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Abstract

Communication between brain regions is still insufficiently understood. Applying concepts from network science
has shown to be successful in gaining insight in the functioning of the brain. Recent work has implicated that
especially shortest paths in the structural brain network seem to play a major role in the communication within
the brain. So far, for the functional brain network, only the average length of the shortest paths has been analyzed.
In this article, we propose to construct the union of shortest path trees (USPT) as a new topology for the func-
tional brain network. The minimum spanning tree, which has been successful in a lot of recent studies to com-
prise important features of the functional brain network, is always included in the USPT. After interpreting the
link weights of the functional brain network as communication probabilities, the USPT of this network can be
uniquely defined. Using data from magnetoencephalography, we applied the USPT as a method to find differ-
ences in the network topology of multiple sclerosis patients and healthy controls. The new concept of the
USPT of the functional brain network also allows interesting interpretations and may represent the highways
of the brain.
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Introduction

Analyzing the brain as a complex network has be-
come an often used approach in modern neuroscience

and has led to new insights concerning brain disorders (Bull-
more and Sporns, 2009, 2012). Recently, the shortest paths
between brain regions were found to be crucial to understand
functional networks in terms of structural networks (Goñi
et al., 2014) and pathological network alterations in brain
diseases. Structural or functional brain networks in patients
with neuropsychiatric diseases are often characterized by a
reduced global efficiency, which is proportional to the in-
verse of the shortest paths. However, the shortest paths of
the functional brain network have merely been analyzed
with regard to their average length. Using all shortest paths
as an alternative topology for the functional brain network
is a new approach.

Several sampling methods on functional brain networks
set a threshold or fix the link density to thin the complete
weighted graph. However, these methods have disadvan-
tages: the choice of the a priori chosen threshold or link den-
sity is often arbitrary and, in addition, different link densities
can lead to different results (van Wijk et al., 2010). Con-
structing the minimum spanning tree (MST) of the func-

tional brain network has provided insight in the differences
between patients suffering from brain disorders and healthy
controls in a lot of recent studies (Dubbelink et al., 2014;
Stam et al., 2014; Tewarie et al., 2014; van Dellen et al.,
2014; Wang et al., 2010). An advantage of the MST lies in
its independence of the transformation of the weights as long
as their ranking is unaltered. There exists only one unique
path from a node to another node in the MST, which limits
more advanced analysis.

Analyzing shortest paths is a common practice after reduc-
ing the complete graph of the functional brain network with
any of the existing sampling methods. Bullmore and Sporns
(2012) suggested that the brain is always trying to reduce
material and metabolic costs when transporting information.
Thus, the concept of shortest paths fits into the current under-
standing of the brain function. Extracting all shortest paths of
the original complete graph can be interpreted as focusing
on the backbone or the main functional highways of the
brain network. We intend to represent the most important
connections of the functional brain network based on global
network properties and not only on the ranking of the link
weights among each other.

In the present study, we propose the union of shortest path
trees (USPT) as a new sampling method for the functional
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brain network. This sampling method has been successfully
applied before on a variety of complex networks (Van Mie-
ghem and Wang, 2009). To construct the USPT, we first
identify the shortest path tree rooted at each node in the net-
work. The shortest path tree rooted at a node consists of all
shortest paths from this node to all the other nodes (Van Mie-
ghem and Magdalena, 2005). The union of all shortest paths
from a single node to the rest of the network always results in
a tree (Van Mieghem, 2011b). Furthermore, we can unite
these shortest path trees to obtain the USPT GWSPT

of our net-
work G (Van Mieghem and Wang, 2009). The USPT is de-
termined by the topology of the underlying network and its
link weight structure (the set of weights on the links in G)
(Van Mieghem and Wang, 2009). Furthermore, if all link
weights equal 1, the USPT is the same as the underlying net-
work because all information then flows over the direct path-
ways between the nodes.

The properties of the USPT have been analyzed in various
studies (Van Mieghem and Magdalena, 2005; Van Mieghem
and Wang, 2009). The USPT, not the underlying network,
determines the network’s performance (Van Mieghem and
Wang, 2009). Another important property of the USPT is
that it always includes the MST (Van Mieghem and Wang,
2009) (Fig. 1). The regime, where the USPT coincides
with the MST is called the strong disorder regime, the coun-
terpart is the weak disorder regime (Van Mieghem and Mag-
dalena, 2005; Van Mieghem and van Langen, 2005). In the
strong disorder regime, all traffic in the network follows
only links in the MST, while in the weak disorder regime,
a transport may follow other paths. Analogous to the flow
of electrical current, we may regard the strong disorder re-
gime as the superconductive phase, whereas the weak disor-
der corresponds to the resistive phase, where electrons follow
many paths between two different voltage points.

In many real-world networks, the information is assumed
to flow over the shortest path to optimize transportation costs.
The derivation of GWSPT

can be regarded as a filter for the
weights that are not important for the overall transportation
flow in the brain. By reducing the network to the union of
its shortest paths, only those paths are maintained that have
a high probability that information is transported along
them. The topology of GWSPT

represents the highways of
the brain. The goal of this article is to evaluate and apply
this USPT sampling method to the functional brain network
and to find first differences between patients and healthy
controls.

In the following, we will interpret the link weights of the
functional brain network as communication probabilities
and, based on this interpretation, we will construct and ana-
lyze the USPT. We will examine the results of this new
USPT sampling method by using empirical data from healthy
controls and multiple sclerosis (MS) patients and demon-
strate that the USPT is sensitive to disease alterations and
that our USPT method can be used to discriminate between
healthy and pathological conditions.

Materials and Methods

Data acquisition

In this section, we explain the reconstruction of functional
brain networks from our magnetoencephalography (MEG)
measurements. Our data set consisted of 68 healthy controls

and 111 MS patients, which is a larger but overlapping group
as in Tewarie and associates (2014, 2015). Details with regard
to data acquisition and postprocessing can be found in our pre-
vious article (Tewarie et al., 2014). In short, MEG data were
recorded using a 306-channel whole-head MEG system (Elek-
taNeuromag, Oy, Helsinki, Finland). Fluctuations in magnetic
field strength were recorded during a no-task eyes-closed con-
dition for 5 consecutive minutes. A beamformer approach was
adopted to project MEG data from sensor space to source
space (Hillebrand et al., 2012). This beamformer approach
can be regarded as a spatial filter that computes the activity
within brain regions based on the weighted sum of the activity
recorded at the MEG channels. We then used the automated
anatomical labeling atlas to obtain time series for 78 cortical
regions of interest (ROIs) (Gong et al., 2009; Tzourio-
Mazoyer et al., 2002). For each subject, we chose five arti-
fact-free epochs of source space time series (Dubbelink
et al., 2014; Tewarie et al., 2014; van Dellen et al., 2014).
Six frequency bands were analyzed: delta (0.5–4 Hz), theta
(4–8 Hz), lower alpha (8–10 Hz), upper alpha (10–13 Hz),
beta (13–30 Hz), and lower gamma bands (30–48 Hz).

Subsequently, for each epoch and frequency band sepa-
rately, we computed the phase lag index (PLI) between all

FIG. 1. Visualization of a complete network with its corre-
sponding USPT and MST. MST, minimum spanning tree;
USPT, union of shortest path trees. Color images available
online at www.liebertpub.com/brain
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time series of the 78 ROIs to obtain the link weights for our
functional brain networks (Stam and Van Straaten, 2012;
Stam et al., 2007). The PLI can take values between 0 and
1 and is a measure that captures phase synchronization by
calculating the asymmetry of the distribution of instanta-
neous phase differences between time series. Formally, the
PLI is defined as

PLI = jÆsign[sin (D/(tk))]æj (1)

where DF(tk), for k = 1, ., m; m 2 N, is the time series of
phase differences evaluated for time steps t1, ., tm, Æ:æ denotes
the average, and j:j the absolute value. High values of the PLI
refer to a strong interaction or synchronization between two
time series while avoiding bias due to volume conduction.

As a next step, for each epoch, we constructed an N x N
weight matrix W with elements wij, each representing the
PLI of the pair of regions, i and j. This symmetric weight ma-
trix W can be interpreted as a complete weighted graph on N
nodes (N = 78). Last, we averaged over all five weight matri-
ces belonging to each epoch to obtain one weight matrix per
person and to ensure independent samples for statistical test-
ing. All further mentioned weight matrices in this article
refer to matrices with PLI values as entries.

Link weights in functional brain networks
as communication probabilities

A network can be represented by a graph G consisting of N
nodes and L links. Each link l = i/j from node i to j in G can
be specified by a link weight wl = wij = w(i/j). Assume a path
from a node A to node B in our network G. We denote this path
by PA/B = n1n2...nk�1nk with hopcount (sometimes also called
the length) k 2 N, where n1 = A, nk = B, and n2,., nk�1 repre-
sent the distinct nodes along the path (Van Mieghem, 2014).
The weight of a path PA/B is usually defined as

w(PA/B) = +
l2PA/B

wl: (2)

The shortest path P*A/B between A and B equals that path
that minimizes the weight w(PA/B) over all possible paths
from A to B, hence w(P*A/B) £ w(PA/B). The efficient
Dijkstra algorithm to compute the shortest path requires
that link weights are non-negative (Van Mieghem, 2011a).
If the link weights are real positive numbers, in most
cases—though not always—the shortest path P*A/B is
unique. Other definitions of the weight of a path are possible
(Van Mieghem, 2011a, Chapter 12), such as w(PA/B) =Q

l2PA/B
wl or w(PA/B) = minl2PA/B

wl. In this study, we
will deduce a new definition of the weight of a path, partic-
ularly geared to functional brain networks.

The PLI, defined in Equation (1), is an approximation of
the probability of phase synchronization between time series.
Therefore, we can interpret the PLI as the communication
probability between two nodes in the functional brain net-
work. The PLI also implies symmetry in the communication
direction so that wij = wji and we further confine ourselves to
undirected links. With this interpretation, the link weight
wij = w(i4j) between nodes, i and j, represents the probabil-
ity that the end nodes, i and j, are communicating or that in-
formation is transmitted over this functional link. The PLI
assigns a high link weight to strongly communicating
nodes. Likewise, low values of the PLI represent low prob-

abilities that the end nodes are communicating. The weight
of a path between brain regions, A and B, can then be inter-
preted as

w(PA/B) = Pr[information is transported

along the path PA/B]

= Pr[every link in PA/B transports

the information]

= Pr[
\

l2PA/B

link l transports information]:

To proceed, we assume independence between different
link weights so that

Pr[
\

l2PA/B

link l transports information]

=
Y

l2PA/B

Pr[link l transports information]:

Introducing our interpretation of the link weights in the
functional brain network as communication probabilities,

wl = wij = Pr[link i4j transports the information],

we find the weight of the path between A and B

w(PA/B) =
Y

1pipk� 1
wniniþ 1

: (3)

The assumption of independence between the link weights
is debatable. Identifying the dependency structure, thus the
correlations between the different links in the functional
brain network, is a complex task. In this study, we approxi-
mate all link weights as being independent of each other and
we thus ignore correlations.

Between any pair of nodes, A and B, in our network, we
identify the path with the highest probability of successful
communication between these two nodes, which is the path
that maximizes w(PA/B) in Equation (3). The path between
nodes, A and B, which maximizes w(PA/B), is defined as the
shortest path P*A/B between two nodes. Since 0 £ wij £ 1 by
the definition [Eq. (1)] of the PLI, we rewrite Equation (3) as

w(PA/B) = exp +
1pipk� 1

ln wniniþ 1

� �

= exp �+
1pipk� 1

jln wniniþ 1
j

� � (4)

and observe that maximizing w(PA/B) is equal to minimizing
the sum of the transformed link weights �+

1pipk� 1
ln wniniþ 1

.
Consequently, Dijkstra’s shortest path algorithm can be used
after transforming the weights vij =�ln(wij) for all 1 £ i, j £ N.
This transformation approach is often used in computer
networks [see, e.g., p. 313 in Van Mieghem (2011a)].

As mentioned earlier, there are different link weight transfor-
mations apart from the interpretation of the link weights as
communication probabilities. A basic transform is a polynomial
link weight transformation vij = (wij)

a, for example, in Van Mie-
ghem and Magdalena (2005) and Braunstein and associates
(2007). Interestingly, we can rephrase our probabilistic ap-
proach in terms of the polynomial link weight transformation as

vij =� ln wij =
d

da
(exp (� a ln wij))ja = 0 =

d

da
(w� a

ij )ja = 0,

ð5Þ
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where a can be regarded as an extreme value index of the link
weight distribution (Van Mieghem, 2014, Chapter 16). When
a <ac, the USPT operates in the strong disorder regime and
all information flows over the MST, whereas for a >ac, infor-
mation traverses more links in the USPT. The critical value
ac can be associated with a phase transition in the graph’s
link weight structure, for which we refer to Van Mieghem
and Magdalena (2005), Van Mieghem and van Langen
(2005), and Van Mieghem and Wang (2009).

Results

After constructing the USPT of the functional brain net-
work under the link weight transformation vij =� ln(wij),
we can analyze the resulting link densities of the different
USPTs. The mean and the standard deviation of the number

of links in the USPT are plotted for the different frequency
bands in Figure 2. We can infer from Figure 2 that on average
the number of links needed for the USPT does not differ
much over all frequency bands, except that the alpha1 and
alpha2 band seem to have a lower mean link density of
their USPT than all the other frequency bands. Overall, the
mean link density of the USPT varies between 98.27% and
99.98%, which is too dense to obtain a meaningful visualiza-
tion of the resulting network.

Furthermore, we tested the differences in mean link den-
sity between MS patients and controls with a two-sample
t-test. We found that MS patients have on average a signifi-
cantly lower link density than healthy controls in the theta
and delta frequency band under the 5% significance level
(Table 1).

Discussion

Unlike the MST method where the number of links
L = N�1, we found that the USPT of the functional brain net-
work has a specific link density so that the number of links
L in the USPT is different for different brain networks.
The difference in the number of links influences graph met-
rics, but the number of links itself informs us about the
spread of transport in the brain. The links in the USPT are
those links over which the information is flowing. Thus,
the link density in our method is not fixed arbitrarily, but
emerges as a property of the underlying transport or commu-
nication structure. Hence, the differences in link densities
contain meaningful information about the brain network to-
pology and performance. A nearly complete graph, as the
USPT here with relatively low standard deviation, shows
that this path weight interpretation belongs to the weak dis-
order regime (Van Mieghem and Magdalena, 2005; Van
Mieghem and van Langen, 2005). Thus, the information in

FIG. 2. Plot of the mean
value of the link density in
the USPT and an error bar of
length twice the standard de-
viation for healthy controls
and MS patients over differ-
ent frequency bands under
the link weight transforma-
tion vij =�ln(wij). MS, mul-
tiple sclerosis. Color images
available online at www
.liebertpub.com/brain

Table 1. p-Values for the Two-Sample t-Test

for Differences in Mean Link Density

of the USPT [Under the Link Weight

Transformation vij =�ln(wij)] Between

MS Patients and Healthy Controls

for All Frequency Bands

Frequency band p-Value

Delta 0.0245a

Theta < 0.001a

Alpha1 0.3297
Alpha2 0.0902
Beta 0.0588
Gamma 0.2907

aUnder the 5% significance level.
MS, multiple sclerosis; USPT, union of shortest path trees.
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the functional brain network seems to flow over more links
than just the MST topology. Moreover, the high link density
shows that the communication flow in the functional brain
network is probably spread across nearly all possible connec-
tions. A high link density in the USPT means that in most
cases the direct communication between two brain regions
is preferred. Thus, the length (or hopcount) of the shortest
path is overall short, which confirms the assumption that
the functional brain network operates as a small world (Bull-
more and Sporns, 2009).

In the probabilistic approach to generate the USPT, no
a priori parameter or link weight threshold needs to be
fixed arbitrarily. Besides the interpretation of the shortest
path as a communication channel, the only assumption in
this approach is that all links (and link weights) are indepen-
dent. Disadvantages of the USPT sampling method lie in the
dependence on the chosen link weight transformation. How-
ever, our link weight transformation arises as a consequence
of the interpretation of the link weights, measured by the
PLI, as communication probabilities and is therefore not ar-
bitrarily chosen.

The observation that the link density in the USPT for pa-
tients is nearly always lower on average than the link density
for healthy controls shows that MS patients seem to have less
links for brain communication. Therefore, the average path
length becomes longer and thus the communication within
the functional brain network less effective.

On nearly the same data set, a more classic network analysis
has been performed in Tewarie and associates (2014). One of
the findings in Tewarie and associates (2014) was that for MS
patients, there has been a higher mean PLI value in the delta
and theta frequency band and a lower mean PLI value in the
alpha2 frequency band. The higher mean PLI value in the
delta and theta band seems to align with our results of a
lower link density for the USPT for patients. The correlation
between the overall mean of the link weight distribution and
the USPT is not yet clear and needs to be investigated in future
research (see Appendix, Figs. 3 and 4). Additionally, for the
theta band, the other study (Tewarie et al., 2014) found pa-
tients to have a significantly higher (normalized) path length
in their functional brain network, which implies a more regu-
lar topology for patient networks. Since a larger normalized

FIG. 3. Histogram of all
the link weights (after aver-
aging over five epochs) from
all PLI matrices of the delta
frequency band of all 68
healthy controls. PLI, phase
lag index. Color images
available online at www
.liebertpub.com/brain

FIG. 4. Histogram of all
the link weights (after aver-
aging over five epochs) from
all PLI matrices of the alpha1
frequency band of all 68
healthy controls. Color
images available online at
www.liebertpub.com/brain
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path length also indicates a larger path length in the USPT
and, equivalently, a lower link density in the USPT, this find-
ing agrees with our current study in the theta band.

To sum up, we found that our USPT method picks up most
of the differences found in a previous study between MS pa-
tients and controls. Overall, this previous study (Tewarie
et al., 2014) found significant differences for the functional
brain network between MS patients and controls in three fre-
quency bands, delta, theta, and alpha2, with the help of con-
ventional network analysis and testing the overall mean PLI
values against each other. The performed MST analysis on
the same data set seemed to only find the differences in the
alpha2 band (Tewarie et al., 2014) and provides meaningful
interpretation for those differences concerning the overall in-
tegration of communication that seems to be disrupted in MS
patients. Our USPT method enlarges the analysis and incorpo-
rates the differences in the remaining frequency bands, the
delta and theta bands. For these frequency bands, the USPT
method can enhance our insight concerning the overall com-
munication in the functional brain networks of MS patients.
In another study, Goñi and associates (2014) applied the
same link weight transformation, vij =�ln(wij) to the structural
brain network without giving further rationale for this specific
transform. Furthermore, Goñi and associates (2014) also con-
firmed that the shortest path weights calculated under the link
weight transformation vij =�ln(wij) play a major role in brain
network communication. Our article provided a detailed argu-
ment on why the vij =�ln(wij) transform is a reasonable choice
for the link weights of the functional brain network and
showed that the topology of the resulting shortest paths can
be used to differentiate between patients and healthy controls.

Conclusion

We found statistically significant differences between MS
patients and controls while analyzing the link density of their
USPT under the link weight transformation vij =�ln(wij) de-
rived from the interpretation of the link weights as indepen-
dent communication probabilities. Those differences were
found in the same frequency bands as in a previous study
on a similar data set (Tewarie et al., 2014). As a conclusion
of our findings, we propose the USPT under the link weight
transformation vij =�ln(wij) as a new sampling method for
extracting differences between the functional brain networks
of patients and healthy controls. The interpretation of the link
weights as communication probabilities leads to a USPT of
the functional brain network that includes all important
links of the global brain communication.
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Appendix:
A Link Weight Distribution

of the Functional Brain Network

In this section, we analyze the link weight distribution of the
functional brain network since the union of shortest path trees
does depend directly on the underlying link weight distribution
(Van Mieghem and Magdalena, 2005). If we analyze the histo-

gram of the link weights per frequency band, Figures 3 and 4
illustrate that (after averaging over five epochs) the accumu-
lated link weight histogram for the delta frequency band and
alpha1 frequency band seems to follow a Gamma distribution.

UNION OF SHORTEST PATH TREES OF FUNCTIONAL BRAIN NETWORKS 581

http://online.liebertpub.com/action/showLinks?crossref=10.1103%2FPhysRevE.72.056138
http://online.liebertpub.com/action/showLinks?crossref=10.1103%2FPhysRevE.72.056138
http://online.liebertpub.com/action/showLinks?pmid=21060892&crossref=10.1371%2Fjournal.pone.0013701
http://online.liebertpub.com/action/showLinks?crossref=10.1103%2FPhysRevE.71.056113
http://online.liebertpub.com/action/showLinks?crossref=10.1103%2FPhysRevE.71.056113
http://online.liebertpub.com/action/showLinks?crossref=10.1103%2FPhysRevE.82.021924
http://online.liebertpub.com/action/showLinks?crossref=10.1103%2FPhysRevE.82.021924
http://online.liebertpub.com/action/showLinks?crossref=10.1109%2FTNET.2008.925089

