSPU test that
combines the p-values of multiple SPU tests with various
values of c, and its test statistic is defined as

TaSPU = min
c2G

PSPU(c):

In this article, we considered G = f1, 2, . . . , 8,1g.
To obtain the p-value of aSPU test, we calculate a SPU test

statistics TSPU(c)
(b) and corresponding p-value p(b)

c =Sb1 6¼b

I(T (b1)
SPU(c)>T (b)

SPU(c))=(B� 1), for b = 1, . . . B; calculate the

test statistics of aSPU, TaSPU = minc2G p(b)
c . The p-value of

the aSPU test is obtained as follows: +B

b = 1
[I(jT (b)

aSPU jp
jTaSPU j)þ 1]=(Bþ 1):

In this article, we focus on the use of SPU tests with c = 1, 2,
andN, since these three cases correspond to some known tests
in the neuroimaging research community: SPU(1) test is sim-
ilar to an fMRI network test proposed in Meskaldji and col-
leagues (2011); as pointed out in Kim and colleagues
(2014), SPU(2) is closely related to multivariate distance ma-
trix regression used by Shehzad and colleagues (2014), Reiss
and colleagues (2010), and McArdle and Anderson (2001).
SPU(N) can be regarded as a mass-univariate testing (Nichols
and Holmes, 2001). Weighted versions of the SPU and aSPU
tests discussed in Kim and colleagues (2014) were also applied
to numerical examples here; since they yielded similar results
to those of SPU and aSPU tests, we skip their discussion.

R code for SPU and aSPU tests will be available at
www.biostat.umn.edu/*weip/prog.html.

Network-based statistic. NBS aims at detecting disrupted
subnetworks across groups (Zalesky et al., 2010). It assumes
and takes advantage of the proposition that the edges with al-
tered weights cluster together and form some connected sub-
networks; it uses the size of the largest altered subnetwork as
its test statistic. In the presence of such clustering with dis-
rupted subnetworks, NBS can potentially yield greater
power than edge-based tests that ignore such clustering.

For each edge j = 1, . . . k, a univariate edge-based test is
separately applied to each connection. For the jth connection,
we can consider a linear model,

Xij = a0þ Yia1þ +
l

m = 1

zimdmþ eij i = 1, . . . , n

where the errors eij are assumed to be independent and iden-
tically distributed as N(0, r2). We formulate a t contrast at
each edge separately to test the null hypothesis H0 : a1 = 0.
Denote c = [0, 1, 0, . . . , 0]¢, a = [a0, a1, c1, . . . , cl]

¢, and D =
[1 Y Z]. The jth connection can be tested with the following
t-statistic:

Tj =
ba1

se( ba1)
=

c¢ baffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � c¢(D¢D)

� 1
c

p
where â = (D¢D)� 1D¢X:j and X:j = [X1j, � � � , Xnj]:

NBS discovers ‘‘supra-threshold edges’’ by selecting the
edges that have test statistics Tj’s exceeding a predetermined
threshold, and it identifies the size of the largest such sub-

network or cluster that is composed of the connected supra-
threshold edges. Denote the size of the largest cluster as s.
To draw inference, NBS employs permutations. In each per-
mutation b = 1, . . . , B, disease statuses of the subjects are
randomly permuted and with each permuted sample, it mea-
sures the maximum size of the cluster, s(b), that is, maximum
number of connected supra-threshold-edges. This yields an
empirical null distribution of the maximal supra-threshold
cluster size. Then, a p-value for the test of group network
differences is calculated using this null distribution:
p-value = +B

b = 1
I(s(b)qs)=B.

Such a supra-threshold-cluster test is believed to be more
powerful than mass univariate edge-based testing. However,
since mass univariate testing is low powered with small sam-
ple sizes, even in the presence of clustered edges with
changed weights, they may not be detected. Hence, when ei-
ther true or detected edges with changed weights are isolated
from each other, forming no clusters, NBS will lose power
(Zalesky et al., 2010). Furthermore, the power of NBS de-
pends on the threshold being used, which is difficult to choose
in practice (Kim et al., 2014). For ease of understanding, we
follow the notation in Kim and colleagues (2014) where
nbs(t) is defined as the NBS test with a predetermined thresh-
old t, representing the tth percentile in absolute values of Tj’s.
We applied the NBS tests with multiple values of t, showing
the power dependence on t; it is noted that, if we want to
choose a single t giving the highest power, a multiple-testing
adjustment is needed, though we do not pursue it here.

Software for the Network Based Statistic is available at
https://sites.google.com/site/bctnet/comparison/nbs

Global network measures. Brain networks can be char-
acterized by a few neurobiologically meaningful global net-
work measures. Rubinov and Sporns (2010) discussed many
global network measures that detect functional integration
and segregation, quantify centrality of individual brain re-
gions or pathways, characterize patterns of local anatomical
circuitry, and test resilience of networks to insult. Each
global network measure is computable with some positive
normalized weights wij (i.e., 0 £ wij £ 1) for any edge con-
necting nodes i and j, or with a binary measure denoting
the presence or absence of the connection.

Based on partial correlations and correlations, we consider
four global network measures; characteristic path length
(Charpath), global efficiency (Eglob), local efficiency (Elo-
cal), and mean clustering coefficient (Eclust) to compare
the FASD patient group with the controls.

For each subject, all pairwise associations (either correla-
tions or partial correlations) are measured, and a weighted
(not binary) network metric such as global efficiency is com-
puted. We test group differences in each network measure
based on logistic regression.

Open source Matlab toolbox BCT provides functions to cal-
culate global network measures at www.brain-connectivity-
toolbox.net.

Application to the FASD Data

MRI acquisition and processing

We used the FASD data of Wozniak and colleagues
(2013). For the initial MRI data acquisition, a Siemens 3T
TIM Trio MRI scanner with a 12-channel parallel array
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head coil was used. Scans included a structural T1-weighted
scan, a resting-state fMRI scan (TR = 2000 msec, TE = 30
msec, 34 interleaved slices, no skip, voxel size = 3.45 · 3.45
· 4.0 mm, FOV = 220 mm, flip angle = 77�, 180 measures),
and a field map; Additional details are included in Wozniak
and colleagues (2013). During the resting-state scan, partic-
ipants were instructed to close their eyes and remain still.

The fMRI data were processed with modified ‘‘1000 Func-
tional Connectome (TFC)’’ pre-processing scripts (www.nitrc
.org/plugins/mwiki/index.php/fcon_1000). Tools from AFNI
(Cox, 1996) and the FMRIB Software Library (FSL) version
4.1.6 (Smith et al., 2004; Woolrich et al., 2009) were used in
the TFC processing. This included skull stripping, motion cor-
rection, geometric distortion correction using FSL’s FUGUE
(added to the TFC pipeline), spatial smoothing (FWHM of
6 mm), grand mean scaling, band-pass temporal filtering
(0.005–0.1 Hz), and quadratic de-trending. The TFC process-
ing of the T1 volume included skull stripping and FSL’s
FAST tissue segmentation to define whole brain, white matter,
and ventricular cerebrospinal fluid (CSF) ROIs. The skull-strip-
ped T1 and tissue segmentation ROIs were registered to the
fMRI data using FSL’s FLIRT. Timecourses from the three tis-
sue segmentation ROIs, along with the six motion parameters,
were used as voxel-wise nuisance regressors in the TFC pro-
cessing of the fMRI data. Cortical parcellation of the T1 vol-
ume in 34 ROIs was done with FreeSurfer version 4.5 (surfer
.nmr.mgh.harvard.edu) (Dale et al., 1999). Data were visually
inspected, but hand-editing was not employed.

The 68 Freesurfer cortical parcellations (34 per hemisphere)
were registered to the TFC-processed fMRI data using Free-
surfer’s bbregister (Greve and Fischl, 2009). The parcellations
were dilated during registration. but none were allowed to
overlap and voxels outside the TFC brain mask were ex-
cluded. ROIs that contained fewer than 10 fMRI voxels for
any subject were excluded from the final analysis. This
resulted in the exclusion of 6 ROIs (bilateral entorhinal, fron-
tal pole, and temporal pole), leaving a total of 62 ROIs (31 per
hemisphere). The mean fMRI time series of all voxels within
each ROI were then extracted for each subject. In this paper,
we added 12 subcortical ROIs to have a total of 74 ROIs.

Data analysis

Kim and colleagues (2014) applied various statistical tests
to compare brain functional connectivity in 24 FASD pa-
tients, aged 10–17, with 31 matched controls using resting-
state fMRI; more details of the original study can be found
in Wozniak and colleagues (2013). The resting-state fMRI
time-series signals for each region were measured at 180
time points. They considered N = 74 cortical and sub-cortical
ROIs and applied Fisher’s z-transformation to the Pearson
correlations between all pairs of N = 74 ROIs for k = 2701
edges to test the group differences.

In this paper, both partial correlations and correlations are
used as the edge weights in subject-specific networks for
testing between-group differences in brain connectivity.
The regularization parameter ki was chosen in two ways.
The first was to use a CV-selected group-level value:
ki = k̂(j) for all i 2 G(j) and j = 1, 2. The second strategy was
to control both groups to have a similar connection density
(i.e., number of nonzero entries) in their estimated precision
matrices as suggested by Huang and colleagues (2010); we
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set kc
i = kc

(j) for all i 2 G(j) with various values of c. To create
various sparsity levels of the estimated precision matrices,
we gradually increased the regularization parameters kc

(1)

and kc
(2) for both groups. kc

(1) and kc
(2) were calibrated so

that the two groups had almost the same pre-defined connec-
tion density c. At the end, we applied the SPU, aSPU, NBS,
and global network measures to test the group differences in
brain functional connectivity.

Using CV, we found the optimal k̂(1) to estimate the best
sparsity level of the precision matrix for each group. The
control group had k̂(1) = 7:8, at which the connection density
(i.e., proportion of nonzero elements) of the estimated co-

variance matrix was 100% and that of the estimated precision
matrix was 48%. For the FASD patient group, we had
k̂(2) = 8:0, giving 100% nonzero entries in the estimated covari-
ance matrix and 50% in the estimated precision matrix, respec-
tively. The p-values of the various tests with CV-selected k̂(j)

values are shown in Table 1. When using the correlations,
we observed statistically significant group differences in
brain connectivity. However, when using partial correlations,
without multiple-testing adjustments, only some NBS tests
detected significant differences between the two groups.

Figure 1 illustrates how the p-value of each test changes
with the sparsity level of the estimated networks. We

FIG. 1. p-Values as a function of the regularization parameter for testing brain network differences with the fetal alcohol
spectrum disorder data: left panel shows the p-values for testing group differences, using correlations sorted and color coded
by statistical tests and each kind. Right panel shows the p-values with using partial correlations. Color images available
online at www.liebertpub.com/brain
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gradually increased both groups’ regularization parameters
k(1) and k(2) so that they shared a similar and decreasing con-
nection density, then applied the group comparison tests. For
simplicity, in Figure 1, we report a mean value of kc

(1) and kc
(2)

as k, and they were very close. The results of p-values are
color coded by statistical tests and sorted by plotting symbols
for each category of the tests. Left panels show the p-values
for testing group differences when using correlations, while
right panels show those with partial correlations.

When using correlations, the p-value of a test tended to
increase as k increased (i.e., as higher regularization was ap-
plied to the precision matrix). When using partial correla-
tions, the p-value did not show any consistent pattern:
With no or little regularization, the p-values were unstable
and fluctuated widely; with k larger than 40, the p-values de-
creased and became stable.

Simulations

Using simulated data generated to mimic the FASD data,
we compared whether using correlations would perform
differently from using partial correlations, in terms of statisti-
cal power to detect network differences between two groups.
Group differences in networks were generated in two ways:
Unstructured differences were scattered across the networks,
and structured differences with altered edges formed some
clustered subnetworks in brain connectivity. Time-series
data were generated from a multivariate Gaussian model, in
which the mean vector was all zeros and a true group-level co-
variance matrix S(j) for j = 1 or 2 was used. Our goal was to
explore the effects of the sparsity levels of the true group-
level precision matrices bYi = bS� 1

i on testing power. Partial
correlations were estimated from the subject-specific bYi,
which, in turn, could be estimated via CV or at various connec-
tion density levels with the graphical lasso; similarly, correla-
tions were estimated from the corresponding bSi = bY� 1

i . For
the main factors influencing power, the connection density
of estimated precision matrices and that of the true precision
matrices were considered. The number of time points of
time-series of each subject was also explored for its possible
effect on the power of testing group differences.

Simulation set-ups

Set-up 1: unstructured differences in brain networks. The
differences between two group-level networks could come
from isolated edges forming no topological structures. To cre-
ate a realistic setting, the true nonsparse covariance matrix for
74 ROIs was estimated for each group of the FASD data as S(1)

and S(2). From these group-level nonsparse covariance matri-
ces, we generated different levels of sparse precision matrices
by applying the graphical lasso. For example, if we tended to
have connection density T = 0.20 (i.e., having 20% of nonzero
entries) for the true precision matrix, we applied different reg-
ularization parameters for each group via graphical lasso to
create the sparse precision matrices, WT

(1) and WT
(2). In our sim-

ulations, we would control the group differences with a pa-
rameter / to have a wide range of power across the
simulation scenarios, and used the true precision matrices as

YT
(1) = WT

(1) and YT
(2) =YT

(1)þ/ � (WT
(2)�WT

(1)) (3)

With 0 £ / £ 1, each YT
(j) was positive definite. The corre-

sponding true covariance matrices were obtained as

ST
(j) = (YT

(j))
� 1. Note that ‘‘T’’ represents the connection den-

sity of the true precision matrices, not of the covariance matri-
ces. In our study, / was set at 0 to generate simulated data with
no group differences in brain connectivity, which were used for
calculating type I error rates; or / = 0.15 for simulating data
with group differences, which were used for power analysis.

In previous studies, brain connections were found to be in-
deed sparse (Hilgetag, 2002; Oh et al., 2014): around 0.12 for
the mouse brain structural network and around 0.27 for the
cat cortex. Although we expected the human brain to have
sparse functional connections, to be more general, we con-
sidered both sparse and nonsparse networks with T = 0.20,
0.30, 0.60, and 0.80 as the connection density (i.e., propor-
tions of nonzero entries) of the true precision matrices.

Set-up 2: structured differences in brain network. Now
we consider that the differences between two group-level net-
works could come from edges comprising a connected subnet-
work or cluster, reflecting perhaps a reasonable assumption on
the brain’s functional segregation. To have a realistic simula-
tion set-up, we adopted the subnetworks detected by NBS for
the FASD data as the truths. Specifically, suppose the two
sample covariance (or precision) matrices for the two groups
were S(1) and S(2) (or Y(1) and Y(2)) based on the FASD
data. Applying the NBS to the FASD data and fixing the
detected altered subnetwork at the connection density
c = 0.20, we obtained a binary indicator matrix Dr (or Dq) as
the altered covariance (or precision) matrix. Define

€S(1) =S(1) � Dr and €S(2) =S(2) � Dr

€Y(1) =Y(1) � Dq and €Y(2) =Y(2) � Dq

where � is the Hadamard (i.e., matrix element-wise) product.
To ensure the positive definiteness, we added a small con-
stant on the diagonal of each covariance or precision matrix.
Finally, we used / as a parameter to control the size of the
group differences as used in [Eq. (3)]; then, the true S�(j)
and Y�(j) were defined by

S�(1) =S�(1) and S�(2) =S�(1)þ/ � (€S(2)� €S(1))

Similarly, Y�(1) = €Y(1) and Y�(2) =Y�(1)þ/ � ( €Y(2)� €Y(1)).
We note that, to specify the sparsity levels of the true covari-
ance and precision matrices separately, in this setting we had
S�(j) = (Y�(j))

� 1.

Generating simulated data

In set-up 1, the group-level true covariance matrices,
ST

(j) = (YT
(j))
� 1 for j = 1 and 2, were used to generate time-

course BOLD signals from N regions at time point t as

Rt = (Rt1, . . . , RtN)¢~N
�

0,ST
(j)

�
t = 1, . . . , M

for each subject in group j. We considered the simulation
scenarios with M = 180 as the default number of time points
for each individual, and with n = 50 subjects, including 25
controls and 25 cases. To investigate the effect of the number
of time points M, we also considered M = 90, 180, and 540.
For set-up 2, similarly, we could use either the group-level
precision matrices Y�(j) or covariance matrices S�(j) to gener-
ate subject-level BOLD time series.
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Estimating networks

With simulated time-series data, we would estimate each
subject-specific covariance (or precision) matrix Si (or Yi),
from which we obtained the correlations (or partial correla-
tions) of the brain regions for each subject before testing
for their group differences.

As in the FASD data analysis, we chose the regularization
parameter ki in two ways: With each simulated time-series
data set, we found k̂(j), for j = 1, 2 that maximized the
group-level predictive log likelihood and applied the graph-
ical lasso to estimate bSi and bYi for i 2 G(j). In each simula-
tion, we applied 10-fold CV to find the optimal k̂(j). Second,

we also matched the sparsity levels of two groups’ precision
matrices. For the unknown true connection density (T) of the
true precision matrix YT

i , we assumed that the estimated con-
nection density (c) would not necessarily match with the
truth as a result, since the true sparsity level is unlikely
known in practice. For example, in our simulation, when
the true sparsity was T = 0.20, we considered that the esti-
mated precision matrix could have connection density at
c 2 f0:1, 0:2, 0:3, 0:4, 0:5, 1g. Here, the connection density
1 represented the case of no regularization so that both pre-
cision and covariance matrices had 100% nonzero entries.
The graphical lasso was employed to estimate each sub-
ject-specific precision matrix to have the pre-defined sparsity

FIG. 2. Type I error and power
for testing unstructured network
differences with varying connec-
tion density levels of the esti-
mated precision matrices for true
network connection density
T = 0.20; color coded by statistical
tests (blue: SPU, green: NBS, red:
global network measures). Color
images available online at
www.liebertpub.com/brain
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level. A grid search was performed to determine kc
(j) for each

c 2 f0:1, 0:2, 0:3, 0:4, 0:5, 1g to yield bYc
i with a given con-

nection density c. Then, the corresponding covariance matrix
was estimated bSc

(j) = (bYc
(j))
� 1. Note that, for simplicity of no-

tation, c was the connection density of the estimated preci-
sion matrix, not of the covariance estimate. Of course, a
single kc

(j) could not guarantee to yield the exact pre-defined
sparsity level of the precision matrices for all subjects in all
simulations, so the mean value of the estimated connection
density is reported across simulations (Supplementary
Tables S1 and S2; Supplementary Data are available online
at www.liebertpub.com/brain).

Type I error and power for testing

The correlations and partial correlations were obtained frombYi (or bYc
i ) and bSi (or bSc

i ), respectively, and the z-transformation
was applied to both association measures. To test group differ-
ences in brain connectivity, we applied the SPU/aSPU tests,
NBS, and univariate tests on some global network measures.
Throughout the simulations, the test significance level was
fixed at a= 0.05. The results were based on 1000 independent
replicates for each set-up to estimate empirical type I errors or
empirical power as the proportion of rejecting the null hypothe-
sis. The permutation number was 1000 for all tests.

FIG. 3. Type I error and power
for testing unstructured network
differences when the same regu-
larization was imposed on all
subjects: with varying connection
density of the estimated precision
matrix when the true network con-
nection density is T = 0.20. Note
that the unit of x-axis is ki in re-
verse order; color coded by statis-
tical tests (blue: SPU, green: NBS,
red: global network measures).
Color images available online at
www.liebertpub.com/brain.
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Estimation errors in estimating networks

Denote ~Yi (or ~Si) as an arbitrary estimate for Yi (or Si).
The adequacy of an estimate of a network (i.e., ~Yi or ~Si)
can be evaluated by an entropy loss (EL) or a quadratic
loss (QL). The entropy loss, also known as the Kullback–
Leibler divergence, is a well-accepted nonsymmetric measure
of the discrepancy between an estimate and the truth (Pan and
Fang, 2002). The two loss functions with respect to the true Si

can be defined as

EL(~Si,Si) = tr(~SiYi)� log j~SiYij �N

QL(~Si,Si) = tr(~SiYi� I)2

Similarly, for the true Yi and its arbitrary estimate ~Yi, we
have

EL( ~Yi,Yi) = tr( ~YiSi)� log j ~YiSij �N

QL( ~Yi,Yi) = tr( ~YiSi� I)2

FIG. 4. Cross-validation esti-
mated networks: type I error and
power for testing unstructured
network differences at different
connection density levels of the
true precision matrices, T = 0.20,
0.30, 0.60, and 0.80; color coded
by statistical tests (blue: SPU,
green: NBS, red: global network
measures). Color images avail-
able online at www.liebertpub
.com/brain
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In each simulation, we obtained a loss from estimating in-
dividuals’ networks (Si or Yi) and averaged the loss based on
1000 replicates.

Results

Set-up 1: unstructured differences in brain networks

Varying connection density of networks. Figure 2 pres-
ents representative results with the connection density of
the true precision matrix ( ~YT

(j)) at T = 0.20. We observe
how power changed with the varying connection density
(c) of the estimated precision matrices (bYi). Group-level reg-
ularization value kc

(j) was imposed for each subject, and the
test power was evaluated at different estimated connection
density levels with c 2 f0:1, 0:2, 0:3, 0:4, 0:5, 1g The left
panels of Figure 2 show the type I error and power for testing
group differences with correlations, while the right panels
are with partial correlations. The top row presents the type
I errors from all tests, which were close to the nominal
level of 0.05. Figure 2 illustrates that using correlations
gave higher power than using partial correlations for most
tests. When high regularization was imposed (i.e., the esti-
mated precision matrix had a very small connection density
such as at c = 0.1), both correlations and partial correlations
yielded higher power. However, for NBS, even with high
regularization, using partial correlations led to extremely
low power.

There might be a concern that setting different regulariza-
tion parameters for the two groups could give rise to spurious
between-group differences, though the controlled type I er-

rors did not support this hypothesis. Nevertheless, we also
applied the same value of k to all the subjects in both groups,
and obtained similar results as shown in Figure 3.

For the cases of higher true connection density levels at
T = 0.30, 0.60, and 0.80 with varying estimated connection
density levels, the power analyses are provided in Supple-
mentary Figures S1–S3; the general conclusions were the
same. Detailed results for type I error rates are provided in
Supplementary Tables S1 and S2.

Cross-validation-selected connection density of estimated
networks. Figure 4 illustrates the performance of the tests
with CV-selected connection density at various connection
density levels T of the true precision matrices YT

(j). T was
set at 0.20, 0.30, 0.60, and 0.80, respectively. Each individ-
ual’s network, bSi or bYi with i 2 G(j) was estimated with a
CV-selected group level bk(j). Type I error was controlled in
all tests applied. When the true connection density was low
(T = 0.20 or 0.30), using correlations gave higher power
than using partial correlations. At a higher true connection
density (T = 0.80), testing with correlations gave higher
power than using partial correlations with NBS and network
metrics; but using partial correlations offered higher power
with SPU(1) and aSPU tests. Using correlations seemed to
yield more stable statistical power to detect network differ-
ences across various levels of true connection density.
Among all tests applied, the SPU(2) test performed best,
closely followed by aSPU; it is striking to see that the
aSPU test was much more powerful than NBS and network
measures when partial correlations were used.

a

b

FIG. 5. Performance of
estimating networks with
varying connection density
levels of the estimated pre-
cision matrices for the true
network connection density
at T = 0.20. (a) Performance
of estimating covariance
matrices Si. (b) Perform-
ance of estimating precision
matrices Yi. Color images
available online at www
.liebertpub.com/brain
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Performance in estimating networks. To explore whether
our conclusions were unduly influenced by errors in estimat-
ing networks, we show Figure 5 to illustrate the performance
in estimating networks (i.e., either bSi or bYi) under the en-
tropy and quadratic losses. We fixed the connection density
of the precision matrix at T = 0.20. In Figure 2, we varied
the estimated connection density of the precision matrixbYi. Figure 5 depicts the discrepancy between true Si and es-
timated bSc

i , and between true Yi and estimated bYc
i where

c 2 f0:1, 0:2, 0:3, 0:4, 0:5, 1g. We observed that the loss
tended to be small when estimated connection density (c)

was close to the truth T = 0.20; in particular, CV seemed to
give nearly optimal network estimates with minimal losses.
However, compared with Figure 2, estimating covariance
or precision matrices with a small loss did not directly trans-
late into gaining statistical power in testing group differ-
ences. Consequently, CV was not satisfactory in choosing
regularization parameters for testing group differences: It
did not lead to power close to the highest one, though it
was successful in estimating networks with nearly minimum
losses. Both the entropy loss and quadratic loss showed sim-
ilar patterns.

FIG. 6. Cross-validation esti-
mated networks: type I error
and power for testing unstruc-
tured network differences with
a varying number of time-
courses M = 90, 180, and 540
for the true network (precision
matrix) connection density at
T = 0.20; color coded by statis-
tical tests (blue: SPU, green:
NBS, red: global network
measures). Color images avail-
able online at www.liebertpub
.com/brain
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Number of time points. Figure 6 illustrates the effects of
the number of time points M on statistical power. The true
connection density was fixed at T = 0.20, and we generated
different numbers of BOLD signals for each subject at
M = 90, 180, or 540; we estimated Si and Yi through
10-fold CV. In Figure 6, type I error rates were close to
the nominal level of 0.05. As the number of time points
(M) increased, as expected, the power went up with the use
of both correlations and partial correlations in SPU and
NBS, but not necessarily so in testing with summary network
measures. Again, it is observed that using correlations
seemed to yield higher power than using partial correlations

across most tests. In addition, the power with partial correla-
tions largely depended on the test being applied: Even with a
large number of observations M = 540, NBS gave low power
no more than 0.2, which was much lower than those of
SPU(2) and aSPU tests.

Set-up 2: structured differences in brain networks

Structured differences in sparse precision matrices. Fig-
ure 7 depicts empirical type I error rates and power for test-
ing structured network differences in sparse true precision
matrices. The patterns of the relative power between using

FIG. 7. Type I error and power
for testing structured network
differences with sparse true pre-
cision matrices; color coded by
statistical tests (blue: SPU, green:
NBS, red: global network meas-
ures). Color images available
online at www.liebertpub.com/
brain
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correlations and partial correlations, and across estimated
connection density levels, were similar to those observed
in Figure 2 with unstructured network differences. In sum-
mary, using correlations consistently yielded higher power
than using partial correlations; high regularization on esti-
mating precision matrices often improved power; with the
use of partial correlations, the SPU(2) and aSPU tests seemed
to be more powerful than NBS, while testing with the sum-
mary network measures was low powered.

Structured differences in sparse covariance matrices. So
far, we have almost exclusively considered cases with the

true precision matrices with varying sparsity levels. The as-
sumption of sparse precision matrices seems to be reasonable
given that a precision matrix can distinguish direct and indi-
rect connections in a network. Nevertheless, since little is
known about the true architecture of human brain functional
connectivity, we also explored a case with sparse true covari-
ance matrices, not sparse precision matrices. Figure 8 pres-
ents the type I error and power for testing structured
network differences present in sparse true group-level co-
variance matrices. Compared with Figure 7, the pattern of
the relative power between using correlations and using par-
tial correlations is reversed: Using partial correlations gave

FIG. 8. Type I error and
power for testing structured
network differences with sparse
true covariance matrices; color
coded by statistical tests (blue:
SPU, green: NBS, red: global
network measures). Color
images available online at
www.liebertpub.com/brain
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much higher power across almost all the tests at any esti-
mated connection density level. Since the true covariance
matrices were sparse, high regularization on covariance esti-
mation yielded higher powered testing with correlations; on
the other hand, the sparse true covariance matrices induced
nonsparse precision matrices, implying that suitable regula-
rization, not necessarily high regularization, on precision
matrix estimation led to more powerful testing with partial
correlations

An explanation. Figure 9a, b give the distributions of the
network edge-wise mean differences between the two groups
in terms of correlations or partial correlations; the univariate
edge-wise t-statistics showed similar distributions (not
shown). It is clear that, if the true precision matrices were
sparse, there were much larger differences between the two
groups in terms of edge-wise correlations than those in
terms of partial correlations (Fig. 9a), suggesting higher
power with the use of correlations. On the other hand, if
the true covariance matrices were sparse, then an opposite
conclusion can be drawn (Fig. 9b).

Discussion

Our numerical studies have revealed a number of interest-
ing observations. First of all, if the true precision matrices are

sparse across the groups, then using correlations often gives
higher power and more stable results in testing group differ-
ences. On the other hand, if the true covariance matrices are
sparse, then using partial correlations often yields more pow-
erful tests. Since often it seems plausible to assume sparse
precision matrices, we would recommend the use of mar-
ginal correlations; if this assumption is questionable as in
practice, then to be safe one might want to try both marginal
correlations and partial correlations. Second, optimal estima-
tion of networks does not necessarily lead to high power
for testing group differences in brain connectivity. As we
observed, CV was successful in optimally estimating net-
works, giving a network estimate with a nearly minimal
error, but did not necessarily yield high power for testing
group differences in networks. Third, topological network
structures, as group differences, do not seem to change our
main conclusions.

For estimation of functional connectivity, partial correla-
tion is known to be attractive in that it can distinguish direct
connections from indirect ones. In addition, in the high-di-
mensional setting, estimating a sparse precision matrix
(and using partial correlations) naturally identifies pairs of
nodes that are unconnected in the graphical model. These
features can provide a useful tool for visualizing the relation-
ships among brain ROIs and for generating biological hy-
potheses. In our study, along with these attractive features,
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FIG. 9. Distributions of
edge-wise mean differences in
z-transformed correlations or
partial correlations. (a) Mean
differences with sparse preci-
sion matrices: high power
when using correlations. (b)
Mean differences with sparse
covariance matrices: high
power when using partial
correlations.
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using partial correlations could maintain high power when
high regularization was applied and an appropriate statistical
test such as aSPU or NBS was chosen. In practice, however,
it is not guaranteed to be able to choose an appropriate spar-
sity level in estimating the precision matrices to yield high
power for any given data. In particular, our simulation results
suggested that the conventional CV technique did not per-
form well in terms of statistical power, though it could esti-
mate the networks accurately. Rather than choosing one
single best regularization parameter value (or equivalently,
sparsity level) for each estimated covariance or precision
matrix, it would be interesting to develop an adaptive test
that combines the testing results from using multiple values
of the regularization parameter in estimating the covariance
and precision matrices for testing group differences in brain
functional connectivity. Furthermore, we have not discussed
the use of other association measures (Varoquaux and Crad-
dock, 2013); in particular, we have not considered the situa-
tion with dynamic functional (or directional) networks
(Zhang et al., 2014), for which some new estimators of asso-
ciations have just been proposed (Lindquist et al., 2014).
These are interesting topics to be studied.
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