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Abstract

Recently, emerging studies have demonstrated the existence of brain resting-state spontaneous activity at frequencies
higher than the conventional 0.1 Hz. A few groups utilizing accelerated acquisitions have reported persisting signals
beyond 1 Hz, which seems too high to be accommodated by the sluggish hemodynamic process underpinning blood
oxygen level-dependent contrasts (the upper limit of the canonical model is *0.3 Hz). It is thus questionable whether
the observed high-frequency (HF) functional connectivity originates from alternative mechanisms (e.g., inflow effects,
proton density changes in or near activated neural tissue) or rather is artificially introduced by improper preprocessing
operations. In this study, we examined the influence of a common preprocessing step—whole-band linear nuisance
regression (WB-LNR)—on resting-state functional connectivity (RSFC) and demonstrated through both simulation
and analysis of real dataset that WB-LNR can introduce spurious network structures into the HF bands of functional
magnetic resonance imaging (fMRI) signals. Findings of present study call into question whether published observa-
tions on HF-RSFC are partly attributable to improper data preprocessing instead of actual neural activities.

Keywords: fast acquisition; high frequency; linear nuisance regression; resting state functional connectivity;
spurious network structures

Introduction

Permitted by recent technical advances in magnetic res-
onance (MR) acquisition that provide accelerated temporal

sampling rates, there has been growing interest in exploiting
brain resting-state functional connectivity (RSFC) at frequen-
cies beyond the conventional 0.1 Hz. These early investiga-
tions (Boubela et al., 2013; Boyacioglu et al., 2013; Chen
and Glover, 2015; Gohel and Biswal, 2015; Lee et al., 2013;
Lin et al., 2015; Niazy et al., 2011; Wu et al., 2008), although
with disparate acquisition protocols, converge on similar con-
clusions that spontaneous activity persists at frequencies well
above the typical upper limit of 0.1 Hz and shares partially
overlapped functional information across frequencies. These
intriguing findings have offered new biomarker opportunities
for clinical and neuroscience research and have provoked
emerging efforts to reexamine the frequency dependence of
brain functional behaviors across broad mental states (Lin
et al., 2015; Yuan et al., 2014), age (Smith-Collins et al.,
2015), and clinical populations (Morgan et al., 2015; Sours
et al., 2015; Wang et al., 2015).

The potential concern with these promising high-frequency
(HF) network connectivity results is that the blood oxygena-
tion level-dependent (BOLD) mechanism tracks neural activ-

ity in an indirect and very sluggish manner, which naturally
confers an upper limit on the neural information’s observable
frequencies. Previously, we demonstrated BOLD-like com-
ponents up to 0.5 Hz and simulated the RS hemodynamic re-
sponse function (HRF) by deriving Buxton’s balloon model in
an equilibrium state, which extended the frequency response
from roughly 0.3 Hz (the upper limit of a canonical HRF
model in SPM8 [Wellcome Trust Centre for Neuroimaging,
University College London, UK]) to *1 Hz (Chen and Glo-
ver, 2015). However, this extended response range is still
not sufficiently high to explain the frequencies reported by
some studies (e.g., 5 Hz in Lin et al., 2015). One possible ex-
planation is that RSFC at such high frequencies derives from
alternative neural activity-related changes that can be cap-
tured by MR signals (Chen and Glover, 2015), such as proton
density-weighted signal enhancement by extravascular water
protons (Figley et al., 2010) or rapid blood inflow effects in
active neural tissues (Gao and Liu, 2012). Furthermore, Le
Bihan (2003) postulated a diffusion mechanism to explain
faster responses to task-driven stimuli. Yet, given the mod-
estly increased frequency responses of these candidate mech-
anisms and their small effect size identified in previous
literature, it is unlikely that they can account for the bulk of
the robust HF-RSFC patterns reported so far.
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We hence are motivated to inquire whether the observed HF
spontaneous activity does not stem from neural activity,
but rather from certain denoising operations included in the
preprocessing pipeline. The majority of published studies on
HF-RSFC have utilized the same routine preprocessing steps
performed with conventional acquisitions (repetition time
[TR] = 2–3 sec) in accelerated acquisitions (TR <1 sec), includ-
ing slice timing correction, detrending scan drifts, and removal
of nuisance factors (motion/physiological noise), followed by
moderate temporal/spatial filtering. However, it is noteworthy
that the power of spontaneous activity, although it may span
the whole band (WB), decays quickly as frequency increases.
As a result, HF components may play a negligible role when
compared with neurally driven low-frequency (LF) fluctuations
in determining the key parameters of various preprocessing op-
erations. For example, the scaling factors quantifying each nui-
sance fluctuation’s contribution to the total variance of a time
series in nuisance regression are dominated by LF fluctuations.
Thus, it is likely that the HF components of the raw dataset are
not effectively denoised compared with their LF compartments
post preprocessing; even worse, the inherent structure of the
HF data (if it exists) may be contaminated or buried in spurious
fluctuations introduced by various denoising steps.

In this article, we take linear nuisance regression (LNR)—
a common approach to removing motion/physiological arti-
facts as well as other noisy fluctuations from the data through
linear regression—as the example to illustrate the impacts of
improper preprocessing on HF-RSFC. Results from both
simulation and real dataset analyses demonstrate that WB (the
entire frequency band resolved by a given TR) LNR passes
structured network patterns from the conventional LF band arti-
ficially to higher frequencies, which accounts largely for spuri-
ous HF-RSFC revealed in the present dataset postanalysis.

Background: WB-LNR

Linear nuisance regression

RS studies commonly model the functional magnetic res-
onance imaging (fMRI) time series of each voxel y as the lin-
early additive mixture of various nuisance factors xi (e.g.,
motion/physiological artifacts) and the spontaneous neural-
related activities e:

y = b0þ b1x1þ b2x2 . . . þbnxnþ e (1)

where bi is the scaling coefficient reflecting the contribution of
each nuisance factor to the observation y. The spontaneous ac-
tivities can thus be denoised by linearly projecting the nui-
sance factors out of y through least-square fitting:

bb = XT X
� �� 1

XT y (2)

be = y�Xbb (3)

where X = x1 x2 . . . xn½ � and b = b0 b1 . . . bn½ �T .

LF fluctuations dominate in WB-LNR

As a time domain analysis approach, LNR implicitly as-
sumes that the scaling coefficient b is frequency invariant,
that is, nuisance sources X corrupt the observed time series
y in a linear and consistent manner across frequencies. How-
ever, this common assumption is unlikely to be wholly true

in practice—for instance, the spatial and spectral characteris-
tics of motion artifacts vary among types and levels of head
movements (Power et al., 2014; Satterthwaite et al., 2013;
Van Dijk et al., 2012). Thus, in practice, the estimated bb re-
flects approximately the weighted average of scaling coeffi-
cients across all frequencies in the acquired spectrum and is
dominated by the strongest frequency components present in
the observations/regressors.

Now consider the condition where both the signals y and
nuisance factors X are heavily dominated by LF fluctuations
(i.e., kXLkOOkXHk, kyLkOOkyHk, where XL/XH and yL/yH

refer to the LF/HF components of X and y, respectively,
k � k denotes the Euclidean norm). The regression results
will then be driven by the slow fluctuations in observation/
nuisance factors, leading to

bb = XT X
� �� 1

XT y � XL
T XL

� �� 1
XL

T yL = bbL (4)

beL = yL�XL
bb � yL�XL

bbL (5)

beH = yH �XH
bb � yH �XH

bbL (6)

where bL/bH and beL=beH correspond to the LF/HF components

of b and be, respectively. bbL is the estimated scaling coeffi-

cient for the model: yL = XLbLþ eL. Since bbL is dominated
by LF components in observation/nuisance factors, subtract-

ing XH
bbL from yH may introduce rather than remove nui-

sance variance in the HF parts of data. A toy illustration of
the issue is shown in Figure 1a, b.

Artificial network patterns introduced in HF bands

Apparently, the HF components of XH will be introduced in

every voxel with a scaling coefficient bbL indicating the
amount of LF variance explained by each specific nuisance
source, that is, a globally correlated structure reflecting the
contamination from each nuisance source will be added to yH.

More importantly, it has recently been demonstrated by

Bright and Murphy (2015) that the regressed noise (XL
bbL)

in the conventional LF band contains RS network structures,
which can be discernable even if only two physiological re-
gressors are employed. Being finite and stochastic samples of
the nuisance factors and brain spontaneous activity, columns
of XL and functional information inherent in yL cannot be
perfectly orthogonal to each other despite that nuisance arti-
facts and brain signals are uncorrelated from the mathemat-
ical expectation perspective. This argument can be better
conceptualized under the extreme condition where XL is
full rank and the number of nuisance regressors equals the
number of time frames, in which case all the information
(neural signals as well as noise) will be passed on to the re-

moved variance, that is, XL
bbL = yL. Therefore, the removed

variance XL
bbL will inevitably contain part of the neural sig-

nals as well as true noisy fluctuations. Furthermore, as bbL

carries partial information inherent in XL
bbL, the introduced

variance XH
bbL will thus inherit corrupted network informa-

tion from the LF RS networks.
Figure 1c offers an intuitive view on how correlated struc-

tures in the LF bands are deformed and passed into HF bands
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FIG. 1. Illustration of WB-LNR. (a) WB-LNR can introduce additional variance into the HF band of fMRI time series. Here,
measurement y and nuisance regressor x both have low (0.04 Hz) and high (0.4 Hz)-frequency components. The cleaned signal e
[from Eqn. (3)] on the bottom includes a large HF contamination introduced by WB-LNR from the LF component. (b) Intro-
duced variance as a function of the ratio k of LF and HF fluctuation amplitudes. (c) Illustration of how RSFC at low frequencies
is twisted and passed to the HF band of fMRI data through WB-LNR. See text description in the Artificial network patterns
introduced in HF bands section. fMRI, functional magnetic resonance imaging; HF, high-frequency; LF, low-frequency;
LNR, linear nuisance regression; RSFC, resting-state functional connectivity; WB, whole-band. Color images available online
at www.liebertpub.com/brain
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through LNR. In the simplified case, brain functional informa-
tion is described by a three-dimensional (3D) space (each voxel
only contains three time frames), the time series is denoised
with two nuisance regressors (x1 and x2), and the LNR process
is dominated by LF fluctuations. For two correlated (not or-
thogonal to each other) time series y1 and y2 in the 3D
space, their correlations are deformed through dimensionality
reduction (projection onto the plane spanned by xL,1 and xL, 2),
changes of bases (distinct amplitudes and interdependence
structures between xL,1/xL, 2 and xH,1/xH, 2, rotation from the
two-dimensional plane spanned by xL,1/xL, 2 to that spanned
by xH,1/xH, 2 is highlighted by blue arrows), and then reintro-
duced into high frequencies through regression analysis.

Collectively, we have shown the concept that WB-LNR
can introduce variance with globally correlated information
as well as spurious network structures into the HF band of
the observed data.

Materials and Methods

Data acquisition

Ten healthy subjects (4 females, aged 36 – 12 years) recruited
from the Stanford community participated in the current study.
FMRI data were collected with a 3T scanner (GE Signa 750,
Milwaukee, WI) with a 32-channel radio frequency coil
(NOVA Medical, Wilmington, MA). A simultaneous multislice
echo planar imaging (EPI) with blipped controlled aliasing in
parallel imaging (CAIPI) sequence (Setsompop et al., 2012)
was used for T2*-weighted functional imaging (TR/echo
time [TE] = 350/30 msec, multiband acceleration factor = 6,
CAIPI shift of field of view [FOV]/3, FOV = 220 cm, flip
angle = 40�, 30 axial slices, voxel size 3.14 · 3.14 · 4 mm3).
Each subject underwent a 10-min RS scan and an additional
7-sec scan with reversed phase encoding directions (to correct
for susceptibility-induced distortions). Respiration and cardiac
(pulse oximetry) data were recorded using the scanner’s built-
in physiological monitoring system.

Basic preprocessing

After reconstruction, data were corrected for susceptibility-
induced distortions using the FSL TOPUP toolbox (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP). The first 29 frames
(*10 sec) of each scan were discarded to allow the MR signal
to achieve T1 equilibration. Basic preprocessing steps included

time slice correction and removal of linear and quadratic
scanner drifts with custom C and MATLAB routines. Phys-
iological fluctuations synchronized with cardiac/respiratory
cycles were removed using RETROICOR (Glover et al.,
2000). Subjects’ data were normalized to the Montreal Neu-
rological Institute (MNI) template for the ensuing analysis
(extrapolated to 2 · 2 · 2 mm3 resolution).

Construction of nuisance regressors

Combinations of nuisance regressors routinely employed
in RS analyses were examined, as detailed in Table 1. The
regressors were estimated from data post basic preprocessing
in the Basic preprocessing section (real dataset).

Simulation

The simulations aimed at examining the concept that WB-
LNR could yield spurious HF-RSFC, even if there exist no
correlated structures at high frequencies in the raw dataset.

To this end, a dummy dataset having only LF fluctuations
was created from the real dataset by eliminating any possible
HF correlations. Specifically, we took the Fourier transform
of each voxel’s time series for each subject, scrambled the
phases of components above 0.2 Hz, and then inversely Four-
ier transformed back to the temporal domain (i.e., the power
distribution and temporal autocorrelation structure of each
voxel’s time series was unaltered). Consequently, RSFC of
the created dummy dataset was identical with that of the
real dataset at frequencies below 0.2 Hz, but contained no
structured information above 0.2 Hz.

Next, regressors derived from the real dataset (see Construc-
tion of nuisance regressors section) were linearly projected out
of the dummy dataset. The cleaned dummy dataset was further
filtered into three different bands: LB (0–0.2 Hz), HB1 (0.4–
1.4 Hz), and HB2 (0.8–1.4 Hz), within which FCs of two RS
networks—the default mode network (DMN, the most active
network at rest) and visual network (VN, a robust sensory net-
work commonly observed at rest)—were estimated, respec-
tively. The network patterns were generated by linearly
correlating the time series of each brain voxel and a pivotal
seed voxel in each network—MNI coordinate (0, �56, 26)
(posterior cingulate cortex [PCC]) for DMN and (�32, �88,
2) (left occipital lobe) for VN.

In the simulation and ensuing real dataset analysis, we
chose 0.2 Hz as the upper threshold for LF band signals

Table 1. Sets of Nuisance Regressors Examined in the Presented Work

Regressor Description
No. of

regressors

mot6 3 translational and 3 rotational motion estimates 6
mot12 mot6 + 6 temporal derivative terms 12
mot24 mot12 + 12 squared terms (Friston et al., 1996) 24
csf + white Signals averaged within 3-mm radius spheres centered at MNI (26, �12, 35)

for white matter and (19, �33, 18) for CSF
2

Gs Signal averaged across voxels of the whole brain 1
mot6 + comb mot6 + csf + white + 4 physiological regressors from RVHRcor (2 low-frequency

fluctuating time series induced by cardiac/respiratory variations and their
temporal derivative terms) (Chang et al., 2009)

12

mot24 + comb mot24 + csf + white + 4 physiological regressors from RVHRcor 30
mot24 + comb + gs mot6 + csf + white + 4 physiological regressors from RVHRcor + gs 31

CSF, cerebrospinal fluid; MNI, Montreal Neurological Institute.
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because it resides closer to the spectrum elbows than the
more commonly employed 0.1 Hz for most brain regions of
interest (ROIs) based on the present dataset and power
plots (Gohel and Biswal, 2015, Fig. 1). For HF signals,
0.4 Hz was selected as the lower bound threshold so that
HB1/HB2 span frequencies not supported by the canonical
HRF and are free from potential residual confounds induced
by respiratory movement.

Analysis of real dataset

Similar to the simulation analysis, a cleaned real dataset
was first generated by WB-LNR with regressors constructed
as above (Construction of nuisance regressors section). We
then quantified the variance removed (or introduced) by
WB-LNR in different frequency bands (LB, HB1, HB2).

The variances of signals averaged within brain functional
ROIs were compared before and after WB-LNR. The ROIs
were reported by Shirer and colleagues (2012) (http://
findlab.stanford.edu/functional_ROIs.html) and only those
containing >200 voxels were selected; each ROI mask was
further eroded to contain 100 voxels, 2 · 2 · 2 mm3 cubical
resolution.

Furthermore, the DMN/VN from real and cleaned real
datasets were generated using identical seed-based ap-
proaches as those employed in the simulations and compared
to evaluate the impacts of WB-LNR on the observed LF/HF
network patterns.

RETROICOR was employed as a default preprocessing
step and excluded from the LNR examination here because
the spectra of modeled fluctuations peaked at the cardiac/re-
spiratory frequencies (*1/0.2 Hz), not falling into the

FIG. 2. Overview of the
simulation and analysis
scheme. DMN, default mode
network; VN, visual network.

FIG. 3. Power spectra of nuisance regressors (see Table 1 for descriptions) constructed from real dataset (see Construction
of nuisance regressors section). The time series of each regressor is normalized to z-score (demeaned and scaled to unit var-
iance) before spectrum estimation for each subject. Subject means (black lines) and standard deviations (shaded gray area) of
the z-score power spectra are plotted.

NUISANCE REGRESSION OF HIGH-FREQUENCY FMRI DATA 17



category described in the Background: WB-LNR section.
However, RETROICOR models the quasi-periodic noise in-
duced by cardiac/respiratory cycles based on external physio-
logical recordings and projects them out of the fMRI time
series through linear regression as well. Due to the jittering
of cardiac/respiratory cycles in practical conditions, the mod-
eled fluctuations inevitably contain HF components and may
thus interfere with HF components of the real signal. To elim-
inate such concerns that the observed HF-RSFC originated
partly from RETROICOR, connectivity analyses were also
conducted on the real dataset before RETROICOR and LNR.

An overview of the simulation and analysis is shown in
Figure 2.

Results

Power spectra of the regressors

Figure 3 shows the frequency spectra of the estimated nui-
sance regressors (Table 1). Regressors (mot6 and its squared
terms, csf + white, gs) are characterized by dominating LF
fluctuations and HF components persisting up to 1.4 Hz
(the upper limit of frequencies resolved by TR = 0.35 sec).
Hence, every regressor set listed in Table 1 contains compo-
nents that could potentially cause spurious HF-RSFC based
on the Background: WB-LNR section. Besides, the deriva-
tive terms of six motion parameters spread flatly across the

entire frequency band. Regressors from RVHRcor decay
quickly to zero beyond 0.4 Hz because they are obtained
by convolving the variability waveforms of heart rates and
respiratory volumes with modeled response functions (fitted
by LF gamma functions) (Chang et al., 2009).

Dummy dataset: spurious HF network structures
introduced by WB-LNR

DMN/VN maps of the cleaned dummy dataset within three
different frequency bands—LB (<0.2 Hz), HB1 (0.4–1.4 Hz),
and HB2 (0.8–1.4 Hz)—are displayed in Figure 4. Robust net-
works are demonstrated in LB, with minor modifications
depending on the regressors employed. No regions show sig-
nificant correlations with the network seed before LNR
(dummy column). By contrast, several brain regions commonly
reported as part of the DMN/VN surpass the uncorrected
threshold ( p < 0.05) for both HB1 and HB2 post-LNR, even
with as few as two nuisance regressors (csf + white). Briefly,
the spurious HF functional connectivity introduced by LNR
becomes more and more like that of the LF network structures
(LB, dummy) as the number of regressors increases. The close
resemblance of network patterns in HB1 and HB2 suggests
that the contrast (introduced functional signals by LNR)-to-
noise (unordered fluctuations in the dummy dataset) ratios
do not differ significantly between 0.4–0.8 Hz and 0.8–
1.4 Hz bands.

FIG. 4. The group-level t-map of DMN(a)/VN(b) within different frequency bands post-WB-LNR (the cleaned dummy
dataset, across 10 subjects). Regions inside the black contour surpass the statistical threshold ( p < 0.05, uncorrected).
Note false HF-RSFC introduced by LNR to varying degrees depending on regressors. Color images available online at
www.liebertpub.com/brain
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Figure 5a repeats the LB DMN results from Figure 4; (b)
shows DMN connectivity maps generated from the noisy var-
iance projected out of the LB, and introduced into HB1 of the
dummy dataset. The relationship between the spurious HF-
RSFC and the true LF-RSFC in the dataset is in accordance
with the theory introduced in the Artificial network patterns
introduced in HF bands section. Pattern alternations due to di-
mensionality differences, change of bases (interdependence
structure of the regressors across different frequency bands),
and exemplification of nuisance factors (globally correlated
effect) can be explicitly observed in the results.

Since the number of employed nuisance regressors (£31) is
!! than the number of collected temporal frames (1681), the
removed variance in the conventional band (Fig. 5b, LB, true

regressors) only contains part of the LF connectivity informa-
tion. Thus, in line with the results in Figure 4, the projected
DMN more closely resembles the raw connectivity patterns
(Fig. 5a, LB, dummy) as the number of regressors increases.

The interdependence structure of nuisance regressors at
high frequencies differs from that at low frequencies
(Fig. 5d, true regressors). As discussed earlier, the structured
variance introduced into high frequencies by LNR deviates
from that projected out of the LF fluctuations in spite of
the identical scaling coefficient b. This is more evidently
revealed in comparison with the case dummy dataset regress-
ing against a set of random regressors (generated by ran-
domly shuffling the WB phases of each true regressor,
with the process repeated until the linear correlation between

FIG. 5. (a) The group-level t-map of DMN in the LB of the cleaned dummy dataset from Figure 4a for comparison with
Figure 5b, c; (b) LB/HB1 of the removed variance using true regressors; and (c) LB/HB1 of the removed variance using random
regressors. Correlation values at the subject level are Fisher z transformed before entering the group-level analysis except for
True regressors, gs, which display the group t-value based on direct correlation values (r = –1 for a single regressor). Regions
inside the black contour surpass the statistical threshold ( p < 0.05, uncorrected). (d) Linear correlation matrices of true/random
nuisance regressors within different frequency bands. Color images available online at www.liebertpub.com/brain
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the generated regressor and true regressor is below 0.1).
These random regressors share identical frequency distribu-
tions as the true regressors, but are not related to any nui-
sance metrics (e.g., motion noise) in the real dataset. As
regressors generated thereby possess similarly independent
structures across frequencies (Fig. 5d, random regressors),
the projected networks in LB and introduced networks in
HB1 are more alike (Fig. 5c).

Apart from neural activity-related information, the intro-
duced HF-RSFC also maps the global impacts of each nui-
sance factor since the fitted parameter scales proportionally
with the extent to which a voxel is contaminated by each spe-
cific nuisance source. For instance, in the variance regressed
by one single global signal, most gray matter regions (with
major contributions to the averaged signal) are positively
correlated with the PCC seed using true regressors, whereas
only key nodes of the DMN show up using random regres-
sors (Fig. 5b, c, true regressors vs. random regressors, gs).

Real dataset: variance removed/introduced by LNR

Figure 6 shows the ratio of signal variance postnuisance re-
gression and before nuisance regression, averaged across dif-
ferent functional ROIs. As expected, variance is effectively
reduced in LB, but increased in both HB1 and HB2 (consis-
tently across different regressors and networks), corroborating
that WB-LNR does bring in additional variance to the dataset.

Variances are modestly reduced if only the global signal is in-
cluded in LNR, which may be explained by the facts that (1) the

power contrast between HB1/HB2 and LB is more pronounced
for global signal compared with other regressors (Fig. 3) and (2)
cortical regions do share common HF fluctuations (either neural
related or noisy) that are preserved through global averaging.
Moreover, the introduced HF variance by mot24 + comb is re-
duced in conjunction with global signal (mot24 + comb + gs).
This is possibly attributable to the fact that the global signal
fits the LB fluctuations better than other modeled nuisance fac-
tors since it derives from massive averaging of the dataset itself
and contains unwanted noise as well as neural activity underly-
ing wide cortex regions. As a consequence, the global signal
plays a pivotal role in the least-square fitting of LNR, down-
weighting the contribution from other regressors as well as
the additional variance introduced to high frequencies.

Real dataset: spurious HF structures introduced
by WB-LNR

DMN and VN connectivity maps of the real dataset are
shown in Figure 7a, b, respectively. Correlated patterns in the
variance removed by RETROICOR are minor for both net-
works (RETROICOR variance), eliminating the possibility
that the observed HF-RSFC stems largely from regression pro-
cedures employed in the Basic preprocessing section. Pro-
nounced DMN/VN are observed post-LNR, and the exhibited
patterns are generally in line with the simulation results above.

Contrasting the network patterns appeared in the cleaned
real dataset (Fig. 8, cleaned dataset) and those inherent in
the introduced variance (Fig. 8, introduced variance), the re-
markable resemblance implies that the observed HF-RSFC
is to a large extent artificially introduced by WB-LNR. Nota-
bly, despite that mot24 + comb + gs introduces minimal struc-
tured variance to the data (see variance plot in Fig. 6), that is,
the effect size is tiny at the subject level, RSFC of the chosen
two networks is already discernable at the group level for the
relatively small subject size of 10.

Discussion and Conclusion

Simulations and real data analysis in the present study
have demonstrated that WB-LNR can introduce additional
variance with structured network patterns at frequencies
not easily supported by BOLD mechanisms, which are dis-
cernable with as few as two nuisance regressors (csf + white),
and become more and more prominent as the number of re-
gressors increases. Although stemming from spontaneous ac-
tivity in the conventional band, this artificially introduced
HF-RSFC is not identical with LF-RSFC due to frequency-
variant interdependence structures of nuisance regressors.
Moreover, since the regressors are associated with various
noisy confounds (e.g., motion), the artifactual network pat-
terns at higher frequencies naturally amplify the influence
of non-neurally related artifacts compared with true func-
tional connectivity at lower frequencies.

Similar concerns extending to regressors identified
by data-driven approaches

So far, we have discussed the case where nuisance fluctua-
tions are identified from fixed models as specified in Table 1.
Alternatively, nuisance fluctuations can also be identified
through data-driven decompositions, for example, principal
component analysis (PCA) and independent component
analysis (ICA). Such approaches first decompose the raw

FIG. 6. The ratio of signal variance before and after WB-LNR
(top, averaged across all the brain functional ROIs when tested
against 0 using one-sample t-test, all passing the significance
level p < 0.0001, Bonferroni corrected); an example of variance
changes in different brain networks, postregression using
mot24 + comb (bottom, averaged across ROIs within different
RS networks). ROIs, regions of interest; RS, resting state.
Color images available online at www.liebertpub.com/brain
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data into orthogonal or independent components and exert
certain criteria to eliminate uninteresting components by lin-
early regressing the associated time series out of the raw data
(e.g., Griffanti et al., 2014; Kundu et al., 2012, 2013; Olafs-
son et al., 2015; Salimi-Khorshidi et al., 2014; Thomas et al.,
2002). If the temporal space spanned by the uninteresting
non-neural components contains more power in LF than
HF fluctuations (since it is likely linked with or consists
largely of common LF-driven nuisance factors [e.g., motion,
physiological noise, shown in Fig. 3]), similar concerns of
introducing spurious HF RSFC can still exist.

Notably, apart from the regression procedure, HF struc-
tures of the data can also be contaminated by dimensionality
reduction using low-rank temporal PCA if not prewhitened
with respect to voxel-wise temporal noise covariance. Like-
wise, similar concerns can extend to temporal ICA, which
commonly employs PCA or singular vector decomposition
as a prior dimensionality reduction step. See Supplementary
Data A (Supplementary Data are available online at www
.liebertpub.com/brain) for detailed discussion.

Revisit of the existing findings on HF connectivity

While two HF bands (0.4–1.4 Hz and 0.8–1.4 Hz) were in-
vestigated in the present study, LF-RSFC can be extended
into any HF bands through the fitted scaling parameters b

as long as the nuisance regressors contain tiny (negligible
compared with LF bands), but nonzero, fluctuations at
the examined frequencies. Whereas most regressors are
extracted from the raw data or external psychometric mea-
surement devices, where various broad band noise sources
exist, the criteria can be easily satisfied. Because these HF
fluctuations introduced by WB-LNR reflect both the dis-
torted transformation of LF-RSFC and the globally corre-
lated structure indicating voxel-wise contamination from
each specific nuisance factor, one would expect disparate
network characteristics in HF/LF bands at both the subject
and group levels (frequency behavior of certain nuisance fac-
tors, e.g., physiological noise, is not likely to differ substan-
tially across subjects).

We have previously examined the TE dependence of cor-
related RSFC amplitudes and demonstrated coexistence of
both BOLD-like and non-BOLD-like contributions up to
0.5 Hz (Chen and Glover, 2015). In the original analysis,
WB-LNR with regressor set (mot6 + comb) was used, falling
within the caveats discussed here. Since the structured noise
introduced to HF bands derives from both RSFC (BOLD
mechanism) and noisy fluctuations induced by nuisance
sources (non-BOLD mechanism) at lower frequencies, it nat-
urally contains both BOLD-like and non-BOLD-like vari-
ance. We therefore reestimated the TE dependence of
signal amplitudes with matched-band LNR strategy (filtering

FIG. 7. The group-level (10 subjects) t-map of network patterns [(a) DMN, (b) VN] within different frequency bands post-
WB-LNR (the cleaned real dataset). Regions inside the black contour surpass the statistical threshold ( p < 0.05, uncorrected).
Consistent with simulations, HF-RSFC is introduced by LNR to varying degrees depending on regressors. No prominent con-
nectivity patterns are observed in the variance removed by RETROICOR (RETROICOR variance), suggesting that HF-RSFC
observed in the real data HF-RSFC stems largely from WB-LNR instead of RETROICOR. Color images available online at
www.liebertpub.com/brain
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both signals and regressors into different frequency bands so
that LF and HF signals would not interfere with each other,
then performing LNR within each band). The results are
shown in Supplementary Figure S1. The value of the fitted
slope (TE-dependent BOLD component) increases modestly
within 0.01–0.1 Hz, which can be explained by a slight de-
crease of the mean correlated signal amplitude across TEs
(in the normalization procedure, see captions of Supplementary
Fig. S1) post matched-band LNR compared with WB-LNR.
Notably, values of fitted slopes drop instead of increasing
explicitly compared with WB-LNR >0.1 Hz, particularly
the linear TE dependence of frequency band (0.4–0.5 Hz)
is no longer significant at the confidence level a = 0:05
(R2 = 0:07, p = 0:087). Such results suggest that our previous
observations indeed stemmed partly from BOLD-like fluctu-
ations introduced by WB-LNR and only support BOLD-like
components up to 0.4 Hz. In contrast, extrapolates of fitted
signal amplitudes (non-BOLD-like components) change

very slightly at TE = 0 msec across different frequencies.
This is possibly because fluctuations induced by nuisance
factors are very minor in the DMN of examined subjects or
the associated non-BOLD-like components are negligible
compared with other non-BOLD-like sources in the DMN.

Collectively, HF-RSFC artificially introduced by WB-
LNR is unbounded, frequency dependent, and originates
from both BOLD/non-BOLD mechanisms, mirroring those
major characteristics of HF spontaneous activity reported
so far. Thus, there exists the possibility that the HF-RSFCs
observed in previous literature, particularly those well be-
yond the band permitted by the canonical HRF model, are
partly induced by improper preprocessing (e.g., WB-LNR
or various PCA/ICA denoising approaches). Due to varia-
tions in acquisition protocols, subjects, and versatile prepro-
cessing operations, conclusions based on our results may not
generalize to earlier studies. However, it is advised and
worthwhile to reexamine the published conclusions with

FIG. 8. Close resemblance between the group-level t-map of network patterns [(a) DMN, (b) VN] in the removed variance
and cleaned real dataset post-LNR. Correlation values at the subject level are Fisher z transformed before entering the group-
level analysis except for removed/introduced variance, gs, which display the group t value based on direct correlation values
(r = –1 for a single regressor). Color images available online at www.liebertpub.com/brain
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careful attention to preprocessing to exclude the potential
confounds proposed here, as in the way we reanalyzed the
previous study.

Implications for preprocessing of RS analysis

Hallquist and colleagues (2013) have demonstrated that
spectral mismatch in nuisance regression (signals are bandpass
filtered, while the regressors are unfiltered) would reintroduce
nuisance-related variations from the suppressed band to the
filtered signals and further advocated to perform bandpass fil-
tering of both signals and regressors simultaneously (matched-
band filtering). However, such matched-band filtering ap-
proach may only be valid under scenarios where the scaling
factor b is relatively constant across examined frequencies
or the frequency of interest dominates the pass band. We
therefore advise future studies (interested in frequency-
specific behaviors of RSFC in a relatively broad band) to
check the variability of b across the resolved frequencies
(e.g., by filtering both signals and regressors into narrower
sub-bands and performing matched-band LNR) before deter-
mining the denoising strategy. Briefly, if b varies within the
entire band, simultaneously filtering of both signals and re-
gressors into specific bands before LNR is preferred; if b is
relatively stable across the examined frequencies, regression
before filtering may result in more reliable bb due to increased
effective degrees of freedom and statistical power. However,
caution should be exercised that bandpass filtering can spread
motion artifacts in time (Carp, 2013).

Apart from exploiting frequency-dependent behavior of
spontaneous activity, there has been growing interest in col-
lecting RS data using accelerated acquisitions with the expec-
tation of increased statistical power (more sampling points
within a fixed scan duration) and identification of cardiac/re-
spiratory peaks in signal spectra (Boyacioglu et al., 2015;
Feinberg et al., 2010; Griffanti et al., 2014; Posse et al.,
2012). These investigations generally integrate across the en-
tire frequency band resolved by the short TR without being in-
terested in any particular frequency band. However, if
frequencies beyond the conventional band contain less prom-
inent network structures or have much lower CNR compared
with the low-frequency activities (preliminary reanalyses of
the real dataset without LNR result in very weak DMN and
VN beyond 0.2 Hz, shown in Fig. 9), including HF signals
in network analysis may possibly obscure instead of enhanc-
ing the existing connectivity patterns. Moreover, HF signals
may have already been contaminated due to preprocessing op-

erations driven by LF fluctuations. Thus, RSFC analysis may
benefit from moderate low-pass filtering. For instance, Olafs-
son and colleagues (2015) reported that low-pass filtering
resulted in a significantly greater or comparable number of
BOLD-like components as the WB data in different subjects.
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