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Abstract

The relationship between structural and functional brain networks is still highly debated. Most previous studies
have used a single functional imaging modality to analyze this relationship. In this work, we use multimodal
data, from functional MRI, magnetoencephalography, and diffusion tensor imaging, and assume that there exists
a mapping between the connectivity matrices of the resting-state functional and structural networks. We investi-
gate this mapping employing group averaged as well as individual data. We indeed find a significantly high good-
ness of fit level for this structure–function mapping. Our analysis suggests that a functional connection is shaped by
all walks up to the diameter in the structural network in both modality cases. When analyzing the inverse mapping,
from function to structure, longer walks in the functional network also seem to possess minor influence on the struc-
tural connection strengths. Even though similar overall properties for the structure–function mapping are found for
different functional modalities, our results indicate that the structure–function relationship is modality dependent.
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Introduction

Applying network science has become a common
practice in neuroscience to understand functional inter-

actions in the healthy brain and identify abnormalities in
brain disorders (Stam, 2014). The collection of these func-
tional connections is often referred to as the functional net-
work and is facilitated by the underlying structural network,
that is, the set of physical connections between neuronal pop-
ulations. At the same time, functional connections influence
modulations of these physical connections by long-term po-
tentiation, plasticity, or neuromodulation.

In recent years, there has been an increasing interest to un-
derstand the emergence of functional brain networks given
the constraints of the underlying structural network (Abdeln-
our et al., 2014; Deco et al., 2012; Honey et al., 2009; Senden
et al., 2014). However, the mutual relationship between the
structural and functional networks remains highly debated
(Deco et al., 2014; Robinson, 2012; Robinson et al., 2014).

Empirical studies have revealed an overlap between struc-
tural and (resting-state) functional connections, that is, the

presence of both a structural and functional connection be-
tween two brain regions (Hermundstad et al., 2013; Skudlar-
ski et al., 2008; van den Heuvel et al., 2009). However, this
overlap is imperfect as functional interactions between
brain regions exist in the absence of direct structural connec-
tions, and also, indirect structural connections with the length
of two links cannot fully account for these functional connec-
tions either (Honey et al., 2009).

Moreover, the overlap between structural and functional
connections also depends on the time scale considered, where
functional connections estimated from larger time windows
strongly overlap with the underlying structural connections,
for smaller time windows there can be a structural–functional
network discrepancy due to distributed delays between neuro-
nal populations that cause transient phase (de-)synchronization
(Honey et al., 2007; Messé et al., 2014; Ton et al., 2014).

On larger time scales, several properties of the underlying
structural network have been shown to play an essential role
in shaping the functional networks, such as the Euclidian dis-
tance between two brain regions (Alexander-Bloch et al.,
2013). However, taking into account Euclidean distance
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alone is insufficient to explain the emergence of long-range
functional connections (Vértes et al., 2012).

Two recent studies showed that such long-range func-
tional connections may be explained by the product of the
degree of two nodes in the structural network, indicating
the crucial role of structural hubs for explaining long-range
functional connections (Stam et al., 2015; Tewarie et al.,
2014). Moreover, Goñi and colleagues (2014) demonstrated
that shortest paths in the structural network and perturbations
from these paths are strong predictors for functional connec-
tions as these paths are favorable because of metabolic effi-
ciency and fast communication.

Given these dependencies between structural and functional
networks, the challenge is to integrate these different interdepen-
dencies into a single framework, for which we may need a more
abstract representation. For example, a significant overlap in the
connectivity profile of structural and functional networks sug-
gests that part of the functional network connectivity matrix is
a linear mapping from its structural counterpart. In addition,

functional connections can also be accounted for by several
other higher order features of the structural network as outlined
above, which refer to nonlinear relationships [see Tewarie et al.
(2014) for an example of such nonlinearity].

Based on the presence of these linear and nonlinear features of
the relationship between structural and functional networks, we
go one step further by assuming that there is a mathematical
function that maps the adjacency matrix of the structural network
on that of the (resting-state) functional network and vice versa
[see Fig. 1b and Eq. (1) below]. If we further assume that our
mathematical function is analytic (Titchmarsh, 1939; Whittaker
et al., 1996), then the map between structural and functional
network can be expressed by a weighted sum of the matrix
powers as explained in Mathematical Background section.

Our method consists of a data-driven approach, from
which the successive coefficients of this matrix mapping
are determined. The major advantage of our method is that
an a-priori specific form of a function is not needed. Another
implication of such a function is the possible existence of an

FIG. 1. (a) Visualization of the structural and functional brain network (for fMRI and MEG) for the group-averaged data
set, the colors of the different regions represent here their node strength (i.e., the sum of their surrounding link weights). (b)
Visualization of the mapping between their adjacency matrices. fMRI, functional MRI; MEG, magnetoencephalography.
Color images available online at www.liebertpub.com/brain
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inverse function, that is, a mapping from functional networks
back to structural networks.

Most previous studies have found relationships between
structural and functional networks using a single functional
neuroimaging modality (Damoiseaux and Greicius, 2009;
Honey et al., 2009), often using functional MRI (fMRI). As
the fMRI response is an indirect measure for the neuronal ac-
tivity and contains nonneuronal signals, a structure–function
dependency based on this modality could deviate from the
same dependency derived from neuroimaging modalities that
directly measure the neuronal activity and connectivity. In
contrast to fMRI, magnetoencephalography (MEG) measures
the neuronal activity and connectivity directly with excellent
temporal resolution.

However, given the increasing interest in multimodal imag-
ing approaches, there is a need to understand the modality de-
pendency of the structure–function relationship in a single
framework. A data-driven approach in the form of a matrix
function may be helpful when investigating the modality de-
pendency of the structural–functional network relationship:
different modality-dependent coefficients may point to differ-
ent specific functions for each modality. The relevance of elu-
cidating the modality dependency of a mathematical function
can be extended to the clinical field where we could answer
questions such as the following: which modality would be
the most sensitive for picking up functional network changes
given disease-specific structural network damage?

The aim of this study is to analyze the structural–func-
tional network relationship through a mathematical function
in a multimodal framework. We use two datasets containing
multimodal imaging data ranging from diffusion tensor im-
aging (DTI) data to MEG and fMRI data. We extend our
analysis by also considering the relationship between struc-
tural and functional networks at the subject level in a third
data set and finally discuss how that relationship can be inter-
preted neurobiologically.

Materials and Methods

Participants and data acquisition

In total, we use three data sets, which have been used in differ-
ent previous studies. The first two data sets are group-averaged
data sets, obtained from two different centers, but analyzed to-
gether in one mapping.

(i) A group-averaged structural imaging data set, that is,
a DTI network from 80 healthy subjects in 78 cortical
automated anatomical labeling (AAL) brain areas
(Gong et al., 2009).

(ii) Two group-averaged data sets with functional imag-
ing data, that is, resting-state MEG and fMRI signals
in the same 78 AAL cortical areas, one with 17 and
another with 21 healthy subjects (Tewarie et al.,
2014, 2015).

(iii) An individual data set from 11 healthy subjects’
structural and functional imaging data, that is, with
DTI, resting-state MEG, and fMRI time courses in
219 brain areas (Douw et al., 2015).

For the group-averaged structural connectivity matrix, we
use a literature-based structural network [data set (i)] (Gong

et al., 2009). In every subject, cortical regions in the AAL
atlas were considered to be connected if the end-points of
two white matter tracts were located in these regions (Gong
et al., 2009). Then, a group-averaged structural connectivity
matrix was obtained by testing each possible connection for
its significance using a nonparametric sign test.

For the group-averaged functional imaging data set [data
set (ii)], we use data obtained from our own imaging center.
We employ the first data set with 17 healthy controls for our
main analysis and the second data set from 21 healthy con-
trols only for validation (Tewarie et al., 2014, 2015). The
study was approved by the institutional ethics review board
of the VUmc and all subjects gave written informed consent
before participation. Both fMRI and MEG data sets under-
went to some extent different pipelines (Tewarie et al.,
2014, 2015) and are obtained from two different MEG scan-
ners (CTF and Elekta). Detailed information about data acqui-
sition and postprocessing can be found in the previous articles.

In short, for both MEG and fMRI, cortical networks were
constructed using the same cortical AAL regions as for the
structural network consisting of 78 cortical regions (Gong
et al., 2009). The Pearson correlation coefficient was com-
puted between time signals to construct functional networks
for fMRI for each subject (the absolute value was taken to
avoid negative matrix elements).

For MEG, a beamformer approach was used to reconstruct the
neuronal activity in AAL regions. Subsequently, the phase lag
index (PLI), a measure for phase synchronization, was computed
between time series to reconstruct a functional connectivity ma-
trix for each subject in the alpha2 frequency band (10–13 Hz)
(Stam et al., 2007). This study can be considered a continuation
from previous work where we found a strong relationship be-
tween structural and functional networks in the alpha2 band,
and therefore, we limited our analysis to this frequency band,
although the fit could be generalized (Tewarie et al., 2014).

Similar to the structural connectivity matrix, we averaged
functional connectivity matrices across subjects for fMRI
and MEG separately to obtain one group-averaged functional
connectivity matrix for each modality. The averaging over
multiple subjects was pursued in the attempt of reducing noise.

For the individual data set [data set (iii)], eleven healthy par-
ticipants were included, exclusion criteria being psychiatric or
neurological disease and use of medication influencing the
central nervous system. This study was approved by MGHs in-
stitutional review board, and was performed in accordance
with the Declaration of Helsinki. All participants gave written
informed consent before participation. Preprocessing method-
ology of the DTI and fMRI data has been described in detail
before (Douw et al., 2015). In short, a surface-based atlas ap-
proach was used for connectivity analysis of the fMRI and
DTI data, using a parcellation scheme with 219 cortical surface
parcels (Daducci et al., 2012; Gerhard et al., 2011). In addition,
for every entry of the fMRI-based adjacency matrix, the abso-
lute value was taken to avoid negative matrix elements.

MEG eyes-open resting-state data were collected in a
magnetically shielded room with a 306-channel whole-
head system (Elekta-Neuromag) and a sampling rate at
1037 Hz. Vertical and horizontal electrooculograms were ac-
quired simultaneously for off-line eye-movement artifact re-
jection. Head positions relative to the MEG sensors were
recorded from four head-position indicator coils attached to
the scalp. Landmark points of the head were digitized
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using a 3D digitizer (Polhemus FASTRAK). MEG data un-
derwent a number of preprocessing steps: (1) bad channel
and bad epoch rejection, (2) eye-movement artifact removal
by Signal Space Projection, (3) downsampling with a deci-
mate factor of 8 (to reduce computational expense).

To compute the physical forward solution (lead fields), a
single-layer boundary element method was applied to
model the brain volume conduction, following an established
procedure (Hämäläinen and Sarvas, 1987). The lead field of
freely oriented dipoles was then evaluated at each location.
In solving the inverse problem, current density at each source
location was approximated by a minimum two-norm esti-
mate in the same six frequency bands as was used for the sec-
ond dataset (Hämäläinen and Ilmoniemi, 1994), with noise
covariance computed from empty-room recordings on the
same day (also band-pass filtered).

For each subject, the cortical surface defined by the bound-
ary between the gray and the white matter was reconstructed
using FreeSurfer (Fischl et al., 1999), after which time series
from the above-mentioned 219 cortical surface parcels were
reconstructed. The PLI was used as a connectivity measure
on these time series (Stam et al., 2007). An average connectiv-
ity matrix per participant was calculated over all epochs.

Mathematical background

We will refer to matrix A as the binary adjacency matrix of
the structural network for the group-averaged data [data set
(i)] and to matrix W as one of the possible representations
of the functional networks, WMEG for MEG functional net-
works and WfMRI for fMRI functional networks. Both A
and W are N · N symmetric matrices, where N equals the
number of cortical regions [N = 78 for data set (i) and (ii);
N = 219 for data set (iii)]. For both group-averaged and indi-
vidual data, the matrix W has real elements wij between 0 and
1. In the case of the individual data, the structural network is
described by a weighted adjacency matrix V with real ele-
ments between 0 and 1.

As mentioned before, we assume that there exists a func-
tion f such that

W = f (A) (1)

or W = f(V) in the case of a weighted structural connectivity
matrix V (see also Fig. 1). Under quite mild conditions (Mar-
kushevich, 1985), the inverse f�1 of the function f exists such
that

A = f � 1(W): (2)

If f(z) is a function of the complex number z and analytic in
a disk with radius R around z0, then f(z) possesses a Taylor
series in the complex plane C that converges for all points
z that lie in a disk with radius R around the point z02C,

f (z) = +
1

k = 0

fk(z0)(z� z0)k with fk(z0) =
1

k!

dkf (z)

dzk

����
z = z0

,

(3)

where jz� z0j < R and R is called the radius of convergence
(Titchmarsh, 1939; Whittaker et al., 1996). It can be shown
(Higham, 2008; Van Mieghem, 2011) that, if f(z) is analytic
around z0 and, hence, possesses a Taylor series Eq. (3), then
for all matrices A, the matrix function f(A) also satisfies this

Taylor series, provided each eigenvalue k of A obeys jk�z0j < R.
Caley-Hamilton’s famous theorem (Van Mieghem, 2011)
states that any square matrix A satisfies its own characteristic
polynomial, which implies that we can write AN = pN� 1(A),
where pn(z) is a polynomial of degree n in z. Iteratively
using the Caley-Hamilton theorem to the powers of k ‡ N
in Eq. (1),

f (A) = +
N� 1

k = 0

fk(z0)(A� z0I)k þ +
1

k = N

fk(z0)(A� z0I)k

shows that +1
k = N

fk(z0)(A� z0I)k can be written as a polyno-
mial of order at most N� 1 in A. In summary, any analytic
function f, defined by Eq. (3), of a matrix A is a polynomial
in A of degree at most N� 1 (N is the number of nodes, here
cortical regions, in the network),

f (A) = +
N� 1

k = 0

ck[f ]Ak, (4)

where ck[f] are coefficients depending on the function f (pro-
vided each eigenvalue k of A lies within the disk, that is,
obeys jk�z0j < R). Because all the analyzed matrices have
only zeros on the diagonal, their trace is 0. Since the trace
equals the sum of the eigenvalues of a matrix (Van Mieghem,
2011), the average of the eigenvalues of the empirical matri-
ces here is zero, which suggests us to choose z0 = 0.

Mathematical methodology

The first term c0[f ] � I in Eq. (4), which is the product of
the constant coefficient c0[f] and the identity matrix I, provi-
des an offset to adjust the diagonal elements of our fitted ma-
trix. To obtain a better goodness of fit, we introduce an
offset also for all nondiagonal elements of our matrix. We
define this offset as the error matrix E = c * J, where J = u * uT

is the all-one matrix, c 2 R and u is the all-one vector, u = (1,
., 1)T. The constant error matrix E can be justified as a first
approximation of the part that we do not know yet about the
mapping between the structural and functional brain net-
work. Thus, our fitting function is defined as

f(K)(A) = +
K

k = 0

ck[f ]AkþE, (5)

where K £ N� 1 is the maximal fitted exponent (N is the di-
mension of matrix A). We use the nonlinear regression algo-
rithm in MATLAB (using the routine nlinfit.m version
R2015a) to estimate the coefficients in Eq. (5) by iterative
least-squares estimation (for details see Supplementary
Information [SI]-H; Supplementary Data are available online
at www.liebertpub.com/brain).

Denoting ~W: = f(K)(A), we evaluate the goodness of fit of
our mappings using the Frobenius norm (Van Mieghem,
2014). In particular, we compute the sum of squared errors
(SSE), slightly modified as

SSE : = +
N

i = 1

+
i

j = 1

(wij� ~wij)
2, (6)

where N = 78 regions in the case of the group-averaged data
and N = 219 in the case of the individual data. In this study,
we only sum the elements of the lower triangular and the
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diagonal because all our matrices are symmetric. Since the
SSEs is proportional to the number of fitted elements and
to compare the different data sets with each other, we intro-
duce a normalized version of SSE where we divide SSE by
the degrees of freedom, which is in our case the number of
fitted elements minus one

SSEnorm : =
+N

i = 1
+i

j = 1
wij� ~wij

� �2

dftop

, (7)

where dftop = N*(N� 1)/2 + N� 1, N number of regions. Sim-
ilarly, we can define the goodness of fit measure from Eq. (7)
for the function f�1: W / A by interchanging W and A in the
description above. When we map all entries of one matrix on
the entries of another matrix, we implement our matrix map-
ping in the so-called topological domain (at the level of the
whole adjacency matrix). The same mapping can also be an-
alyzed in the spectral domain, that is, at the level of the ei-
genvalues of the matrices (see SI-A.3).

Results

Mapping structural networks to functional networks

First, we estimated the coefficients in Eq. (5) for the map-
ping from structural networks to functional networks at the
group level (see Supplementary Table S1 for K = 6). For
both modalities, we can observe that the SSEnorm becomes
lower, that is, the fit becomes better, for increasing number
of terms (Fig. 2). Similarly, with an increasing number of fit-
ted coefficients in Eq. (5), the patterns of the fitted functional
connectivity matrices resemble better the empirical fMRI
and MEG connectivity matrices (Fig. 3, for a complete list
of the ROIs see SI-B.1).

However, for the group-averaged data, there seems to be a
limit for the number of terms, since including terms of 6th
order and higher did not significantly improve the estimation
anymore for both MEG and fMRI under the 5% significance
level. For these group-averaged networks, the best fit was
reached for the mapping f: A / WMEG. We obtained signif-
icantly different values of the estimated coefficients for the
two different modalities under the 5% significance level
(see Supplementary Fig. S10, 95% confidence intervals did
not overlap), indicating a modality-dependent mapping.

For the mapping f: A /WfMRI, estimated coefficient val-
ues showed a clear decrease when going from lower- to
higher-order terms, indicating that lower-order terms in the
expansion Eq. (5) contribute more to the estimation of the
fMRI network (Supplementary Fig. S10). For the mapping
f: A / WMEG, this steep decline in coefficients for higher-
order terms was not observed (see Supplementary Fig.
S10). The SSEnorm for the data set of individual healthy con-
trols was slightly higher (i.e., worse) than for the group-aver-
aged matrices (Fig. 4). Similar to the group level results, the
mapping from structural to MEG networks provided better
fits than from structural to fMRI networks also at the individ-
ual level.

We repeated the same analysis where either the structural
or functional connectivity matrices were substituted by a
reshuffled version of the empirical matrix (for details see SI-
G). The results of this analysis are also displayed in Figure
2, showing a higher SSEnorm for all reshuffled cases compared
to the original matrices, that is, the empirical results differed
significantly ( p < 0.001) from the reshuffled results. In addi-
tion, we observe that the decline in SSEnorm was in most
cases for the reshuffled matrices, rather narrow in compari-
son with the empirical matrices (Fig. 2). Thus, the observed

FIG. 2. Visualization of the fitted matrices for different maximally fitted exponents K (abbreviation: maxexp) for the func-
tion f: A / WfMRI and f: A / WMEG versus the empirical matrices for the group-averaged data set. Color images available
online at www.liebertpub.com/brain
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relationship between structure and function can hardly be
reproduced by any reshuffled versions of the matrices.

For individual networks, the average performance of
the reshuffled matrices was also worse than the empiri-
cal original results (Fig. 4). We tested the empirical re-
sults versus their reshuffles for significant difference
with a Mann–Whitney–Wilcoxon (MWW) test and dis-
played the p-values in Table 1. From these test results, we
can conclude that the mapping f: V / WfMRI was able to out-
perform its random reshuffle for all subjects (see Table 1).
However, the goodness of fit for the mapping f: V /
WMEG was for 5 out of 11 subjects, not better than the ran-
dom reshuffles, indicating that the relation between the two

matrices is less unique than for the anatomical matrix and
the fMRI matrices.

To cross-validate our mapping, we ran the same analysis
on a second group-averaged data set (with similar processing
pipeline) and found overlapping confidence intervals for the
estimated coefficient values (Figs. 5 and 6).

Mapping functional networks to structural networks

By reversing the role of A and W and following the same ap-
proach as before, we obtained goodness of fit values for the
inverse mapping. More specifically, for the group-averaged
data, we acquired better fits when starting from WfMRI than

FIG. 4. SSEnorm for the in-
dividual data set for different
maximally fitted exponents
K (after averaging over all 11
individual SSEnorm results)
displayed together with the
averaged result of the
reshuffled matrices. For each
mapping, we ran the same
analysis with 100 reshuffled
versions of the matrix V and
with 100 reshuffled versions
of matrix W. Color images
available online at www
.liebertpub.com/brain

FIG. 3. SSEnorm for the
group-averaged data set for
different maximally fitted
exponents K displayed to-
gether with the results of the
reshuffled matrices. For each
mapping, we ran the same
analysis with 100 reshuffled
versions of the matrix A and
with 100 reshuffled versions
of matrix W. SSE, sum of
squared errors. Color images
available online at www
.liebertpub.com/brain
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from WMEG (see Figs. 7 and 8). Similar to the mapping from
structural to functional networks, the estimated coefficients
were significantly different under the 5% significance level
for the two modalities for the group-averaged data pointing to-
ward a modality-dependent mapping (see Supplementary Fig.
S11, 95% confidence intervals did not overlap). An overview
of the estimated coefficients for this data set is given in Sup-
plementary Table S1.

Furthermore, similar to the mapping f, no significant im-
provement of the goodness of fit level was found by includ-
ing terms of a higher order than 5 for f�1: WMEG/A. Even
including W5

fMRI in the mapping f�1: WfMRI/A hardly im-
proved the fit (no significant improvement under the 5% sig-
nificance level). Applying the same approach for the

individual data, we were able to reach a lower overall
error, thus a better fit, for f�1 than for f and the differences
in modalities with respect to the residuals were very small
for f�1 (see Fig. 9).

To have a benchmark for the overall residuals, we
again repeated the same analysis with reshuffled matrices.
Similar to f, the function f�1 outperformed the random re-
shuffles for group-averaged networks (see Fig. 7, p-value of
0% for MWW-test). On the subject level, the function f�1

obtained significantly better results for the empirical matri-
ces than their random reshuffles for most of the individuals
under the 5% significance level (two outliers for the p-val-
ues of the MWW-test for f�1: WfMRI/A, see Table 1 and
Fig. 9).

Table 1. p-Values for the Comparison Between SSE
norm

for the Empirical and Reshuffled Matrices

Mapping p1 p2 p3 p4 p5 p6

f�1: WfMRI/V 0.887 <0.001* <0.001* <0.001* 0.002* 0.003*
f: V / WfMRI 0.001* <0.001* <0.001* <0.001* 0.011* <0.001*
f�1: WMEG/V 0.001* <0.001* <0.001* <0.001* <0.001* <0.001*
f: V / WMEG 0.339 <0.001* 0.018* <0.001* <0.001* 0.827

p7 p8 p9 p10 p11

f�1: WfMRI/V <0.001* 0.390 <0.001* <0.001* <0.001*
f: V / WfMRI <0.001* <0.001* <0.001* <0.001* <0.001*
f�1: WMEG/V <0.001* <0.001* 0.001* <0.001* 0.002*
f: V / WMEG <0.001* 0.975 0.815 <0.001* 0130

The matrix V denotes the structural network matrices for the individual data and the different columns are for the different 11 analyzed
persons (p1 till p11). Note that in most cases a significantly better goodness-of-fit was obtained for the empirical matrices than for the
reshuffled matrices ( p < 0.05, indicated with *).

fMRI, functional MRI; MEG, magnetoencephalography; SSE, sum of squared errors.

FIG. 5. Estimated coeffi-
cients for the mapping f:
A / WMEG for K = 5 together
with their 95% confidence
interval for the first group-
averaged data set and a sec-
ond group-averaged data set.
Color images available
online at www.liebertpub
.com/brain
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Again, the same analysis using the second group-averaged
data set for MEG revealed significant differences only for the
estimated coefficients c1[f] and c2[f] from Eq. (5) between
the first and the second data set (for K = 5, Figs. 10 and
11). For fMRI, a significant difference could only be deter-
mined for c1[f], but not for the other estimated coefficients

from Eq. (5), which again cross-validates our mapping be-
tween different data sets.

Moreover, the whole analysis was repeated multiple
times to check for the stability of the estimated coeffi-
cients, which resulted in exactly the same coefficients
every time, underlining the robustness of our results.

FIG. 6. Estimated coeffi-
cients for the mapping f:
A / WfMRI for K = 5 together
with their 95% confidence
interval for the first group-
averaged data set and a sec-
ond group-averaged data set.
Color images available
online at www.liebertpub
.com/brain

FIG. 7. Visualization of the fitted matrices for different maximally fitted exponents K (abbreviation: maxexp) for the func-
tion f�1: WfMRI/A and f�1: WMEG/A versus the empirical matrices for the group-averaged data set. Color images available
online at www.liebertpub.com/brain

A MAPPING BETWEEN STRUCTURAL AND FUNCTIONAL BRAIN NETWORKS 305



We also analyzed in more detail which connections were
well predicted by our approach and which were estimated
less accurately (see Supplementary Figs. S16–S23). A
corresponding analysis in the spectral domain (see SI-
B.2 for the results) illustrated that the estimated coefficient
values were similar to those in the topology domain for the
function f, but not for f�1 (see Supplementary Figs. S6–S9).
The dissimilarities between the spectral and topology domain
are most probably due to eigenvector perturbations between
the different analyzed empirical matrices. These eigenvector

perturbations can probably be traced back to noisy measure-
ments (see SI-F).

Discussion

In this study, we have analyzed the mutual dependency of
structural and (resting-state) functional networks in a multi-
modal framework by assuming that there exists a mathematical
function that allows for a mapping between the two networks.
This function was then analyzed without assuming a priori any

FIG. 8. SSEnorm for the
group-averaged data set for
different maximally fitted
exponents K displayed to-
gether with the results of the
reshuffled matrices. For each
mapping, we ran the same
analysis with 100 reshuffled
versions of the matrix A and
with 100 reshuffled versions
of matrix W. Color images
available online at www
.liebertpub.com/brain

FIG. 9. SSEnorm for the in-
dividual data set for different
maximally fitted exponents K
(after averaging over all 11
individual SSEnorm results)
displayed together with the
averaged result of the
reshuffled matrices. For each
mapping, we ran the same
analysis with 100 reshuffled
versions of the matrix V and
with 100 reshuffled versions
of matrix W. Color images
available online at www
.liebertpub.com/brain
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specifics and by estimating the coefficients for the mappings in
both directions (i.e., structural to functional and functional to
structural networks). Our analysis convincingly implicated
that our assumption of a mapping between the two networks
was justified because we reached overall good fits outperform-
ing random reshuffles and resulting in similar matrix patterns.
However, our results also indicated that the mapping was mo-
dality dependent as the coefficients for mappings with MEG- or
fMRI-based networks significantly differed.

The existence of such a mathematical function points
toward the fact that the functional connectivity of the brain
can be described by a combination of the underlying struc-
tural connections. Because of the stability of the estimated
coefficients and their cross-validation across different data
sets, such a mathematical function could potentially be
used to predict structure from function or vice versa in fu-
ture studies. Also, once we can use this mathematical frame-
work to predict ‘‘healthy’’ functional connectivity, we can

FIG. 10. Estimated coeffi-
cients for the mapping f�1:
WMEG/A for K = 5 together
with their 95% confidence
interval for the first group-
averaged data set and a sec-
ond group-averaged data set.
Color images available
online at www.liebertpub
.com/brain

FIG. 11. Estimated coeffi-
cients for the mapping f�1:
WfMRI/A for K = 5 together
with their 95% confidence
interval for the first group-
averaged data set and a sec-
ond group-averaged data set.
Color images available
online at www.liebertpub
.com/brain
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compare the matrix to the actual measured functional net-
work of the patient and identify possible malicious connec-
tions indicating disease.

Neurobiological interpretation

If we consider the case of a binary structural adjacency ma-
trix, then the matrix element (Ak)ij equals the number of walks
of length k between node i and node j. Each term ck[f]Ak can
be considered the contribution of walks with hopcount k to the
functional network (see Supplementary Fig. S12). In this
study, hopcount is defined as the number of intermediate
links between two nodes in a walk (length of the walk). Our
approach confirms the ideas postulated by Robinson and co-
workers that a functional connection can be regarded as a
sum of all possible walks between two regions (Robinson,
2012; Robinson et al., 2014). In addition, our approach returns
the coefficients ck[f], which can be interpreted as the influence
of all walks with hopcount k (see Supplementary Table S1 and
Supplementary Fig. S12).

In contrast to a path, a walk can traverse the same node
more than once. Potential loops in walks are also in line
with the belief that reentry loops can act as a resonating sys-
tem to enhance a signal that needs to be spread over a long
distance (Goñi et al., 2014).

In contrast to most previous studies, we followed a multi-
modal approach analyzing the mapping for MEG and fMRI
data. As opposed to studies that assumed a specific function
beforehand, we followed a data-driven approach by fitting
coefficients of the general expression Eq. (5). More pre-
cisely, fMRI networks seemed to be shaped by walks of
lower hopcount in the structural network since the coeffi-
cients were higher for these configurations (see Supplemen-
tary Fig. S10). In contrast, for MEG networks all walks from
the underlying structural network up to hopcount 5 appeared
to contribute more or less equally to the resulting fitted func-
tional network matrix (see Supplementary Fig. S11). Overall,
we found that estimations from structural networks were
more accurate when predicting MEG networks on both indi-
vidual and group level than when predicting fMRI networks.

However, when the functional network was used to predict
the structural one, we saw only small differences at the indi-
vidual level between the modalities, but at the group level the
fitting using fMRI matrices performed better. These observa-
tions together with the significantly different coefficients for
MEG and fMRI confirm the modality dependency of the
mapping.

If q denotes the diameter of the network, defined as the
hopcount of the longest shortest path in a graph (Van Mie-
ghem, 2011), our analysis for both fMRI and MEG suggests
that the diameter of the unweighted structural network (q = 6)
is directly related to the number of terms K = 5 in Eq. (5) that
are sufficient for the best fit of the mapping from structural to
functional networks. Hence, a functional connection between
two regions seems only to be shaped by walks in the struc-
tural network that are shorter than the diameter of this struc-
tural network. The important role of the diameter in this
fitting procedure can also be mathematically justified (see
also SI-A.2).

Besides the possibility of predicting the functional network
using the structural network, our analysis also has practical
implications on how communication processes the shape

brain activity. Bullmore and Sporns (2012) proposed the hy-
pothesis that the brain is optimized for efficiency and robust-
ness. Our findings seem to be in line with this idea since the
brain seems to use not only (structural) shortest paths (most
efficient from a network perspective) for communication
but is also transmitting information through less-efficient
paths or walks. Thus, there seems to be some kind of degen-
eracy in the brain (Price and Friston, 2002). From a network
science perspective, spreading information not only through
the shortest path makes the (healthy) brain function more ro-
bust against link breakage.

However, there seems to be an upper bound for the length
of the paths that the brain uses for communication, which
corresponds to the diameter of the structural brain network.
Walks that are longer than the diameter are highly inefficient
for communication. The diameter therefore seems to symbol-
ize the trade-off between efficiency and robustness (Bull-
more and Sporns, 2012). It is this degeneracy and
robustness that could keep two regions functionally con-
nected when the direct structural connection is damaged in
disease.

In multiple sclerosis, the structural network gets damaged
due to lesions and diffused white matter damage. With this
theory we could predict which detours are likely to be
taken for functional connections to uphold (sub)-optimal net-
work efficiency. Thus, based on the damaged structural net-
work, we could be able to make predictions on how this
damaged structural network might map on a functional net-
work. These practical implications seem to agree with sev-
eral studies that have shown that the averaged path length
is higher in diseases than in the healthy brain (Stam, 2014).

Our mathematical approach incorporates previous models
on the relationship between structural and functional networks
into one single model. For example, a previous study found
that the shortest paths and detours along these paths in the
structural network were the strongest predictors for functional
connections (Goñi et al., 2014). This result agrees with our
finding of the structural–functional network mapping being
dependent on the combination of walks with small hopcounts
(corresponding to the shortest paths in the network) and de-
tours from these shortest paths. Also, the suggestion that
network diffusion has the ability to predict functional connec-
tions (Abdelnour et al., 2014) is in line with our work. Network
diffusion indicates that information is not merely transmitted
through the shortest paths, but also through less-efficient paths.

Furthermore, our mathematical function also includes the
predictive value of common neighbors for functional con-
nections (Vértes et al., 2012). The term c2[f]A2 in Eq. (5) cor-
responds to the weighted number of walks between any pair
of nodes with hopcount 2, that is, walks from any node i to a
node j through a common neighbor. In a previous study,
Tewarie and coworkers (2014) demonstrated that the degree
product between nodes in the structural network together
with the Euclidean distance has the ability to predict the
functional connections between these nodes. We observed
in this study that our approach with the sum of structural ma-
trices Ak in Eq. (5) is correlated not only with the degree
product (Supplementary Fig. S13) but also with the complete
previous model (including Euclidean distance, Supplemen-
tary Fig. S14).

Predicting the structural network from the functional net-
work has received relatively little attention (Abdelnour et al.,
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2014; Deco et al., 2014; Robinson, 2012; Robinson et al.,
2014). We assumed that the structural network is a weighted
sum of powers of the functional network matrix W. However,
unlike the structure-to-function mapping f, the interpretation
of this mathematical function is less straightforward: If we
define the weight of a walk as the product of all weights
along this walk, then the matrix entry (Wk)ij represents the
summed weights of all possible walks with hopcount k be-
tween node i and node j. Similar to the function f, we find
for f�1 that higher powers of W do not contribute substan-
tially to the goodness of fit of our mapping.

In contrast to the powers of a binary matrix, Wk does not
only contain the number of walks with hopcount k but also
incorporates information about their weight structure. Still,
we can conclude that longer walks in the functional network
seem to influence the structural brain network less. Practi-
cally, this result not only helps us to reconstruct the structural
connections when we have only the functional connectivity
matrices but also indicates that a direct structural connection
between two brain regions seems to be influenced not only by
their direct functional connectivity but also by the (function-
al) communication within a small hopcount neighborhood of
those two regions.

Using an additional data set of individual healthy controls
[data set (iii)], we found that our mapping can also be gener-
alized to the individual level. For the individual mappings, we
also found that nearly all mappings were able to outperform
their reshuffled benchmark except for some outliers (see
Table 1). Furthermore, we compared the results of the
group-averaged data and the individual data (each of these
containing data from multiple modalities). In the case of the
mapping from structural to functional networks, the perfor-
mance when using individual fits was similar to that obtained
when using the group-averaged matrices (see Figs. 2 and 4).

However, for the inverse mapping, the individual map-
pings provided a much better fit than the group-averaged
mappings. These results could potentially be explained by
the following factors: (1) there exists an even stronger rela-
tionship between function and structure at the individual
level, (2) the use of weighted structural connectivity matrices
(instead of the binary group-averaged structural connectivity
matrix), which are more representative of the underlying fiber
bundle structure, or (3) the fact that the structural and func-
tional information were gathered from the same group for
data set (ii) (in contrast, the group-averaged structural and
functional connectivity matrices were based on two different
sets of healthy controls).

Technical implications

Our approach may provide important information about
the DTI-obtained structural network that is generally missed
due to methodological issues with crossing versus kissing fi-
bers, which usually affect interhemispheric connections.
Given the functional networks, a mapping to the structural
network could also allow to distinguish between genuine
and false positive connections, which are inherently present
in DTI data (Thomas et al., 2014). For example, in the struc-
tural networks estimated from MEG and fMRI networks, we
observed more homologous interhemispheric connections
than in the actual empirical structural network (see the off-
diagonal in Supplementary Fig. S3).

In addition, for MEG functional connectivity metrics,
there are well known methodological issues with volume
conduction, signal leakage, and field spread. By using our ap-
proach and trying out different functional connectivity met-
rics, one could aim to find the common properties of these
mappings, that is, those that are invariant of the functional
metric that was used.

Methodological considerations

First, we investigated the relationship between the struc-
tural network and static patterns of (resting-state) functional
connectivity, as functional connectivity was estimated over
epochs of several seconds. Therefore, our approach does
not consider the dynamical aspects of functional connectiv-
ity. It is well known that functional networks obtained
from smaller time windows correspond less to the structural
network (Honey et al., 2007; Messé et al., 2014; Ton et al.,
2014) and therefore our approach could be less applicable
to these smaller time scales.

Second, the mapping employed in this study can certainly
be influenced by the choice of the parcellation of brain re-
gions. However, as long as the ratio between genuine (func-
tional or structural) connections and noise in the matrices
remains similar between parcellation atlases, we do not ex-
pect it to have a significant impact on the goodness of fit
of our mapping. Despite the well-known limitations of the
AAL atlas, it still provides a commonly used framework in
neuroimaging studies. By using it, the results from our study
are directly relevant for this existing body of work. We also
provided a suggestion of how to overcome the dimension dif-
ferences of the matrices of different parcellations mathemati-
cally in SI-I.

Third, our mapping can be influenced by noise in the matri-
ces, such as the presence of false positives in the structural
connectivity matrix. However, by randomly adding some con-
nections on top of the existing connections to the structural
network and redoing the analysis, we observed that the fluctu-
ation in goodness of fit was relatively small (see Supplemen-
tary Fig. S15).

Fourth, we have chosen the alpha2 band because of high
SNR for this frequency band. The mapping between structure
and function may be different in terms of coefficients for the
other frequency bands because we face there is to some ex-
tent a different structure in the matrices. To explore the map-
ping for different frequency bands is a goal for future studies.
Since the PLI probably underestimates the connectivity
strengths (Stam et al., 2007), future research should apply
our methods on other connectivity measures as well, which
will probably lead to different mappings in terms of different
coefficients. Previous studies have used the amplitude enve-
lope correlation to study MEG/fMRI similarity (Brookes
et al., 2011). This metric may be used in future studies to an-
alyze structural versus functional network mappings, but this
is beyond the scope of this study.

Conclusion

In this study, we have demonstrated that, irrespective of
the functional imaging modality, the relationship between
structural and functional networks can be described by a map-
ping. Such a mathematical function can predict resting-state
functional networks from the structural network and vice
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versa. This mathematical function can be described by a
weighted sum of matrix powers, which represent, in the binary
case, the number of walks up to a certain hopcount in the net-
work. Thus, according to our analysis, a functional connection
seems to be shaped by shorter walks up to the diameter in the
underlying structural network.

This result provides a general framework that incorporates
previously published models on the relationship between
structural and (stationary) functional networks. Also, when
analyzing the mapping from functional to structural net-
works, longer walks in the functional brain network appear
not to have a big influence on the structural connections.
We found different coefficients for MEG and fMRI for our
mapping, which point toward a modality dependency for the
structure–function relationship.

Furthermore, this mathematical function could help to re-
duce noise and artifacts for the empirical estimation of struc-
tural and functional networks. We were also able to extend
this mapping relationship to the subject level. For future
work, differences in individual mappings between patients
and healthy controls may provide insights in the disrupted re-
lationship between the structural and functional brain net-
works in various diseases.
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Hämäläinen MS, Ilmoniemi R. 1994. Interpreting magnetic fields
of the brain: minimum norm estimates. Med Biol Eng Comput
32:35–42.
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