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Abstract

Our ability to effectively adapt to novel circumstances—as measured by general fluid intelligence—has recently
been tied to the global connectivity of lateral prefrontal cortex (LPFC). Global connectivity is a broad measure
that summarizes both within-network connectivity and across-network connectivity. We used additional graph
theoretical measures to better characterize the nature of LPFC connectivity and its relationship with fluid intelli-
gence. We specifically hypothesized that LPFC is a connector hub with an across-network connectivity that con-
tributes to fluid intelligence independent of within-network connectivity. We verified that LPFC was in the top 10%
of brain regions in terms of across-network connectivity, suggesting it is a strong connector hub. Importantly, we
found that the LPFC across-network connectivity predicted individuals’ fluid intelligence and this correlation
remained statistically significant when controlling for global connectivity (which includes within-network connec-
tivity). This supports the conclusion that across-network connectivity independently contributes to the relationship
between LPFC connectivity and intelligence. These results suggest that LPFC contributes to fluid intelligence by
being a connector hub with a truly global multisystem connectivity throughout the brain.
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Introduction

Flexible intelligent behavior requires the goal-
directed control of a wide variety of potentially goal-

relevant brain processes. These processes are distributed
throughout the brain, likely making it important for regions
that maintain goal representations—such as lateral prefrontal
cortex (LPFC) (Braver et al., 2003; Miller and Cohen,
2001)—to have extensive global connectivity to access and
influence this wide variety of processes. Supporting this hy-
pothesis, we recently demonstrated that a region in the left
LPFC has high global connectivity, and individuals with es-
pecially high global connectivity with this region have espe-
cially high general fluid intelligence (gF) (Cole et al., 2012).

In that study, global connectivity was defined in terms of
global brain connectivity (GBC)—the average resting-state
correlation of LPFC with all gray matter brain voxels
(Cole et al., 2010b). Importantly, GBC does not distinguish
between provincial hubs with high within-network connec-
tivity and connector hubs with high across-network connec-
tivity (Fig. 1). This suggests it is possible that the previous
result may have resulted from solely within-network connec-

tivity or some combination of within-network connectivity
and across-network connectivity.

The purpose of the present study is to distinguish among
these possibilities by using graph theoretical measures
designed to specifically estimate across-network connectiv-
ity. For instance, betweenness estimates the number of short-
est paths through a region, which tends to be high for regions
with extensive across-network connectivity (Rubinov and
Sporns, 2010). Alternatively, the participation coefficient
measures the proportion of a region’s connections that are
across network relative to within network (Guimera et al.,
2005). We were able to estimate the participation coefficient
using a recently identified set of putative functional regions
that were partitioned into distinct brain network communities
(Power et al., 2011). This set of uniform spherical regions cov-
ering every major brain network also allowed us to reduce po-
tential confounds arising from voxel-wise approaches that
result in large regions affecting graph theoretical metrics dis-
proportionally (Power et al., 2013; Wig et al., 2011).

We hypothesized that these more direct measures of across-
network connectivity would demonstrate that LPFC is a con-
nector hub with extensive across-network connectivity, and
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individuals with especially high across-network connectivity
would have especially high gF. This would suggest an impor-
tant role for extensive across-network connectivity in support-
ing higher-order cognition, which relies on the integration of
constituent functions to form complex cognitive processes
and representations.

Materials and Methods

Participants

The data presented here were collected as part of a larger
multifaceted study. Individuals participated in three separate
sessions, spaced a few days to few weeks apart, to complete
personality tests, mood questionnaires, neuropsychological
tests, and the N-back fMRI scanner task. The first session
was 3-h long and involved answering several standard
paper-and-pencil questionnaires; the second was 2-h long
and involved answering computerized questionnaires and
cognitive tasks; and the third was 2.5-h long and involved
an fMRI scan of the N-back task. The Raven Advanced Pro-
gressive Matrices–Set II (Raven, 2000) and the Cattell Cul-
ture Fair Test (Cattell and Horn, 1978) were included in
the first session as measures of gF. The standard scoring pro-
cedures for each test were used to compute measures from
these tests. These measures were combined into a single
fluid intelligence score by z-scoring the values of each
score separately and then averaging them. Data from these
participants have been used in other articles to address ques-
tions distinct from those in the current study (Burgess et al.,
2011; Cole et al., 2012; DeYoung et al., 2009, 2010; Fales
et al., 2008; Shamosh et al., 2008).

One hundred twenty-one participants (70 female; mean
age = 23, range = 18–40) were recruited from the undergrad-

uate population at Washington University (n = 60) or sur-
rounding communities and received financial remuneration
for their participation. The experiment was approved by
the Washington University Institutional Review Board. The
same 94 participants used in Cole et al. (2012) were used
here (see that study for exclusion criteria).

fMRI data acquisition and preprocessing

Whole-brain images were acquired on a 3 Tesla Allegra
System (Siemens, Erlangen, Germany). Structural images
were acquired using a magnetization-prepared rapid gradient-
echo T1-weighted sequence. Functional images were acquired
using an asymmetric spin-echo echo-planar sequence sensitive
to blood-oxygen-level-dependent magnetic susceptibility
(TR = 2360 msec, TE = 50 msec, flip = 90�). Each scanning
run gave 149 sets of brain volumes (32 contiguous, 4-mm-
thick axial images, 4 · 4-mm in-plane resolution).

Resting-state fcMRI preprocessing was performed identi-
cal to that of Cole et al. (2012). Functional images were
extracted from the rest periods between task blocks using a
previously validated method (Fair et al., 2007). Although
there are some criticisms of using signal between task blocks
as rest (Barnes et al., 2009), we minimized these concerns in
the following way (see Cole et al., 2012 for further consider-
ation of this issue): We used rest images that were 14.16 sec
(six frames) or more past the end of every task block and
4.72 sec (two frames) or fewer into the start of every task
block. Furthermore, the mean signal amplitude for each
rest block was subtracted for each voxel before rest block
concatenation. There were 3 rest blocks per run, resulting
in 35 rest frames per run (after removing the first 5 frames
of each run). There were 8.26 min of rest total (across the
six runs) per participant.

FIG. 1. Connector versus provincial hubs. Two hypothetical networks are illustrated, with key nodes highlighted. The left
highlighted node is a connector hub, which is critical for across-network communication. In contrast, the right highlighted
node is a provincial hub, which is important for within-network communication, but not across-network communication.
Both the connector hub and provincial hub have high global brain connectivity (GBC)/degree centrality (number of connec-
tions), while the connector hub has high betweenness centrality and a high participation coefficient. Specifically, the provin-
cial hub has a degree of 5, betweenness of 18.7 (calculated based on 7 shortest paths through the node), and participation of 0.
In contrast, the connector hub has a degree of 4, betweenness of 50 (calculated based on 24 shortest paths through the node),
and participation of 0.5 (half of the node’s connections are within network and half across network).
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These resting-state functional images were further prepro-
cessed using AFNI (Cox, 1996) with the following steps (in
the indicated order): (1) slice-time correction, (2) removal of
first five images from each run to reach steady state, (3) rigid
body motion correction, (4) removal of a set of nuisance re-
gressors, including signals from the ventricles, deep white
matter, whole-brain average, motion correction parameters,
and first derivatives of these regressors, (5) additional removal
of local white matter (using 16-mm radii spheres) nuisance re-
gressors on a voxel-wise basis (ANATICOR) (Jo et al., 2010),
(6) band-pass filtering (0.009 < f(t) < 0.08), and (7) smoothing
with a 6-mm spherical dilation of gray matter voxels (to avoid
averaging nonbrain voxel noise with the gray matter). These
steps helped to ensure that spurious signal confounds did not
impact our results. Finally, following GBC processing, but be-
fore group analysis, the images were transformed into atlas
space (Talairach and Tournoux, 1988).

Region definition

We used the 264-region set presented by Power et al.
(2011) with several modifications. Our hypotheses were spe-
cific to the LPFC region identified in Cole et al. (2012), so we
added that region as a sphere such that we used a 265-region
set. This region was defined based on individual differences
in activation amplitudes correlating with N-back task perfor-
mance (Cole et al., 2012). When adding the 265th region, 2
nearby regions overlapped by a single voxel each. To ensure
that each region was independent of every other, we moved
these 2 nearby regions by a single voxel for the 265-region
set. We also carried out our analyses with the original 264-
region set and found that the connectivity of the regions
nearby LPFC did not significantly correlate with fluid intel-
ligence. Note that we assigned the LPFC region to the same
network as the two nearby regions: the frontoparietal control
network.

Power et al. (2011) presented several region network seg-
mentations based on different connection density thresholds.
We used their 2% connection density segmentation for our
analyses, given that of all the tested segmentations, it best
separated networks known to be distinct (such as the auditory
network) (Power et al., 2011).

Graph theoretical analyses

Graph theoretical analyses were carried out with MAT-
LAB (version 2008a) using in-house code and the Brain Con-
nectivity Toolbox (Rubinov and Sporns, 2010). Functional
connectivity was estimated as the Fisher z-transformed cor-
relation between each pairwise regions’ time series (the av-
erage of the voxels’ time series within each region). GBC
was calculated as the average connectivity of each region
with all other regions. In graph theoretical terms, GBC was
the weighted degree centrality (or strength) divided by the
total number of connections. We calculated weighted between-
ness centrality as the number of shortest paths through a region
(the Brain Connectivity Toolbox function ‘‘betweenness-wei’’)
divided by the total number of connections. The participation
coefficient was calculated using the regional community assign-
ments from Power et al. (2011) at the 2% threshold and the
Brain Connectivity Toolbox function ‘‘participation_coef.’’
We calculated the participation coefficient results across three
connectivity density thresholds: 10%, 5%, and 1%.

We applied transformations on the graph theoretical
metrics to achieve normal distributions for the Pearson’s cor-
relation tests. The GBC values were nearly normally distrib-
uted, but better fit a normal distribution (assessed using
histograms and QQ-plots) using a square-root transforma-
tion. Weighted betweenness was skewed to the left, but a
square-root transformation made it approximately normally
distributed. Participation was skewed strongly to the right
and we found that only a complex inverse transformation
[1/(�1 · pc + 1)] made it approximately normally distributed.
We also performed Spearman’s correlation tests (which do
not assume a normal distribution) on the nontransformed
metrics and achieved similar results.

Results

Using GBC to predict gF with a predefined set of regions

It has recently been argued that using a voxel-wise
approach, as in our previous demonstration of an LPFC
GBC-gF correlation is problematic for characterizing brain
connectivity (Wig et al., 2011). Rather than identifying a re-
gion’s true graph theoretical properties, a voxel-wise approach
can distort results toward large regions. One solution to these
issues—which we applied here—is to use a large set of equal-
sized functionally defined regions of interest (ROIs) from
every major system of the brain (Power et al., 2011) (Fig. 2A).

A replication of the LPFC GBC-gF effect would be non-
trivial, despite using the same large dataset as our previous
study (Cole et al., 2012), given that the GBC calculation
now includes only 11.8% of the voxels included in the
voxel-wise analysis in the previous study. We first replicated
the finding that LPFC is a GBC hub region, defined as being
in the top 10% of ROIs. We found that LPFC’s GBC was in
the top 3.4% for positive connections (top 4.5% for abso-
lute values, including both positive and negative connec-
tions). Furthermore, we replicated the finding that
LPFC’s GBC correlated significantly with gF (r = 0.28,
p = 0.006) (Fig. 3A), suggesting the previous results were
not biased by region size and validating the 265 ROI set
for subsequent analyses.

Like the previous study, no other regions showed a signif-
icant GBC-gF effect ( p < 0.05, false discovery rate corrected
for multiple comparisons). This was also the case when the
original 264 ROI set was used. Note that the standard statis-
tical tests used do not provide evidence that LPFC is exclu-
sive in this GBC-gF relationship. Furthermore, it will be
important for future studies to explore the possibility of
other regions also having this relationship.

Determining if LPFC is a connector hub

LPFC’s high GBC could be due to extensive within-
network connectivity—consistent with a provincial hub—
rather than extensive across-network connectivity—consis-
tent with a connector hub (Fig. 1). We used the participation
coefficient to determine if LPFC has an especially extensive
amount of across-network connectivity (relative to within-
network connectivity) compared to other regions (Guimera
et al., 2005). The participation coefficient was calculated
across three connectivity density thresholds (top 10% of con-
nections, top 5% of connections, and top 1% of connections)
to test for generalizability of the results. Networks were
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defined using the region community parcellation (density
threshold of 2%) from Power et al. (2011). We considered
a region to be a connector hub if it was within the top 10%
of regions in terms of participation coefficient. LPFC was
in the top 8% (for the 10% connectivity density threshold),
the top 3% (for the 5% connectivity density threshold), and
the top 2% (for the 1% connectivity density threshold).
This suggests that LPFC is a connector hub with more
across-network (relative to within-network) connections
than most brain regions.

We also measured across-network connectivity using be-
tweenness centrality, which estimates the number of shortest
paths that goes through a given brain region (Rubinov and
Sporns, 2010). Connector hubs typically have high between-
ness centrality because regions with many across-network
connections tend to provide the shortest paths between
many nodes in different networks. Given that GBC is
weighted and normalized by the number of connections
(i.e., the average of the connection weights/strengths), we
sought to parallel the GBC approach by using weighted be-
tweenness centrality normalized by the total number of con-
nections. As expected, we found that LPFC was also a
connector hub in terms of betweenness centrality, given
that it was in the top 10.6% of regions (just over the 10% cut-
off) using positive connections only and top 6.3% of regions
using the absolute value of connections (including both pos-
itive and negative values). Results were virtually identical

when the two regions closest to the LPFC region were ex-
cluded for this analysis.

To further establish the LPFC region’s broad across-
network connectivity, we calculated the percentage of possi-
ble connections that the LPFC region actually made with
each network (Table 1). There were statistically significant
functional connections with every network. The network
with the fewest number of LPFC connections was the ventral
attention network. Even for this network, over a third of its
regions were significantly connected with LPFC, suggesting
that LPFC has a strong influence and/or monitoring ability
with every major network in the brain.

Identifying a provincial hub for comparison with LPFC

In order for the previous hypothesis (that LPFC has high
betweenness, participation, and GBC) to be valid, it must
be falsifiable. In other words, betweenness, participation,
and GBC cannot be perfectly correlated, and there should
be cases in which regions have high GBC, but low between-
ness and participation (provincial hubs; Fig. 1). To verify
that this is the case, we took the across-subject mean for
each region and tested for Spearman’s ranked correlations
between the metrics across the 265 regions. All three metrics
were significantly, but not perfectly correlated, as expected.
Specifically, GBC was imperfectly correlated with be-
tweenness at rho = 0.82, p < 0.00001; GBC was imperfectly

FIG. 2. Location and graph
theoretical ranking of lateral
prefrontal cortex (LPFC). (A)
The left hemisphere regions
and network segmentations
(each network is a different
color) from Power et al.
(2011). The left LPFC region
from Cole et al. (2012) was
added and highlighted with a
circle. (B) A histogram of
GBC values across all 265
regions, with the ranking of
LPFC highlighted. (C) A
histogram of betweenness,
with LPFC’s ranking high-
lighted. (D) A histogram of
participation, with LPFC’s
ranking highlighted. LPFC
was within the top *10% of
all three graph theoretical
metrics.
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correlated with participation (5% density threshold) at
rho = 0.43, p < 0.00001; and betweenness was imperfectly
correlated with participation at rho = 0.26, p < 0.0001.

We looked for provincial hub regions using the relatively
strict criteria of a region that is in the top 10% GBC and bot-
tom 90% betweenness and participation. There were a vari-
ety of regions that were in the top 10% GBC and the
bottom 90% of either betweenness or participation, but
only a single region survived all three criteria: left primary
auditory cortex (A1; Talairach coordinates: �58, �27, 13).
Specifically, A1 was in the top 10.2% GBC, bottom 81% be-
tweenness, and bottom 70.2% participation. This demon-
strates that, in contrast to LPFC, it is possible for a region

to have high within-network connectivity and low across-
network connectivity—consistent with a provincial hub.

Determining if across-network connectivity
of LPFC predicts gF

We next more directly tested our hypothesis that the in-
creased across-network LPFC connectivity would be associ-
ated with increased gF across individuals. We found that
LPFC betweenness correlated strongly with gF (r = 0.31,
p = 0.002 for positive only connectivity, r = 0.23, p = 0.03 for
negative only connectivity, and r = 0.32, p = 0.001 for absolute
value connectivity), supporting our hypothesis (Fig. 3).

A B

C

FIG. 3. LPFC graph theoretical cor-
relations with fluid intelligence. (A)
The correlation between LPFC GBC
and fluid intelligence. (B) The corre-
lation between LPFC betweenness and
fluid intelligence. (C) The correlation
between LPFC betweenness and fluid
intelligence, after regressing GBC
variance out of both betweenness and
fluid intelligence. The correlation re-
mains significant, suggesting that
LPFC multinetwork connectivity in-
dependently contributes to fluid intel-
ligence.

Table 1. Percentage of Possible Connections Between Lateral Prefrontal Cortex and Each Network

FPN SAL SSM SSH DMN COP VIS AUD DAN SUB NONE MEM CBM VAN

84.6% 83.3% 80.0% 76.7% 72.4% 71.4% 71.0% 69.2% 63.6% 61.5% 60.7% 60.0% 50.0% 33.3%

Results were obtained by computing which possible LPFC connections were statistically significant relative to 0 (FDR-corrected) and then
dividing the number of significant connections with each network by the total number of regions in each network.

AUD, auditory network; CBM, cerebellum; COP, cingulo-opercular task; DAN, dorsal attention network; DMN, default-mode network;
FPN, frontoparietal network; LPFC, lateral prefrontal cortex; MEM, memory retrieval; NONE, uncertain/unidentified regions; SAL, salience
network; SSH, somatosensory hand; SSM, somatosensory mouth; SUB, subcortical; VAN, ventral attention network; VIS, visual network.
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We had begun by testing for an LPFC participation coef-
ficient correlation with gF, yet we found that the partici-
pation coefficient’s statistical properties were not ideal for
identifying correlations. In particular, the participation coef-
ficient values tended to be strongly skewed to the right,
violating the normality assumption behind Pearson’s correla-
tions. Note that, we are referring here to the across-subject
distributions used for calculating correlations with gF, not
the across-region distributions depicted in Figure 2 (which
were approximately normally distributed). Furthermore, the
strong clustering of values across participants suggested
that even nonparametric tests such as Spearman’s correla-
tions might not be effective since the relative ordering of val-
ues across participants might not be very meaningful. We
nonetheless tested for correlations between the participation
coefficient and gF, finding no correlation using an inverse
transformation to achieve normality with Pearson’s correla-
tion (10% density: r = 0.11, p = 0.28; 5% density: r = 0.17,
p = 0.09; 1% density: r = 0.16, p = 0.12). Similarly, there
was no correlation when using Spearman’s rank-order corre-
lation (10% density: rho = 0.07, p = 0.5; 5% density:
rho = 0.14, p = 0.19; 1% density: rho = 0.15, p = 0.15).

In contrast to the participation coefficient, betweenness
centrality had better statistical properties for correlation
tests. The LPFC betweenness distribution was slightly skewed
to the left, but results were similar with (r = 0.31, p = 0.002)
and without (r = 0.30, p = 0.003) a square root transformation
(to achieve normality), when using a nonparametric Spear-
man’s correlation test (rho = 0.30, p = 0.004) and when using
unweighted betweenness (10% and 5% density thresholds;
r = 0.23, p = 0.024). These results suggest that LPFC across-
network connectivity is strongly associated with gF across
individuals.

Random-walk betweenness centrality

One limitation of standard betweenness centrality is that
it assumes that brain activity flows through shortest paths.
It is unknown if brain activity actually flows through short-
est paths, and it remains unclear how any brain activ-
ity would know the shortest path to its destination to take
it. We therefore used a recently developed graph theoreti-
cal measure—random-walk betweenness centrality—that
estimates betweenness centrality based on a large number
of random paths rather than shortest paths (Newman,
2005). This may better model how activity flows within
brain networks.

We found that fluid intelligence was also correlated with
the LPFC region’s random-walk betweenness (r = 0.26,
p = 0.01). This was also the case when using Spearman’s cor-
relation (rho = 0.23, p = 0.03), when including only negative
connections (r = 0.24, p = 0.02) and the absolute value of the
connections (r = 0.29, p = 0.004). The consistency of these re-
sults with the main betweenness analysis suggests that the
shortest path assumption for that analysis was not problematic.

Assessing the independence of LPFC betweenness
and GBC

We next hypothesized that the relationship between LPFC
across-network connectivity and gF was largely independent
of the GBC-gF correlation identified previously (Fig. 3A).
Consistent with this hypothesis, we found that the LPFC

betweenness-gF correlation—which primarily reflects
across-network connectivity—remained statistically signifi-
cant after regressing out LPFC GBC variance (from both be-
tweenness and gF): r = 0.22, p = 0.036 (Fig. 3C). In contrast,
regressing out LPFC betweenness variance (from both GBC
and gF) resulted in a nonsignificant LPFC GBC-gF correla-
tion: r = 0.17, p = 0.11. We achieved a similar result using
multilevel linear modeling, with GBC predicting gF signifi-
cantly (F(1,92) = 7.8, p = 0.006) and increasing in significance
when including betweenness in the model (F(2,91) = 6.3,
p = 0.003). This increase in predictive power was statistically
significant (F(1,91) = 4.5, p = 0.037). Together, these results
suggest that betweenness provided an independent and rel-
atively cleaner estimate than GBC of the connectivity
property—likely across-network connectivity—underlying
the LPFC connectivity-gF correlation.

Discussion

We previously showed that LPFC is a hub region with es-
pecially high global connectivity and this global connectivity
can predict individuals’ fluid intelligence (Cole et al., 2012).
This suggested that LPFC might support fluid intelligence
abilities through its extensive brain-wide connectivity. Crit-
ically, however, global connectivity reflects local within-
network connectivity in addition to across-network connec-
tivity, such that the previous findings may have resulted pri-
marily from local rather than truly global connectivity. In
this study, we tested the hypothesis that LPFC is a truly
global connector hub with extensive across-network connec-
tivity and this connectivity contributes to fluid intelligence
independent of within-network connectivity.

We used two graph theoretical metrics to isolate across-
network connectivity: betweenness centrality and participa-
tion coefficient. Participation uses a predefined network
segmentation to calculate the number of across-network con-
nections relative to the number of within-network connec-
tions (Guimera et al., 2005). Betweenness measures the
number of shortest paths passing through each region,
which tends to be especially high for connector hubs (due
to entire networks needing to pass through such hubs to
reach other networks) (Rubinov and Sporns, 2010). We
also used an alternate betweenness measure (random-walk
betweenness centrality) that does not assume activity flows
between networks through shortest paths, obtaining similar
results. Importantly, unlike participation, betweenness does
not require network segmentation, such that any inaccuracies
in network segmentation will not affect betweenness. This—
along with the observed nonnormal participation coefficient
distribution—may explain the less robust results using par-
ticipation relative to betweenness.

We found that LPFC is a truly global connector hub
according to all of these metrics (including participation co-
efficient). Compatible with our hypothesis, LPFC between-
ness predicted fluid intelligence over and above global
connectivity, demonstrating a strong relationship between
across-network connectivity and fluid intelligence.

Several previous studies have found that regions within
the default-mode network and frontoparietal control network
have among the highest connectivity in the brain (Buckner
et al., 2009; Cole et al., 2010b). It has been recently pointed
out, however, that these findings may have been biased by
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these networks being especially large (resulting in extensive
within-network connectivity contributing to global connec-
tivity estimates) and/or by regions within these networks
being especially big (resulting in disproportionate numbers
of voxels contributing to global connectivity estimates)
(Wig et al., 2011). We accounted for the size of LPFC’s net-
work using betweenness and participation measures—which
primarily estimate across-network connectivity. We further
accounted for region size biases to connectivity estimates
by using a set of uniform spheres throughout the brain
(Fig. 2A). In agreement with our findings, a previous study
using these same regions found that regions within the fron-
toparietal control network (which LPFC is a member of)
tended to have high across-network connectivity, while the
default-mode network had primarily within-network connec-
tivity (Power et al., 2011).

The finding that LPFC has extensive across-network con-
nectivity that predicts fluid intelligence supports the possibil-
ity that LPFC is a truly global flexible hub (Cole et al., 2012,
2013; Miller and Cohen, 2001). This account suggests that
LPFC may be able to shift its connectivity in a task-
dependent manner (Cole et al., 2010a, 2013; Rowe et al.,
2005) to dynamically configure brain networks according
to goal representations likely actively maintained within
LPFC. According to this account, the present findings
based on resting-state functional connectivity likely demon-
strate that individuals with greater intrinsic functional LPFC
connectivity have a goal-driven access to a wider variety
of potentially task-relevant brain regions. Further research
is necessary to test if higher across-network resting-state
functional connectivity facilitates flexible task-dependent
changes in connectivity, as predicted by this flexible hub
hypothesis. It will also be critical to explore the role of
across-network connectivity of other brain regions (e.g.,
frontoparietal regions other than the LPFC region used
here) in supporting higher-level cognition.

Conclusion

We previously demonstrated a correlation between LPFC
global connectivity and fluid intelligence, yet it was unclear
if that result might have been biased by local within-network
connectivity. We showed here that fluid intelligence was sig-
nificantly correlated with LPFC across-network connectiv-
ity, supporting the conclusion that LPFC’s extensive brain-
wide connectivity contributes to fluid intelligence. It will
be important for future research to investigate the relation-
ship between LPFC’s across-network resting-state functional
connectivity and LPFC’s structural connectivity, task-
dependent shifts in connectivity, and the task activity, in ad-
dition to how they all relate to LPFC’s contribution to fluid
intelligence.
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