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Abstract

Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state func-
tional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in
blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual
areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically
organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent ret-
inotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions
of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was com-
puted based on Pearson’s linear correlation (correlation), and Pearson’s linear partial correlation (correlation be-
tween two time courses after the time courses from all other regions in the network are regressed out). Within a
quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical sig-
nificance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity
separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation
values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent
areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from
two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher
correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial cor-
relation between common and adjacent eccentricity regions within a visual area showed statistical significance;
this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased
approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a
more complex dependence on cortical distance: it decreased exponentially with increasing distance within a
quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and be-
tween lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across
lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely
involve network effects caused by the dense anatomical connectivity within this network and projections from
higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations
based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial
correlation-based retinotopically organized RSFC reflects more than cortical distance effects.
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4Departments of Physiology and Biomedical Engineering, McGill University, Montréal, Canada.

BRAIN CONNECTIVITY
Volume 6, Number 1, 2016
ª Mary Ann Liebert, Inc.
DOI: 10.1089/brain.2014.0331

57



Introduction

S ince Hubel and Wiesel’s seminal work (1962), the
functional architecture of the visual cortex has been

one of the most rigorously studied themes in the field of neu-
roscience. This theme covers a wide range of subjects, in-
cluding the functional properties of visual brain areas such
as retinotopic organization and functional specificity. The
majority of fine-scaled findings about the functional architec-
ture of the cortex have been achieved using traditional inva-
sive techniques such as electrophysiological recordings (e.g.,
Hubel and Wiesel, 1962) and optical imaging (e.g., Bon-
hoeffer and Grinvald, 1991; Shmuel and Grinvald, 2000).
Another subject of interest is the thalamocortical and cortico-
cortical connections. Traditionally, this subject has been
studied by anatomical tract tracing (e.g., Felleman and Van
Essen, 1991). More recently, functional connectivity (FC)
analysis based on functional magnetic resonance imaging
(fMRI) allows studying the connectivity of the visual cortex
noninvasively, thus it is readily usable on human subjects.

FC refers to the temporal correlation between spatially
remote neurophysiological events (Friston et al., 1993). FC
analyses can be pursued during subject stimulation, task per-
formance, or rest. It can be applied to data obtained with
any modality of measurement over time, such as positron
emission tomography, blood oxygenation level-dependent
(BOLD) fMRI, electroencephalography, and magnetoence-
phalography. FC analyses based on BOLD signal are par-
ticularly promising because they can offer high spatial
resolution and high spatial specificity relative to where the
corresponding changes in neurophysiological signals take
place compared with all other noninvasive imaging modal-
ities (Shmuel et al., 2007). In general, FCs based on spon-
taneous signal fluctuations introduces no confounds to
consider due to coactivation of areas in response to a partic-
ular stimulus. In addition, this approach offers convenience
in paradigm. Another advantage of this method is that it
can elucidate brain connectivity at a large-scale system level,
for example, revealing coherent systems of executive control,
language or pain (Smith et al., 2009). This allows identifying
the locations of the systems within the brain in order to pursue
analyses within a system or between systems. This is comple-
mentary to FC analyses at the meso scale, that is, at the scale
of local circuits measured by neurophysiology. Resting-state
FC analyses can potentially further understanding of neuroana-
tomical models (Fox and Raichle, 2007; Wang et al., 2013).

To date, only a few studies have applied fMRI-based
resting-state FC (RSFC) analysis at a spatial scale finer
than that of a cortical area in the visual cortex. Vincent
and colleagues (2007) demonstrated preliminary results on
retinotopically organized RSFC between areas V1 and MT
of the anesthetized monkey. Heinzle and colleagues (2011)
and Arcaro and colleagues (2015) have demonstrated that
the FC between spontaneous fMRI fluctuations recorded in
two visual areas depends on their retinotopic coordinates.
Raemaekers and colleagues (2014) and Arcaro and col-
leagues (2015) have recently considered FC within human
visual areas V1, V2, and V3, and indicated that the small-
scale connectivity information was superimposed on the
FC of larger scale networks reflected in the same data.

One criticism of resting-state FC analysis using BOLD
fMRI data is that the connectivity observed is largely a re-

flection of distance effects between regions. There have
been several studies that focused on large-scale networks
and have demonstrated a tendency of FC to be greatest
with close proximity of the regions involved (e.g., Katsuki
et al., 2014; Liang et al., 2013; Liao et al., 2013). This phe-
nomenon is usually attributed to the abundant presence of an-
atomical connections at a local scale, as postulated by the
small-world theory of connectivity in the brain (Kaiser and
Hilgetag, 2004). This theory of connectivity has been widely
supported with evidence, such as in the macaque brain
(Sepulcre et al., 2010). However, in these large-scale net-
works, long-range highly functionally connected regions
have been identified, indicating that FC analyses can indeed
capture information that is more meaningful than a reflection
of distance (Liao et al., 2013). We strive to elucidate that
within smaller local networks that are densely connected
through anatomical connections such as the visual cortex,
there is also meaningful information contained in the FC net-
works beyond distance.

Using BOLD fMRI resting-state FC, we assess the func-
tional connections within and between visual areas of the
human occipital cortex, putting an emphasis on how FC de-
pends on retinotopic eccentricity and cortical distance. We
evaluate FC using two measures: correlation (Corr) and par-
tial correlation (Pcorr). We have chosen to pursue analyses
through these two measures due to their simplicity, the fact
that they are widely used in FC analyses, and given that
they have been shown to be relatively successful in this
type of analysis compared with other common models (Daw-
son et al., 2013; Smith et al., 2011). Corr is indeed very
widely used. However, in small local networks, we expect
the observed correlations to be high for nearly all connec-
tions due to contribution to synchronization from nodes
that are not directly connected. Because of this, we include
Pcorr, which is potentially better equipped to deal with
local networks given that time courses from all regions of in-
terest (ROIs) in the network are regressed out before assess-
ing the Corr between two regions.

We hypothesize that (1) RSFC within and between lower
visual areas is retinotopically organized; (2) the relatively
dense anatomical connectivity and projections from higher
visual areas cause network effects that increase Corr-based
FC across lower visual areas, even between regions that do
not share a direct anatomical connection; (3) FC measured
by Pcorr (that reduces network effects) roughly follows ex-
pectations based on the direct anatomical connectivity in
the monkey visual cortex; and 4) if network effects are min-
imized, retinotopically organized RSFC reflects more than
cortical distance effects.

To test our hypotheses, we look separately at the connectiv-
ity within the dorsal and ventral quadrants of the visual cortex
in a hemisphere, and between these quadrants, due to the
largely symmetric nature of their visual field representation.
This separation of within quadrant versus between quadrants
also presents a logical separation of generally closer range
connections along the cortex (within a quadrant) and longer
range connections (between quadrants). In addition, the sym-
metrical arrangement of the visual areas between quadrants
creates a distribution of distances within an area that are
short (e.g., V1), long (e.g., V3), or intermediate (e.g., V2).
We expect higher FC measures within a visual area, even
when computing FC between quadrants. For example, we
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expect relatively high FC measures between regions repre-
senting similar eccentricities in V2 and residing in the dorsal
and ventral quadrants, respectively, or similarly, regions rep-
resenting similar eccentricities in V3 and residing in these dif-
ferent quadrants. This creates a scenario in which distant
regions residing in different quadrants show relatively high
FC compared with ROI pairs that are closer (such as a pair
of ROIs, respectively, in V1 and V2, one residing in the dorsal
quadrant and the other in the ventral quadrant, and represent-
ing distant eccentricities). This arrangement of visual areas
allowed us to test our fourth hypothesis, namely that within
the network of retinotopic visual areas, FC measures do no
solely reflect distance.

Materials and Methods

Six normally sighted subjects participated in this study
after giving written consent in accordance with the Code of
Ethics of the World Medical Association (Declaration of
Helsinki). Each subject was scanned in two sessions: one
to obtain high-resolution anatomical images and fMRI for
retinotopy and the other to obtain high-resolution anatomical
images and fMRI in the resting state.

Resting-state fMRI

Data were acquired on a 3T Magnetom TIM Trio scanner
(Siemens, Erlangen, Germany). A phased-array head coil
was used, with 32 channels employed for resting-state scans.
Echo-planar imaging was used to measure BOLD changes in
image intensity. Resting-state fMRI was obtained in 8 runs
of 8.5 min (68 min of data in total) from each of the subjects.
Note the very long data acquisition for each subject compared
with more common resting-state run lengths. This long dura-
tion ensures a high signal-to-noise ratio and convergence of
RSFC (Birn et al., 2013; Dawson et al., 2013). To check for
sleep, we communicated with the subjects at the end of each
scan and they were all immediately responsive. Each run con-
sisted of 256 contiguous echo planar imaging (EPI) whole-
brain functional volumes (repetition time [TR] = 2000 msec;
echo time [TE] = 30 msec; flip angle = 90�; 30 slices; matrix =
112 · 112; field of view [FOV] = 224 mm; acquisition voxel
size = 2 · 2 · 2.2 mm).

Resting-state runs were preprocessed using FSL’s FEAT
software package ( Jenkinson et al., 2012). This deletes the
first three volumes, performs motion correction, high-pass
filtering (0.01 Hz), slice-time correction, and registration to
the T1-weighted (MPRAGE) anatomical volume from the
retinotopy session (see section on Retinotopic mapping and
ROIs for FC analyses). In terms of denoising, a cerebrospinal
fluid (CSF) mask and white matter (WM) mask were created
by segmenting the resting-state anatomical image using
FSL’s FAST software package (Zhang et al., 2001). The
masks were then eroded by one voxel, thresholded (80% tis-
sue type probability), and registered to the preprocessed
functional image. The average time courses of the CSF and
WM masks were obtained and the two time courses were
regressed out of the functional image time series.

Retinotopic mapping and ROIs for FC analyses

This study applied new analyses to data from one of our
recently published articles (Dawson et al., 2013). Detailed

descriptions of methods pertaining to the retinotopy data ac-
quisition and preprocessing can be found therein.

Retinotopic mapping was pursued with axial-oblique sli-
ces (TR = 2000 msec; TE = 30 msec; flip angle = 90�; 28 sli-
ces; matrix = 128 · 128; FOV = 263 mm; acquisition voxel
size = 2.05 · 2.05 · 3 mm). Retinotopy runs were motion cor-
rected and slice-time corrected using Freesurfer (http://
surfer.nmr.mgh.harvard.edu/).

Figure 1 presents the methodology related to the defini-
tion of ROIs and the network under investigation. We eval-
uated a local visual network defined within a hemisphere,
which is subdivided into ventral and dorsal sections. Data
were obtained from the two hemispheres of each subject,
thus from four quadrants of the visual cortex (cortical re-
gions, which respond to stimuli in the four quadrants of
the visual field). To achieve this, we measured the subject-
specific retinotopic response evoked by rotating wedge
and expanding/contracting ring stimuli. Phase-encoding
analysis was pursued to define visual areas V1, V2, and
V3. The area-specific ROIs were defined with a gap between
visual areas V1, V2, and V3, by means of selecting voxels
with the polar angle within –35� of the oblique meridian
in each quadrant of the visual field. This left a 20� gap in
polar angle between the midpoint polar angle of each in-
cluded voxel and that of the closest possible voxel in another
visual area across the interareal border. This gap minimized
the possibility of mixing signals with origin in two different
visual areas, which can be detrimental to estimation of FC
(Smith et al., 2011).

The visual areas in each quadrant were further subdivided
into five eccentricity regions of approximately equal size
based on the numbers of their voxels. The eccentricity
boundaries for the quadrant-based ROIs were 0.5� to 1.7�,
1.7� to 4.1�, 4.1� to 7.1�, 7.1� to 10.4�, and 10.4� to 14�.
This definition of ROIs allows us to observe fine spatial spec-
ificity of FC measures within our network.

FC analyses

The resting-state fMRI time series were averaged over all
voxels in each ROI to pursue ROI-based FC. RSFC mea-
sures were obtained for each run by computing the Corr
and Pcorr coefficients between the time courses of each
pair of ROIs. In this case, Corr refers to Pearson’s linear
correlation and Pcorr refers to Pearson’s linear correlation
between time course residuals from two ROIs, which
have the time courses from all other ROIs in the network
regressed out. Since in the current study we were interested
in the FC within the small network of retinotopic visual
areas, we neither regressed out the global average signal
(Carbonell et al., 2011) nor corrected for its impact (Car-
bonell et al., 2014). Analyses were based on a network con-
figuration of 60 ROIs (2 hemispheres · 2 quadrants within a
hemisphere · 3 visual areas · 5 eccentricity-defined ROIs).
Using the FC measures obtained from this network, we an-
alyzed (1) within-quadrant FC, with the results from four
quadrants (dorsal and ventral quadrants from each hemi-
sphere) analyzed separately and their respective results
combined statistically, and (2) between-quadrant within-
hemisphere FC, with the results from the two hemispheres
analyzed separately and their respective results combined
statistically.
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Statistics

FC was quantified within our network of 60 nodes by com-
puting matrices (each with 60 · 60 entries) of Corr and Pcorr
coefficients for each of the eight data sets available from each
subject (resulting in eight coefficients per subject for each ROI

pair). To examine statistical significance, coefficients were
tested against zero and separately against a time-shuffled sur-
rogate distribution (Supplementary Figs. S1–S4; Supplemen-
tary Data are available online at www.liebertpub.com/brain)
and a Fourier surrogate distribution (Supplementary Figs.
S5–S8). Time-shuffled surrogate data were generated by
computing the Corr/Pcorr between ROI time courses shuffled
in time. Shuffling was pursued based on the indices of the
eight scans, while keeping the time course from each scan
unchanged; we computed FC measures for the maximal pos-
sible number of permutations: ([8 · 8] � 8)/2 = 28. Thus, for
each subject, 28 surrogate coefficients were computed for
each ROI pair. To create the Fourier surrogate, we extracted
the amplitude and phase values from the Fourier transform of
the original time series, shuffled the original phases, assigned
these newly shuffled phase values to the amplitudes of the
original Fourier transforms, and then computed the inverse
Fourier transform. The results obtained when comparing FC
measures with zero (Figs. 4–8) and with the surrogate data
(Supplementary Figs. S1–S8) were consistent.

Fisher’s z transform was applied to individual Corr/Pcorr
coefficients (r) before use in statistical tests by calculating as
follows:

z =
1

2
ln

�
1þ r

1� r

�

The Fisher-transformed coefficients were then submitted to a
mixed-effects, repeated-measures General Linear Model
(GLM) obtained from the SurfStat MATLAB toolbox
(www.math.mcgill.ca/keith/surfstat/#mixed). Within a
quadrant, 32 ([8 functional runs of data] · [4 quadrants])
Fisher-transformed Corr and Pcorr coefficients were com-
puted for all pairs of ROIs for each subject and were treated
as separate data acquired for the given subject. For the
within-hemisphere, between-quadrant statistical tests, we
had 16 ([8 functional runs of data] · [2 pairs of quadrants])
sets of Fisher-transformed Corr and Pcorr coefficients for all
pairs of ROIs for each subject.

A t statistic, degrees of freedom, and p-value for the con-
trast of interest, namely the contrast between the Corr/Pcorr
coefficients and zero, were generated by the GLM analysis
for each pair of ROIs. Using an alpha of 0.05, p-values
were assessed for significance after applying the false dis-
covery rate (FDR) correction (Benjamini and Hochberg,
1995). In all FC figures, we present statistical results for
both Corr and Pcorr results. Considering the FDR correction,
the adjusted alpha values for the two tests (within quadrant
and between quadrants) were 10�16 and 10�16 for Corr and
0.0086 and 0.0163 for Pcorr, respectively.

In both the within- and between-quadrant analyses, we sta-
tistically compared Corr/Pcorr values as a function of eccen-
tricity bin difference (Figs. 6 and 8). This analysis was
performed according to the number of eccentricity regions
separating the two ROIs being correlated (see Fig. 2 for a
schematic showing these connections). With five eccentricity
regions, we could have 0 (if the ROIs are in different visual
areas), 1, 2, 3, or 4 eccentricity bin separations between ROIs
(we denote these eccentricity bin separations as 0es, 1es, 2es,
3es, and 4es, respectively, es signifying eccentricity separa-
tion). A 0es indicates that the two ROIs whose connectivity
is being evaluated share the same eccentricity bin, that is,

FIG. 1. Retinotopy and ROI definition. Data presented are
from one subject. Visual areas, V1, V2, and V3, were defined
by examining the reversal of direction of increasing polar
angle phases perpendicular to the isoeccentricity lines. Next,
each hemisphere was divided into dorsal and ventral sections
corresponding to quadrants of visual cortex. (A) We see the
functional response to a stimulus changing in terms of polar
angle, and (B) we see the response to a stimulus changing in
terms of eccentricity. HM, horizontal meridian; LVM, lower
vertical meridian; UVM, upper vertical meridian. (C) Voxels
from each visual area in a quadrant were further classified into
five eccentricity bins: e1 (central), e2, e3, e4, and e5 (peripheral),
with the boundaries 0.5� to 1.7�, 1.7� to 4.1�, 4.1� to 7.1�, 7.1� to
10.4�, and 10.4� to 14�, respectively. ROI, region of interest.
Color images available online at www.liebertpub.com/brain
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they are both e1, both e2, or both e3, etc. A 1es indicates that
the ROIs are adjacent in eccentricity, that is, e1 and e2 or e2
and e3, etc. A 2es indicates that the ROIs are separated by a
gap the width of one eccentricity region, that is, e1 and e3,
e2 and e4, or e3 and e5. A 3es indicates that the ROIs are sep-
arated by a gap the width of two eccentricity regions, that is,
e1 and e4, or e2 and e5. Finally, a 4e separation means a con-
nection between the most central and most peripheral regions,
that is, e1 and e5. Within a visual area, there are zero 0es con-
nections within a quadrant and five 0es connections between
quadrants, four 1es connections, three 2es connections, two
3es connections, and one 4es connection. Between visual
areas, there are five 0es connections, eight 1es connections,
six 2es connections, four 3es connections, and two 4es con-
nections. These analyses were also done using the repeated-
measures GLM, although p-values were not adjusted for mul-
tiple comparisons here as only a few comparisons were made.

Cortical distance calculations

Cortical distance was estimated using Freesurfer’s mris_p-
make function along the smoothened surface of the cortex.
For each subject, central voxels within each ROI were esti-
mated, and then cortical distances between these centroids
were computed. Distances were computed for all ROI com-
binations within the hemisphere, these being within and be-
tween quadrants. Figure 3 presents the cortical distances
averaged across hemispheres and subjects.

The relationship between the Corr/Pcorr coefficients and
the cortical distance between ROIs was examined with
first- and second-order regressions, as well as an exponential
fit. These functions were fit to the mean of the Corr/Pcorr val-
ues and cortical distances across subjects and hemispheres.
The linear, quadratic, and exponential trend lines were com-
puted using Matlab’s fit function. Goodness of fit of the mod-
els was evaluated using a Bayesian Information Criterion
(BIC) measure:

BIC = n � ln(error variance)þ v � ln(n)

where n is the number of data points, v is the degrees of free-
dom of the model, and the error variance is as follows:

error variance = +
n

i = 1

(yi� f (xi))
2

where yi is the mean Corr/Pcorr for a given cortical distance,
xi, and f(xi) is the model prediction at that cortical distance.

This definition of the BIC assumes that the model errors are
independent and normally distributed and that the derivative of
the log likelihood with respect to the true variance is zero.
When comparing several models, the model with the lowest
BIC is expected to best represent the data (Priestley, 1981).

To quantify the confidence one can have in the model se-
lected based on the BIC values, we computed the Bayes fac-
tor (Sotero et al., 2009):

BayesFactori = e� 0:5(BICi �BIC0)

where the subscript i represents the different models and the sub-
script 0 represents the reference model, here selected as the
model with the lowest BIC. The Bayes factor allows us to com-
pute the percentage confidence we can have in the fact that the
model with the lowest BIC fits better than the other models:

% confidencei = 100% · (1�BayesFactori)

Results

Below we present the results from grouped quadrant ana-
lyses. First, for within-quadrant analyses, we consider all
four quadrants as separate data sets for a given subject.

FIG. 2. Schematic of separations between ROIs within and
between visual areas. For statistical testing, ROIs were
grouped according to the number of eccentricity regions sep-
arating them. Note that these are a few representative con-
nections. For the total number of connections of each type,
see the Materials and Methods section. Color images avail-
able online at www.liebertpub.com/brain

FIG. 3. Distances along the surface of the cortex between
pairs of ROIs. Distances were computed within a hemisphere
using the quadrant division of ROIs such that there are two
full quadrants considered per hemisphere, one dorsal and one
ventral. The matrix presents mean distances computed across
all five subjects and their two hemispheres. The defined eccen-
tricity regions are labeled as e1, e2, e3, e4, and e5. Color
images available online at www.liebertpub.com/brain
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Next, for between-quadrant analyses, we consider pairs of
quadrants from the same hemisphere as separate data sets
for a given subject. For the results of the full visual cortex
analysis, see Figure 4.

Retinotopic organization of FC: within-quadrant analysis

FC within and between areas in the human visual cortex, in-
cluding V1, V2, and V3, was measured by calculating the Corr
and, separately, Pcorr coefficients between BOLD fMRI time
courses acquired in the resting state. Each area was divided
into four quadrants (regions responding to stimuli in the quad-
rants of the visual field). To observe the retinotopic organization
of FC in these early visual areas, voxels were classified into five
retinotopic ROIs based on the retinotopic phase encoding in ec-
centricity (see the Materials and Methods section for details).

FC within an area. In the within-quadrant results (Fig. 5),
the Corr/Pcorr values between two nearby regions in eccen-
tricity were typically larger than those between more distant

regions. This pattern of retinotopic organization of FC based
on eccentricity is consistently observed throughout the three
visual areas and in both Corr and Pcorr analyses. Pcorr val-
ues between regions adjacent within a visual area and those
along the diagonal between adjacent visual areas stand out as
being among the strongest.

To determine which pairs of regions take part in the
resting-state functional network, Fisher-transformed Corr
and Pcorr coefficients (in separate tests) were input to a
repeated-measures GLM; these values tested against zero.
Figure 5 (right) shows the results of statistical testing of
the within-quadrant connections, with an alpha of 0.05, cor-
rected for multiple comparisons using the FDR correction to
10�16 for Corr and 0.0086 for Pcorr. All Corr connections
within a quadrant were significantly different from zero.
Most within-area Pcorr connections showed statistical signif-
icance, and all connections between same eccentricity re-
gions between visual areas showed statistical significance.
Between adjacent visual areas, all connections reaching to

FIG. 4. Mean Pcorr/Corr, Fisher
coefficients, and p-values associated
with functional connections of the
full visual cortex network (all four
quadrants analyzed together). In
each matrix, Pcorr coefficients/p-
values are presented in the lower left
triangle and Corr coefficients/p-
values are in the upper right triangle.
(A) Mean Pcorr/Corr coefficients
across all subjects (6) and runs per
subjects (8) (6 · 8). (B) Mean Fisher
coefficients across all subjects and
runs. (C) p-Values of statistically
significant Pcorr/Corr associated
with the functional connections in
the full visual cortex network. The
five defined eccentricity regions are
labeled as e1, e2, e3, e4, and e5.
Significance is thresholded at 0.05,
with false discovery rate correction.
Connections that did not show sta-
tistical significance are presented in
white. LH, left hemisphere; RH,
right hemisphere. Color images
available online at www.liebertpub
.com/brain

FIG. 5. Mean functional con-
nectivity (FC) measures within
a quadrant, computed across
all subjects, runs per subject,
and the four quadrants. Mean
Pcorr and Corr connectivity
measures are reflected below
and above the diagonal, respec-
tively. White connections (far
right matrix) did not show sta-
tistical significance. Presenta-
tion is as in Figure 4. Color
images available online at www
.liebertpub.com/brain
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FIG. 6. Mean FC measures for connections grouped according to eccentricity separations within a quadrant. (A, C) Across
all plots, green and purple bars represent the mean Fisher-transformed Pcorr and Corr, respectively, computed across all sub-
jects, runs, and quadrants. Error bars reflect the standard error of the mean across measurements. (A) Within-visual area
Fisher coefficients for different eccentricity separations. Plots in C show the between-area Fisher coefficients of different
eccentricity separations. A zero eccentricity separation (0es) indicates regions with the same eccentricity; a separation of
one eccentricity (1es) means the regions’ eccentricities were adjacent, and a separation of two eccentricities (2es) means
there was a gap between the two regions’ eccentricities, etc., (see the Materials and Methods section for further details). Indi-
vidual connections are shown to be significant with an asterisk directly above the bar. (B, D) Differences between eccentricity
separation bins are shown to be significant with an asterisk within the colored squares of the matrices. Green and purple
squares represent Pcorr and Corr, respectively. White squares represent differences that were not significant. Gray squares
represent differences not testable (nonexistent) in this analysis. For (A–D), statistical significance was assessed using
alpha values of 0.05 (*) and 0.001 (**), following repeated-measures statistical analyses. Color images available online at
www.liebertpub.com/brain
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regions with adjacent eccentricities were also significant.
Thus, Pcorr-based FC between visual areas reflected retino-
topic organization.

To quantify the effect of retinotopic distance on the Corr/
Pcorr measures, we pursued repeated-measures GLM statis-
tical testing while grouping ROI pairs, which were separated
by the same number of eccentricity regions. Within visual
areas (Fig. 6A), all Corr-based connection strengths were dif-
ferent than zero (all p < 10�16). There was a statistically sig-
nificant effect of decreasing Corr values with increasing
eccentricity separation in V1, V2, and V3 as demonstrated
in Figure 6B through differences in eccentricity separations
(Fig. 6B, above diagonal; Table 1 presents the corresponding
p-values). In Pcorr-based functional connections, nearly all
eccentricity separations were found to have a strength that
was significantly different than zero as well (with the excep-
tion of V2 3es; see p-values in Table 1). There was a statis-
tically significant effect of decreasing Pcorr measures with
increasing eccentricity separation, although the drop-off is
more abrupt than in correlation: all adjacent eccentricity con-
nections were found to be significantly different from the
connections between nonadjacent ROIs (Fig. 6B, below di-
agonal; Table 1).

FC between areas. Retinotopic organization of FC was
also observed between visual areas upon examination of
the Corr and Pcorr connectivity matrices (Fig. 5, first two
matrices). Retinotopically close pairs of ROIs from different
visual areas show higher Corr/Pcor values than distant pairs
of ROIs. For example, common eccentricity regions tend to
be connected with the highest Corr/Pcorr values, particularly
between V1 and V2, and V2 and V3.

While assessing the strength of connection between two
ROIs, we found that Pcorr between adjacent visual areas
(V1-V2 and V2-V3) significantly differed from zero for all

common eccentricity connections (all p < 10�16) and all but
one adjacent eccentricity connections (all p < 4 · 10�5 (Fig.
5, right). V1 and V3 had 4 of 5 same eccentricity region sig-
nificant Pcorr as well as a few adjacent eccentricity connec-
tions, although not all. These findings suggested that the
functional connections between adjacent visual areas (V1-
V2 and V2-V3) are stronger than those between nonadjacent
areas (V1-V3). Corr/Pcorr values between regions from adja-
cent visual areas were indeed significantly higher than Corr/
Pcorr values from V1-V3 connections ( p < 10�16 for Corr
and Pcorr; two-tailed paired t-test).

In evaluating the range of Corr/Pcorr along the eccentric-
ity dimension between visual areas, we turn our attention to
Figure 6C. The between area eccentricity bin separation plots
show consistent significance of correlations for all eccentric-
ity separations (significantly different from zero; p-values,
all p < 10�16 are presented in Table 1). There were significant
differences between the magnitudes of the coefficients for all
the different eccentricity bin separations (except for 3es
compared with 4es between V1 and V3): the Corr coeffi-
cients decreased with increasing eccentricity separation
(Fig. 6D, above diagonal; Table 1).

The between area plots for the Pcorr analysis show consis-
tent significance with 0es and 1es (significantly different
from zero; Figure 6C; p-values presented in Table 1). Con-
nections with 2es and 3es between adjacent visual areas,
V2 and V3, showed statistical significance too. In all cases,
connections between ROIs separated by four eccentricity
bins did not show statistically significant Pcorr. We observed
a statistically significant effect of decreasing Pcorr coeffi-
cients as the eccentricity separation increased, particularly
in adjacent visual areas (Fig. 6D, below diagonal; Table 1).
These results lead us to conclude that Pcorr-based FC be-
tween visual areas is largely limited to identical and adjacent
eccentricity regions, whereas Corr measures are not.

FIG. 7. Mean FC measures
associated with functional
connections between ROIs
residing in different quad-
rants within a hemisphere.
The mean connectivity mea-
sures were computed across
all subjects, runs, and the two
quadrant pairs. (A, B) Reflect
Corr and Pcorr connectivity
measures, respectively.
White entries (far right ma-
trices) represent connections
that did not show statistical
significance. The format of
presentation is as in Figure 4.
Color images available
online at www.liebertpub
.com/brain
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See Figure 8 for a summary of the connections identified
within a quadrant based on the Pcorr eccentricity bin separa-
tion analyses.

Retinotopic organization of FC: between-quadrant
within-hemisphere analysis

FC within an area. Figure 7A and B shows the Corr and
Pcorr coefficients for within-hemisphere between-quadrant
connectivity. The Corr analysis (Fig. 7A) shows that e1-e1
connections and, to a lesser extent, connections between
other retinotopically close regions within a visual area (close
to the diagonal) stand out with higher correlations. Pcorr
matrices (Fig. 7B) also reflect stronger e1-e1 connections, al-
though less noticeably so than Corr. They also show relatively
high Pcorr between other regions of the same eccentricity (e2-
e2, e3-e3) within a visual area (along the diagonal).

Figure 7A and B (far right matrices) shows the results of
between-quadrant statistical tests against zero, with an
alpha of 0.05, FDR corrected to 10�16 for Corr and 0.0163
for Pcorr. All Corr-based functional connectivities (Fig. 7A,
far right) were significantly different from zero. The Pcorr
statistical analysis (Fig. 7B, far right) shows that 11 of 15
connections along the diagonal, representing connections
between regions of same eccentricity belonging to the same
visual area, have partial correlations significantly greater
than zero. In addition, several within-area adjacent eccen-
tricity region connections show statistically significant Pcorr,
particularly in V1. V1 also shows three other significant con-
nections: dorsal e4–ventral e2, dorsal e5–ventral e2, and dor-
sal e2–ventral e5. From this, we concluded that the range of
Pcorr-based connectivity within a visual area between dorsal
and ventral quadrants of a hemisphere is at most to the adja-
cent eccentricity region in V2 and V3, unlike within the

FIG. 8. Mean FC measures
for connections grouped
according to eccentricity
separations between quad-
rants within a hemisphere.
(A, C) Across all plots, green
and purple bars represent the
mean Fisher-transformed
Pcorr and Corr, respectively,
computed across all subjects,
runs, and hemispheres. Error
bars reflect the standard error
of the mean across measure-
ments. Green and purple
entries in (B, D) represent
significant differences in
Pcorr and Corr eccentricity
bin separations (es), respec-
tively. For (A–D), statistical
significance was assessed
using alpha values of 0.05 (*)
and 0.001 (**), following
repeated-measures statistical
analyses. Presentation is as in
Figure 6. Color images
available online at www
.liebertpub.com/brain
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quadrant, where some nonadjacent eccentricity regions were
significantly different than zero as well.

Within-area correlations were statistically significant for
all eccentricity separations for V1, V2, and V3 (Fig. 8A;
all p-values for between-quadrant eccentricity bin analyses
are presented in Table 2). To test the effect of the retinotopic
distance within a visual area between quadrants of a hemi-
sphere, we analyzed the difference between the various ec-
centricity bin Fisher-transformed correlations. There were
significant differences between nearly all eccentricity bin
separations in V1, V2, and V3; the only separations that
did not show a statistically significant difference were 2es
and 3es, and 3es and 4es in V3 (Fig. 8B; Table 2). We con-
cluded that between quadrants, but within a visual area, Corr
coefficients differ in a similar manner to within a quadrant
such that there is a notable decreasing effect in coefficients
with increasing retinotopic distance.

Within-area Pcorr values were statistically significant be-
tween common eccentricity regions (0es) and regions adjacent
in eccentricity (1es) for V1, V2, and V3 (Fig. 8A). In addition,
Pcorr between more distant eccentricity regions within V1
(2es, 3es, and 4es) showed statistical significance. To test the
effect of retinotopic distance within a visual area between
quadrants of a hemisphere, we analyzed the difference between
the various eccentricity bin Fisher-transformed partial correla-
tions. In all visual areas, same eccentricity partial correlations
were significantly higher than those with eccentricity bin sep-
arations (Fig. 8B; Table 2). A similar effect was observed for
differences between adjacent eccentricity and higher eccentric-
ity bin separations consistently in V1, as well as for 1es and 2es
in V2, and 1es and 3es in V3. We concluded that as retinotopic
distance increases within visual areas V1, V2, and V3, across
dorsal and ventral quadrants, there is an effect of decreasing
resting-state Pcorr values and most notably so in V1.

FC between areas. Between visual areas and between
quadrants of a hemisphere, the e1-e1 connections stand out
with higher coefficients, particularly in the Corr coefficients
(Fig. 7A). As with the within-quadrant analyses, connections
between V1 and V3 have somewhat lower coefficients than
between V1 and V2 and between V2 and V3. In a two-tailed
paired t-test of correlations, the connections between adjacent
visual areas, that is, V1 and V2 together with V2 and V3, were
found to have significantly higher correlations than V1-V3
connections ( p < 10�16). Partial correlations were also signif-
icantly different in this between-quadrant test ( p = 0.0120).

Between visual areas, all Corr values showed statistically
significant differences relative to zero in both the analysis be-
tween individual ROIs (Fig. 7A, far right matrix) and in the
eccentricity bin analyses (Fig. 8C). This being said, Corr was
able to differentiate between all eccentricity bin separations
in all pairs of visual areas, except V1-V2 0es and 1es (Fig.
8D, above diagonal; Table 2).

The findings for Pcorr are quite different than those of
Corr between visual areas, between quadrants. Partial correla-
tions that showed statistical significance relative to zero were
mainly those of the same eccentricity connections between ad-
jacent visual areas (Fig. 7B, far right). V1-V2, V2-V3, and V1-
V3 0es connections showed significant Pcorr (Fig. 8C; Table
2). In adjacent visual areas, V1-V2 and V2-V3, the 1es connec-
tions were also found to be significantly greater than zero.
Some negative partial correlations were found to be significant

between V1-V2 (2es) and V1-V3 (2es, 3es). As was observed
within visual areas, between visual areas the Pcorr values in the
0es bin were found to be significantly different than those in the
other eccentricity separations (except V1-V3 0es and 4es) (Fig.
8D). There are also several differences between 1es connec-
tions and those with greater separations (all visual area combi-
nations). This means that connections between regions with the
same or similar eccentricity are particularly strong in all
between-quadrant connections, with those differing in eccen-
tricity showing significantly smaller Pcorr values.

Cortical distance analyses

Given the observed relationship between retinotopic dis-
tance and Corr/Pcorr and the relationship between retinotopy
and distance along the cortex, we undertook an analysis com-
paring distances between ROI centroids along the cortex and
Corr/Pcorr connectivity measures between those ROIs. We
have continued with the separation of within-quadrant and
between-quadrant connections given that we saw different
connectivity profiles in these subsets of connections. With
differing trends in correlations/partial correlations, it stands
to reason that the relationship of cortical distance to the cor-
relations/partial correlations may also differ.

Figure 3 shows the mean computed cortical distances within
a hemisphere. The mean is across all subjects and hemispheres.
The analysis showed shorter distances for connections between
regions from the same quadrant, with the same eccentricity,
and from adjacent visual areas (for example, within-quadrant
adjacent visual area distances between e1-e1: *11–13 mm,
mean = 11.9 mm, standard deviation (STD) = 0.96 mm; e3-e3:
*13–18 mm, mean = 15.7 mm, STD = 2.6 mm; e5-e5: *15–
19 mm, mean = 16.2 mm, STD = 1.9 mm). Between quadrants,
the shortest connections are between e1 and e1, with e2-e2, e3-
e3, e4-e4, and e5-e5 being progressively more distant. In addi-
tion, distances between V1 ROIs belonging to the dorsal and
ventral quadrants (between-quadrant connections) were rela-
tively short (<42 mm). These observations follow expectations
from the cortical organization of V1, V2, and V3 (Fig. 1).

Figure 9 presents plots of the mean Corr (Fig. 9A) and
Pcorr (Fig. 9B) coefficients versus mean cortical distance be-
tween ROI pairs within a quadrant, the figure reflecting dorsal
and ventral results together in the same plot. There is a clear
trend in the within-quadrant scatter plots of data, with decreas-
ing coefficients for greater distances. The linear and quadratic
regressions, as well as the exponential fit, were computed for
each plot and are included in the figure for reference. The lin-
ear function seems to fit best the Corr values versus distance
(Bayes factor confidence of 84.7% and 85.7% for linear fit
being better than quadratic and exponential, respectively,
Table 3). The exponential function fits best to the Pcorr values
versus distance (*100% confidence for exponential function
better than both linear and quadratic, Table 3).

If RSFC within a network with dense connections depends
on cortical distance alone, we should expect a similar ap-
proximately linear trend between Corr and cortical distance
between quadrants too. We therefore pursued similar analy-
sis of the mean Corr (Fig. 9C) and Pcorr (Fig. 9D) coeffi-
cients versus mean cortical distance between ROI pairs
between quadrants of a hemisphere. The exponential fit, lin-
ear, and quadratic regression results are plotted, as well as
the mean linear trend (in gray) from the within-quadrant
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analysis for easy comparison. While the Corr plot once again
looks mostly linear, where Pcorr is concerned, following the
initial drop in connectivity with increased distance, there
seems to be an increase in connectivity measures when dis-
tances are greater than *55 mm.

To investigate if the increase in Pcorr for distances longer
than *55 mm was statistically significant, we compared the

Pcorr values of the most distant connections and mid-range
connections between quadrants. To this end, we pursued a
two-tailed t-test between the Fisher-transformed mean partial
correlations for the 10 most distant connections (largest av-
erage distances across all subjects and hemispheres: dis-
tances of 79–85 mm) and 10 connections with distances
starting at 54 mm (54–55 mm). The mean Pcorr for the

FIG. 9. Mean Corr/Pcorr coeffi-
cients versus cortical distance plots
for within- and between-quadrant
connections. Within-quadrant co-
efficients are presented on the top
row (A, B) and between-quadrants
coefficients are on the bottom row
(C, D). The mean coefficients and
distances were computed across
subjects and hemispheres. Color
images available online at
www.liebertpub.com/brain

Table 3. Goodness of Fit of the Linear, Quadratic, and Exponential Fits to Correlation/Partial

Correlation Versus Cortical Distance Plot

p-Value of
correlation

between coefficients
and distance

BIC of linear
fit to mean

BIC of
quadratic

fit to mean

BIC of
exponential
fit to mean

% confidence that
the model with the

best BIC is better than
the other models:

100% · (1-Bayes factor)

Corr
Within quadrant 4.28E�49 �1228.52 �1224.77 �1224.63 84.68

Lin > quad
85.69
Lin > exp

Between quadrants 5.05E�24 �1187.35 �1188.31 �1188.43 41.76
Exp > lin

5.85
Exp > quad

Pcorr
Within quadrant 9.33E�36 �1086.76 �1218.09 �1261.53 100

Exp > lin
99.99999996
Exp > quad

Between quadrants 9.37E�05 �1487.55 �1534.07 �1526.42 99.999999992
Quad > lin

97.81
Quad > exp

All columns quantify the data plotted in Figure 9. For each connection, we computed the mean cortical distance across hemispheres and
mean correlation/partial correlation coefficient across runs, hemispheres, and subjects. Thus, for within a quadrant, we considered 210 con-
nections: two sets (dorsal and ventral) of 105 coefficients each (number of within-quadrant connections), and for between quadrants, there are
225 coefficients (number of between-quadrant connections). The first column presents the p-value of testing the statistical significance of
correlation between functional connectivity measures and cortical distances. Goodness of fit (columns 2–4) was evaluated using the BIC.
A smaller BIC (more negative) implies a better fit relative to the other models. Bold values indicate the best BIC. To test differences between
measures of goodness of fit, a Bayes factor was computed. We present the percent confidence that one model is better than the others tested
(columns 5–6). Bold font indicate a strong confidence that one model is a better choice than the others.

BIC, Bayesian Information Criterion.
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distant connections was found to be significantly greater than
that for the mid-range distance connections ( p < 10�3, two-
tail t-test).

To evaluate whether the trends in the distributions of Corr/
Pcorr versus cortical distance were different for within and
between quadrants, we quantified the goodness of fit of the
linear, quadratic, and exponential regressions (Fig. 9). The
first data column of Table 3 shows that both the within-
quadrant and between-quadrant Corr coefficients were sig-
nificantly correlated with distance along cortex ( p*E�49

and p*E�24, respectively). Pcorr showed statistically signif-
icant correlation with distance, too for both within ( p*E�36)
and between ( p*0.0001) quadrants. The slopes of the linear
fits within and between quadrants were found to be signifi-
cantly different for Pcorr ( p = 10�11), with steeper slopes
within a quadrant than between quadrants.

To compare the goodness of fits of the three regressions in
the four conditions (Corr/Pcorr, within/between quadrant),
we computed the BIC of each regression, and then we com-
puted the Bayes factor, which allows us to determine the con-
fidence we can have that the model with the lowest BIC is
better than the other models (see the Materials and Methods
section; values in Table 3). We found that for Corr, the linear
fit is the best within a quadrant (*85% confidence). Although
the exponential fit was best between quadrants, the associated
level of confidence was low (under 42% for exponential fit
better than linear; under 6% for exponential better than qua-
dratic). For Pcorr, the confidences observed were very strong,
and we observed a difference between the within-quadrant and
between-quadrant cases. Within a quadrant, the exponential fit
was the best fit (*100% confidence, it is better than both lin-
ear and quadratic, Table 3). Between quadrants, the quadratic
was the best fit (*100% and 97.8%, it is better than linear and
exponential, respectively, Table 3). These results suggest that
the relationship between Pcorr and distance along the cortex
was not identical within and between quadrants.

Discussion

There are two types of connections, which we investigat-
ed: (1) within-visual area connections and (2) between-visual
area connections. Both of these connections were evaluated
within the quadrant and between quadrants of the same hemi-
sphere. We look separately at the connectivity within the
dorsal and ventral quadrants of the visual cortex in a hemi-
sphere, and between these quadrants, due to the largely sym-
metric nature of their visual field representation. This
separation of within-quadrant versus between-quadrant ana-
lyses also presents a logical separation of generally closer
range connections along the cortex (within a quadrant) and
longer range connections (between quadrants). In addition,
the symmetrical arrangement of the visual areas between
quadrants creates a distribution of distances within an area
that are short (e.g., V1), long (e.g., V3), or intermediate
(e.g., V2). This wide distribution of distances has allowed
us to demonstrate a complex relationship between FC mea-
sures and distance.

Within-visual area connections

Within a quadrant, within visual areas, all Corr and Pcorr
FC measures showed statistical significance (Figs. 6A and
10). Across visual areas, Corr (all visual areas) and Pcorr
(all visual areas, 1es > all other es) values decreased with
increasing eccentricity separation, demonstrating the depend-
ence of RSFC on retinotopic eccentricity (Fig. 6B).

We went into these analyses with some expectations based
on the well-studied organization and anatomical connectivity
of the primate visual cortex. Horizontal connections, namely
direct neuronal linkages within a visual area, have been
shown to be generally quite short in the macaque monkey vi-
sual cortex, the longest being of less than 2.5 mm in V1 and
5 mm in V2 in the macaque brain (Amir et al., 1993; Markov
et al., 2011). In humans, these connections may be up to

FIG. 10. Summary figure of the
statistically significant connections
from the eccentricity bin analyses
for partial correlation. Connections
which seem like they may be
anomalous were omitted. Dashed
lines represent weaker connections.
The panel to the left shows connec-
tions within quadrant: within area
(upper scheme), and between areas
(upper and lower schemes com-
bined). The panel to the right shows
connections between quadrants:
within area (upper scheme), and
between areas (upper and lower
schemes combined). Color images
available online at www.liebertpub
.com/brain
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twice as long (up to *5 mm in V1 and *10 mm in V2, re-
spectively). This estimation is based on the fact that the
cycle of ocular dominance columns in humans is approxima-
tely double that in the monkey (Adams et al., 2007). Assum-
ing that this scaling factor applies to other features of the
organization, the length of horizontal connections in humans
should be approximately double their length in monkeys.
Now, to put this into the context of our study across different
eccentricity regions within a quadrant of the visual cortex,
visual areas in a quadrant have a length of around 4.5–
6 cm on the cortex (Tootell et al., 1998). Therefore, our
five eccentricity regions within the visual quadrant would
have an average length of around 9–12 mm. This scale of dis-
tances along the cortex was confirmed in our distance analy-
sis between central voxels of ROIs, where pairs of adjacent
ROIs from within a visual area of a single quadrant were sep-
arated by an average distance of 10.6 mm (STD = 2.3 mm).
Pairs of ROIs separated by a gap (one of the five eccentricity
regions) (i.e., 2es as depicted in Fig. 2), also from within a
visual area of a single quadrant, were separated by an average
distance of 20.4 mm (STD = 3.9 mm). Between the most cen-
tral and the most peripheral regions (4es), within-visual area
ROIs, the distance is of mean = 40.1 mm (STD = 5.7 mm).
Notice that both the mean distances for 2es and 4es connec-
tions are much longer than the maximum of 5 and 10 mm
expected from monosynaptic horizontal connections in V1
and V2, respectively. In spite of the long distances associated
with 2es and 4es connections in V1 and V2, these connections
are found to be statistically significant.

Anatomical projections in V1 with origin in the LGN and
to a lesser extent from monosynaptic horizontal connections
in V1 can drive action potential responses in the neurons
they project to. However, these two types of connections
show high retinotopic specificity. For example, the connec-
tions from the LGN to V1 (Salin and Bullier, 1995) and
monosynaptic horizontal connections within V1 (Angelucci
et al., 2002) are by far more visuotopic than the connections
from V3 to V1 (Angelucci et al., 2002). Therefore, given
that within areas V1 and V2, within a quadrant, we observe
significant correlations/partial correlations between regions
separated by *20 mm (2es) and *40 mm (4es), we expect
that the underlying mechanisms of fMRI-based FC mea-
sures are not limited to input from the LGN or to direct,
monosynaptic neuronal linkages through horizontal connec-
tions. Alternative or additional mechanisms may include
feedback from higher visual areas (Angelucci et al., 2002;
Salin and Bullier, 1995; Shmuel et al., 2005) or from the pul-
vinar (de Zwart et al., 2013; Liu et al., 2012). We therefore hy-
pothesize that the long-range correlation-based FC within
visual areas V1, V2, and V3, is the result of polysynaptic con-
nections involving local connectivity, higher visual areas, and
the pulvinar. Indeed, feedback from higher visual areas rea-
ches regions beyond those targeted by monosynaptic horizon-
tal connections (Angelucci et al., 2002; Salin and Bullier,
1995). Similarly, the input from the pulvinar to retinotopic
visual areas can drive responses, and neuronal responses in
the pulvinar show wide tuning to stimulus position in the
visual space. For correlation-based FC in this very local-scale
network, these two types of inputs will vary gradually with dis-
tance. We can therefore expect the FC correlation coefficients
to reflect nearly all nodes being functionally connected, with
a gradual decrease in correlation values with increasing dis-

tance. Indeed, correlation-based FC decreases with increasing
distance in an approximate linear manner (Fig. 9).

Given the regression of time courses from all nodes in the
network when using Pcorr, we expect that these polysynaptic
functional connections should be largely removed. The reason
for this expectation is that there will be additional regions be-
tween or near the two regions whose FC is computed, which
will receive similar polysynaptically transmitted signals. Sig-
nals based on propagation along polysynaptic horizontal con-
nections will have to traverse the distance between the two
ROIs in question, thus leaving traces that can be regressed
out by Pcorr. Retinotopically broad feedback signals from
higher visual areas or the pulvinar will make their impression
on additional ROIs near the two ROIs in question, thus making
it possible to regress them out. Indeed, Pcorr values were sig-
nificantly lower than Corr values. Moreover, Pcorr-based FC
is more specific to regions with similar eccentricities than
Corr-based FC (Figs. 5–8) and it does not change linearly
with increasing distance (Fig. 9).

Note that the longest horizontal connections expected in
V1 (2.5 mm · 2 = 5 mm) are much shorter than in V2 (5 mm
· 2 = 10 mm). Comparatively, horizontal connections within
V2 and within V4 are known to be more spread out than hor-
izontal connections in V1 (Amir et al., 1993). Given the rela-
tively narrow horizontal connections expected in V1, one
could expect that the range of FC within V1 would be rela-
tively small. Remarkably, we see the opposite when compar-
ing within-area connections in V1 with those in V2 and V3;
across all tests, V1 is not only among the most abundantly
(functionally) connected visual areas, with high correlations
in particular, but also with partial correlations. These findings
are consistent with previous studies that combined fMRI si-
multaneously with intracortical neurophysiological recordings
(Schölvinck et al., 2010; Shmuel and Leopold, 2008). These
studies demonstrated wide regions in V1 whose spontaneous
fMRI signals correlated with time series of gamma band-
limited amplitude recorded by one electrode (one cortical
site) in V1.

Within and between quadrants, V1 is found to have signif-
icantly higher correlations and partial correlations than V2
(within: Corr p = 4.2 · 10�11, Pcorr p = 1.4 · 10�10; between:
Corr p = 2.9 · 10�4, Pcorr p = 2.2 · 10�7) and V3 (within:
Corr p = 10�16, Pcorr p = 1.3 · 10�7; between: Corr
p = 10�16, Pcorr p = 7.7 · 10�11). This evidence further em-
phasizes that Corr/Pcorr-based FC involves mechanisms be-
yond monosynaptic horizontal connections, probably
involving feedback from higher visual areas or the thalamus.

Between-visual area connections

Within a quadrant, between visual areas, Corr values
showed statistical significance for all eccentricity separations
(Fig. 6C). Pcorr showed consistent significance between
regions with the same eccentricity and adjacent eccentricities
and, in addition, between V2 and V3 with 2es and 3es (Figs.
6C and 10). Pairs of ROIs with similar eccentricity showed
higher Corr/Pcorr than pairs of ROIs distant in eccentricity,
demonstrating that RSFC between lower visual areas is reti-
notopically organized (Fig. 6D).

The main expectation we had of between-visual area within-
quadrant connections was that there would be a bias toward
stronger connectivity between ROIs of similar eccentricities
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(Heinzle et al., 2011). In fact, Heinzle and colleagues (2011)
identified that the maximum eccentricity range of signifi-
cant connections between visual areas V1 and V3, was around
pi/3 rad in phase values or 2.1� ([(pi/3 rad)/(2 pi rad)] = [2.1�/
12.5�]; 12.5� was the maximal eccentricity they mapped). In
terms of eccentricity degrees, the boundaries around the
ROIs that we used were 0.5� to 1.7�, 4.1�to 7.1�, and 10.4�
to 14�. With a maximum potential range of around 2.1�, we
should expect statistically significant FC limited to ROIs of
same or possibly adjacent eccentricity. Indeed, between V1
and V3, the only statistically significant Pcorr values were
obtained for ROIs of same eccentricity and adjacent eccen-
tricities. Thus, our within-quadrant Pcorr analysis, which is
comparable with the Corr-based weights and permutation
test analysis pursued by Heinzle and colleagues, agrees
with that expectation. In this study, we expand on Heinzle
and colleagues’ results by quantifying the functional connec-
tions between V1 and V2 and V2 and V3. V1-V2, V2-V3, and
V1-V3 show a common eccentricity region as well as adjacent
eccentricity region Pcorr-based connectivity. V2-V3 shows, in
addition, more distant connectivity (up to 3es).

A recent study by Haak and colleagues (2013) shows that
connective field maps based on visual stimulation are retino-
topically organized, similar to the retinotopic organization
we show here in the resting state. They accomplished this
by computing the stimulus-based connective field maps be-
tween regions in area V1 and sites in areas V2-hV4. They
then demonstrate that the eccentricity and polar angle maps
for visual areas derived with conventional receptive field
mapping are spatially correlated with connectivity maps
computed using the time courses of voxels in these areas.
These results are in line with our findings of retinotopically
organized FC of lower visual areas in the resting state.

When considering the effect of retinotopic distance along
the eccentricity dimension on FC in the human visual cortex,
one factor to consider is the population receptive field sizes
(pRFs) in each of the visual areas. Dumoulin and Wandell
(2008) and Harvey and Dumoulin (2011) demonstrated that
pRFs become progressively larger as we move from V1 to
V2 and further to V3. In addition, within each visual area,
the pRFs become larger as we move from central to more pe-
ripheral eccentricities. This trend of increasing pRFs with ec-
centricity is strongest in V3 and weakest in V1 and has been
supported by evidence in human and monkey studies
(Amano et al., 2009; Haak et al., 2013; Hubel and Wiesel,
1974; Kay et al., 2008; Smith et al., 2001; Van Essen
et al., 1984; Winawer et al., 2010). V2 and V3 are expected
to have broader pRFs relative to V1, thus leading us to expect
significant FC across a wider range of eccentricity regions
between these areas. This is confirmed in Figure 5 (right)
and Figure 6C, where we see significant partial correlations
between regions in V2 and V3 separated by two or three of
the five eccentricity regions. In contrast, between V1 and
V2 or V1 and V3, the most we see is significance with a sep-
aration of one of five eccentricity regions.

Within a quadrant, between visual areas, Corr/Pcorr val-
ues between regions from adjacent visual areas (V1-V2
and V2-V3) were higher than those between nonadjacent
areas (V1-V3). These results are in agreement with the ana-
tomical connectivity in the monkey visual cortex. Markov
and colleagues (2011) show that in the macaque visual cor-
tex, the output from V1 to V2 is at least an order of magni-

tude higher than the communication between any other areas.
More generally, the direct monosynaptic connectivity be-
tween cortical areas decreases as the distance between the
areas increases (Ercsey-Ravasz et al., 2013). Thus, within
quadrant V1-V3 Pcorr statistically significant functional con-
nections are limited to same eccentricity regions because (1)
they are weaker and/or (2) the regression of the time courses
of V2 nodes regresses out a large part of the contributions be-
tween V1 and V3 because they are expected to be similar.

Considerations of cortical distance

Within a quadrant, Corr and Pcorr showed a strong effect
of decreasing coefficients for greater distances (an approxi-
mately linear effect for Corr; a strong exponential effect
for Pcorr). Between quadrants, the linear effect was still no
worse than quadratic or exponential trends for modeling
Corr as a function of cortical distance. However, for Pcorr,
the optimal fit was no longer exponential; in particular, coef-
ficients first decreased and then increased with increasing
distance, with the minimum of the quadratic trend line
appearing at *55 mm. The BIC Bayes factor showed high
confidence that the quadratic fit was better than the linear
and exponential fits for Pcorr as a function of cortical dis-
tance (Fig. 9; Table 3). These results demonstrate that the re-
lationship between Pcorr-based FC measures and distance
along the cortex is different within and between quadrants.

One could suspect that the retinotopic effect in correla-
tions/partial correlations observed between within-quadrant
ROIs is determined largely by cortical distance and not nec-
essarily by retinotopic differentiation. There are several rea-
sons for this expectation. First, the cortical distance
between ROIs within a quadrant and within an area is a con-
tinuous function of retinotopic distance. This is the essence of
retinotopic mapping: cortical distance depends on retinotopic
distance within a quadrant in a continuous manner (as shown
by Sereno et al. (1995), DeYoe et al. (1996), Engel et al.
(1997), Duncan and Boynton (2003), Larsson and Heeger
(2006), Wandell et al. (2007), and others). In addition, the
majority of anatomical connections impinging on any cortical
neuron are of local origin with distances at the mm scale
(Braitenberg and Shuez, 1998). This creates an effect of lo-
cally dense connectivity that drops with distance. Last,
since lower visual areas are densely intra- and interconnected,
one may expect network effects to play a significant role, cre-
ating not only network-scale but also region-scale synchro-
nized fluctuating signals. Therefore, dependence of FC
measures on distance in a small, densely connected network
could reflect a combination of the underlying anatomical con-
nections and network effects. Consistent with these expecta-
tions, the scatter plots in Figure 9 demonstrate that within a
quadrant there is an inverse relationship between Corr and
cortical distance (see also statistical results from Table 3).

Note that for Corr within a quadrant, not only the quadratic
fit’s BIC value was not smaller than that of the linear fit
(Table 3) but also qualitatively we can observe in the plots
that the minimum of the quadratic curve is outside of the
range of the data. Thus, the fact that for Corr the quadratic
fit Bayes factor does not differ with high percentage confi-
dence from that of the linear fit should not be interpreted
as evidence against linearity. A similar phenomenon can be
observed for Corr between quadrants: although the BIC for
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the exponential fit is smallest in this case, it is not signifi-
cantly better than the linear fit. For both within a quadrant
and between quadrants, the only effect that is really observed
is the approximately linear decreasing of coefficients with in-
creasing cortical distance. We conclude that the FC Corr
measures found within a quadrant and between quadrants
vary approximately linearly with cortical distance.

These observations, which show a strong relationship be-
tween Corr and distance, raise concerns that RSFC within a
small, densely connected network does not carry any infor-
mation on the anatomical connectivity structure of the net-
work. Given these concerns, we sought evidence indicating
that FC measures reflect more than cortical distance alone.
We verified that there exist regions within the small network
we analyzed, which are quite separated in terms of cortical
distance and yet maintain a Pcorr significantly different
from zero, demonstrating that the effect which we extract
in such a Pcorr analysis is not simply a reflection of the effect
of proximity of regions. In our between-quadrant analysis
where we have measured the mean cortical distance between
ROIs, some examples of partial correlations that are contrary
to the effects of cortical distance include V3-e4 to V3-e5
(*84 mm) and V3-e4 to V3-e4 (*83 mm), which are rela-
tively distant and are statistically significant when compared
with zero ( p = 10�5 and p = 1.2 · 10�4, respectively), while
closer connections between V1 and V3 between quadrants
(*35–60 mm) do not show statistically significant Pcorr.

Several additional findings show differences between the
relationship of Pcorr FC and cortical distance within and be-
tween quadrants. First, between quadrants, there is an initial
decrease in coefficients with increasing cortical distance, as
observed within a quadrant, followed by a minimum coeffi-
cient (occurring around *55 mm cortical distance between
ROIs), and then finally an increase in coefficients with
greater distance. Indeed, the 10 most distant ROI pairs
have significantly greater between-quadrant Pcorr strengths
than the 10 mid-range distanced ROI pairs starting at
54 mm. Quantitatively, a true (with minimum within the
range of the data points) quadratic fit is better than the sim-
pler linear fit (*100% confidence) and exponential fit
(97.8% confidence, Table 3) for between-quadrant Pcorr
versus distance analyses (yet, this is not the case within a
quadrant where exponential is the clear best fit: 99+% confi-
dence). Last, there is a significant difference between within-
and between-quadrant slopes of linear fits and quadratic
curvatures for Pcorr. Taken together, these findings demon-
strate that within the small, densely connected network of
lower visual areas, there is no simple mapping between FC
based on Pcorr and cortical distance.

The reason for the difference in trends in the plots for
within-quadrant and between-quadrant FC versus cortical
distance can be analyzed by tracking which connections pop-
ulate the critical parts of the scatter plots of Pcorr against cor-
tical distance. Since Pcorr-based FC within a visual area is
high even when computing FC between quadrants, regions
in V3 residing in the dorsal and ventral quadrants can be
expected to show relatively high Pcorr at the tail end of the
Pcorr versus distance curve. This creates a scenario in
which relatively distant regions residing in different quad-
rants show relatively high FC compared with ROIs that are
closer (such as regions in V1 and V2 residing in the dorsal
and ventral quadrants, respectively, and representing distant

eccentricities). Indeed, upon examining the cortical distances
observed for within- and between-quadrant connections,
the majority (51.6%) of the between-quadrant connections
are longer than the longest within-quadrant connection
(52.7 mm). Within a quadrant, it is only connections with
three or four eccentricity region separations that are longer
than 39 mm, with most (18/21) of these connections connect-
ing ROIs in different visual areas and showing no statisti-
cally significant Pcorr. In the Pcorr versus distance plots
between quadrants, we see a minimum at around 55 mm.
The most distant connections either connect regions within
V3 or regions in V2 and V3, thus either connecting regions
within an area or between areas adjacent in the hierarchy
of visual areas, with the majority of these connections show-
ing or approaching statistically significant Pcorr.

Correlation versus partial correlation

Pcorr is becoming increasingly used in connectivity analy-
ses due to its greater ability to weed out false positives in the
search for direct connections over simple Corr (Calabro and
Vaina, 2012; Dawson et al., 2013; Pandit et al., 2013; Smith
et al., 2011). Pcorr uses a linear regression to regress out fluc-
tuations from other network nodes during the analysis of con-
nectivity between two nodes and, in this way, is able to ensure
that predicted connections are more representative of direct
linkages. In our analyses, this was vital to obtaining utilizable
results given that Corr predicted all connections as significantly
connected in all quadrant-based analyses (within and between
quadrants). These kinds of results can be expected when the
network of study is densely connected, with network effects
of indirect connections potentially accounting for significant
correlations. What we wish to portray is that Pcorr identifies di-
rect connections better than Corr, as evidenced by the fact that
it can identify some direct connections we know to exist in the
monkey (same eccentricity regions between visual areas),
while not identifying some we know to not be directly
connected from the monkey (regions with a large eccentricity
difference that reside in two different visual areas).

Raemaekers and colleagues (2014) found that in their Corr
analysis, small-scale connectivity was nearly completely ob-
scured by large-scale network effects unless the effects of
larger networks (the first several Independent Component
Analysis components) were removed, which could be inter-
preted as a global-type signal affecting the network of inter-
est. With the use of Pcorr instead of Corr, we are able to
reflect synchrony between nodes with reduced contributions
from other network nodes, even with the global signal intact
in the data. Pcorr regresses out time courses of all other nodes
in the network from the two nodes between which connectiv-
ity is being assessed to eliminate contributions from indirect
connections from its network prediction. This in effect also
removes any global signal that is observable within the net-
work’s nodes. Therefore, statistically significant Pcorr sug-
gests the potential existence of a direct, monosynaptic
anatomical connection within the network. This being said,
Pcorr coefficients can reflect common input from outside
of the network to those two ROIs only.

Conclusions

We report our findings on FC within and between visual
areas V1, V2, and V3 at a scale finer than that of cortical
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areas. Within-quadrant Corr and Pcorr are found to be signif-
icant for all connections within a visual area. Corr, and to a
lesser extent Pcorr, spanning beyond nearby eccentricities
within a visual area demonstrates that FC reaches further
than direct horizontal connections. Consistently in V1 and
V2, and somewhat less so in V3, Corr and Pcorr values de-
crease with increasing eccentricity separation. Between-
visual area within-quadrant Pcorr spans to same eccentricity
regions and to adjacent eccentricity regions, with connec-
tions between V2 and V3 reaching even further. Pairs of
ROIs with similar eccentricity in two different areas show
higher Corr/Pcorr than pairs of ROIs distant in eccentricity
(see Fig. 10 for a summary of within-quadrant Pcorr connec-
tivity). Significant differences were found between the Corr/
Pcorr for adjacent visual areas, V1-V2 and V2-V3, and be-
tween more distant areas V1-V3. The relationship between
Corr FC and cortical distance separating the tested ROIs
was approximately linear. Pcorr showed a more complex re-
lationship to distance, with exponential and quadratic curves
fitting best for within and between quadrants, respectively.

We conclude that resting-state functional connectivities
within and between lower visual areas are retinotopically or-
ganized. Furthermore, Pcorr FC follows expectations based
on the anatomical connectivity in the monkey visual cortex
better than Corr does. Last, partial correlation-based retino-
topically organized RSFC reflects more than cortical dis-
tance effects.
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